

GCE

Mathematics B (MEI)

Unit H630/01: Pure Mathematics and Mechanics

Advanced Subsidiary GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

Annotations and abbreviations

Annotation in scoris	Meaning
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
٨	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *
сао	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This indicates that the instruction In this question you must show detailed reasoning appears in the question.

Subject-specific Marking Instructions for AS Level Mathematics B (MEI)

- a Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
- b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

If you are in any doubt whatsoever you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only – differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner. Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
- f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for *g*. E marks will be lost except when results agree to the accuracy required in the question.
- g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
- h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

www.yesterdaysmathsexam.com Mark Scheme

i If a graphical calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.

j If in any case the scheme operates with considerable unfairness consult your Team Leader.

Question	Answer	Marks	AOs		Guidance
1	$(3+\sqrt{5})$ _	M1	1.1 a	Attempt to rationalize the denominator	Allow full credit for
	$\frac{8}{(2-\sqrt{5})} \times \frac{(1-\sqrt{5})}{(2-\sqrt{5})} = 6 + 2\sqrt{5}$		1.11		correct answer
	$(3-\sqrt{5})$ $(3+\sqrt{5})$		1.1b	Must be in correct notation	
2	EITHER	[2]			
-	$(2)^{3} + 2(2)^{2}(-2n) + 2(2)(-2n)^{2} + (-2n)^{3}$	M1	1.1a	Use of Binomial coefficients	
	(3) + 3(3) (-2x) + 3(3)(-2x) + (-2x)	M1	1.1b	Powers of 3 and $(-2x)$	
				Condone no brackets or $(2x)$ used.	
		A1	1.1b	At least 3 simplified terms correct	
	27 - 54 + 26 + 26 + 3	4.1	1.11.	All convert and circuit? Col	
	= 27 - 54x + 50x - 8x		1.10	All correct and simplified	
	OR	["]			
	$(3-2x)^2 = (9-12x+4x^2)$	M1		Attempting to square	
	$(3-2r)(9-12r+4r^2)$	M1		Multiplying their answer by third bracket	
	$\left(5 - 2x \right) \left(5 - 12x + 7x \right)$	A1		At least 3 simplified terms correct	
	$= 27 - 54x + 36x^2 - 8x^3$	A1		All correct and simplified	
		[4]			

Q	uestion	Answer	Marks	AOs		Guidance
3		$\binom{8}{0} + \binom{2a}{2a} + \binom{0}{b} = 0$	M1	2.5	Setting up a correct vector equilibrium equation or two separate equations.	
		$\begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} -3a \end{pmatrix} \begin{pmatrix} b \end{pmatrix}$	A1	1.1b		
		a = -4,	A1	1.1b		
		b = -12	[3]			
4		$T - \frac{1}{2}mg = 4ma$	B1	3.1b	Award for first of these two equations	M1 dependent on at
		$m\sigma - T = ma$			~	least one B1 earned
			B1	3.1b	Signs consistent with first equation	
		a 0ma	M11	11.	Attempting to colve the simultaneous	$11_{aver} = 0.08 \text{ m} \text{ s}^{-2}$
		$a = \frac{g}{10} \text{ m s}^{-2}, T = \frac{9mg}{10} \text{ N}$	Mildep	1.1a	Attempting to solve the simultaneous	Allow 0.98 m/s ,
		10 10	Δ1	1 1h	Both T and a needed simplified	
			[4]	1.10	Doth T and a needed simplified	$T = \frac{441m}{50} = 8.82m$ N
5	:		["]			50
5	1	$y = 4\cos x$	D1	12	Correct shapes and relative sizes	
		$y = 4\cos x$	DI	1.2	Correct shapes and relative sizes	
		$y = 2 \sin x$	B1	1.2	Graphs labelled with correct amplitudes clear	
		$y - 2 \sin x$ 80 180	[2]	1.12	Ignore any graph beyond the given interval	
	ii					
	11	$4\cos x = 2\sin x$	M1	3 10	Forming equation leading to $tanr = k$ or	
		$\tan x = 2$	1711	J.1a	Torning equation reading to talk who	
		$x = \arctan 2$	A1	1.1b	Award for 63.4° for this first A mark	
		$4\cos x = 4 \times \frac{1}{2} = \frac{4}{\sqrt{5}}$				Do not allow for
		$\sqrt{5}$ 5 $\sqrt{2}$	M1	1.1a	Attempting to find exact value for cosx or sinx	using 63.4°
		\mathbf{D}	A1	1.1b	Must be a coordinate in this form	
		Point of intersection is $\left(\arctan 2, \frac{-\sqrt{5}}{5}\right)$	[4]			
	iii	The student's argument is invalid as the period of	E1	23	Must state or imply that the argument is	Allow for "roots
		tanx is 180°.		2.0	invalid and give a correct reason	occur every 180° "
			[1]			oe

Q	uestion	Answer	Marks	AOs		Guidance
6	i	$f(-1) = 4 \times (-1)^3 - 3(-1) + 1 = -4 + 3 + 1 = 0$	M1	2.1	DR Use of f(-1) must be seen. Do not allow for algebraic divison.	Allow without conclusion if preceded by "If
		Therefore $(x+1)$ is a factor	A1 [2]	2.2a	Clear conclusion must be made	f(-1) = 0 then (x+1) will be a factor" or similar
	ii	$f(x) = (x+1)(4x^2 - 4x + 1) = 0$	M1	1.1a	DR Attempt to divide or to factorise by inspection with $4x^2$	Allow full credit for $(x+1)(4x-2)(x-0.5)$
			A1	1.1b	correct quadratic factor seen or implied by correct linear factors	
		$=(x+1)(2x-1)^{2}=0$				No marks for solving the cubic on the
		$x = -1, \frac{1}{2}$ [repeated]	A1 [3]	1.1b	Both roots seen derived from 3 correct linear factors or use of quadratic formula	calculator
7		EITHER acceleration phase	M1	3.1b	Use of <i>suvat</i> equation(s) to find velocity. Do	Must recognise two
		$v = 0 + 2.5 \times 2 = 5 \text{ m s}^{-1}$	A1	1.1b	not allow if $s = 10$ used	phases of motion for first 4 marks
		$v^2 = u^2 + 2as$	M1	3.1b	Use of <i>suvat</i> equation(s) with $s = 10$ to find	
		$0 = 5^{2} + 2a \times 10$ a = -1.25 m s ⁻²	A1	1.1b	FT their velocity. Must be correct sign.	
		$[-R] = 1.5 \times (-1.25) = -1.875$ Magnitude of $R = 1.875$ N (1.88 to 3sf)	M1 A1 [6]	1.1a 1.1b	Use of Newton's second law. FT their $a \neq 2$ Must be positive	Consistent sign convention needed for full credit.

www.yesterdaysmathsexam.com Mark Scheme

June 2018

Question	Answer	Marks	AOs		Guidance
	OR acceleration phase $v = 0 + 2.5 \times 2 = 5 \text{ m s}^{-1}$	M1 A1		Use of <i>suvat</i> equation(s) to find velocity. Do not allow if $s = 10$ used	Must recognise two
	$v = \sqrt{\frac{1}{2}}$	M1		Use of area and <i>suvat</i> equation(s) to find	first 4 marks
	5	A1		Must be correct sign	
	2.5 T t				
	using the distance to find the time it takes to stop <i>using areas</i> (second triangle):				
	$\frac{1}{2}(T-2.5) \times 5 = 10$				
	T = 6.5 so time to stop is 4 s. So $0 = 5 + 4a$				Consistent sign
	Giving $a = -1.25$ m s	M1		Use of Newton's second law.	convention needed for full credit.
	$[-R] = 1.5 \times (-1.25) = -1.875$ Magnitude of $R = 1.875$ N (1.88 to 3sf)	A1 [6]		FT their $a \neq 2$ Must be positive	

Question	Answer	Marks	AOs		Guidance
8	EITHER			DR	
	Equation of the form $y = k(x+1)(x-2)$	M1	1.1a	Allow with $k = 1$ and without $y =$	Ignore = 0 if seen
	(0, -4) on curve so $k = 2$	M1	3.1a	Attempt to find $k \neq 1$	
		AI	1.1b	All correct	
	OR				
	Equation of the form $y = ax^2 + bx + c$				
	(0, -4) on curve $c = -4$	(M1)		Uses one point to form an equation	Allow for $c = -4$ seen
	(-1, 0) on the curve $0 = a - b - 4$	(M1)		Uses both other points and attempts to solve	
	(2, 0) on the curve $0 = 4a - 2b - 4$			simultaneous equations	
	Solving simultaneous equations $a = 2, b = -2$	(A1)		All correct	
	BOTH				
	Area = $\int_{-1}^{2} (2x^2 - 2x - 4) dx$				
		M1	1.1a	Integration – allow without limits – condone	
	$\frac{2x^{3}}{x^{2}}-r^{2}-4r$			one error	
		A1	1.1b	FT their quadratic	
	(2×2^3) $(2 \times (-1)^3)$	M1	11.		
	$\left \frac{2 \times 2}{2} - 2^2 - 4 \times 2 \right - \left \frac{2 \times (-1)}{2} - (-1)^2 - 4 \times (-1) \right $	IVII	1.1a	Substitution of limits clearly seen	
				Complete argument leading to exact answer.	
	$-\frac{20}{7}$ 0	A1	2.1	Allow for 9 if there is an argument to explain	
	$-\frac{-3}{3}-\frac{-3}{3}-\frac{-9}{3}$			the change of sign even if -9 not seen.	
		E1	2.4	Must give modulus and explain the change of	
	Area 18 9 below the x-axis.	[0]		sign. FT if their definite integral is negative.	"Area must be
		[8]			positive is not
					explanation
					explanation.

Q	uestion	Answer	Marks	AOs		Guidance
9	(i)	Using $y = f\left(\frac{x}{a}\right)$ $y = \left(\frac{x}{\frac{1}{2}} - 1\right)^2 = \left(2x - 1\right)^2$	M1	1.1a	Allow for 2 instead of $\frac{1}{2}$ used for method mark or attempt to write equation of quadratic that touches axis at (0.5, 0)	$(2x-1)^2$ seen is
		$=4x^2-4x+1$	A1 [2]	2.1	AG Must be a convincing argument that references either stretch or $f(2x)$ or similar	sufficient for MI
	(ii)	EITHER				
		C ₂ is $y = 4.25x - x^2 - 3$	B1	3. 1a	Finding the equation of C ₂ . Any form	
		Normal to $y = 4x^2 - 4x + 1$				
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 8x - 4$	M1	1 . 1a	Finding the derivative	
		$\operatorname{At}(0.1) \frac{\mathrm{d}y}{\mathrm{d}x} = -4$				
		Gradient of normal is $\frac{1}{2}$	M1	1.1b	Finding negative reciprocal of their gradient	
		4	A 1	1 19	FT their value for derivative	
		(0, 1) on line so equation of normal is $y = \frac{1}{4}x + 1$		1.14		
		Intersection of normal and C ₂	M1	3.1 a	Attempt to solve simultaneous equations	
		$\frac{1}{4}x + 1 = 4.25x - x^2 - 3$				
		$4x^2 - 16x + 16 = 0$	A1	1.1b	Repeated factor or root or zero discriminant	
		$EITHER (x-2)^2 = 0$		1.10	seen.	
		OR discriminant $16^2 - 4 \times 4 \times 16 = 0$				
		Repeated root so the normal is a tangent to C ₂	E1 [7]	3.2a	Must interpret their solution in the context.	

Question	Answer	Marks	AOs		Guidance
	OR C ₂ is $y = 4.25x - x^2 - 3$	B1		Finding the equation of C ₂ . Any form	
	Normal to $y = 4x^2 - 4x + 1$ dy	M1		Finding the derivative	
	$\frac{dy}{dx} = 8x - 4$				
	Gradient of normal is $\frac{1}{4}$	M1		Finding negative reciprocal of their gradient	
	Equation of normal is $y = \frac{1}{4}x + 1$	A1		FT their value for derivative	
	Point on C ₁ where gradient is $\frac{1}{4}$ $\frac{dy}{dt} = 4.25 - 2r = \frac{1}{4}$	M1		Attempting to find the point on C_1 where tangent parallel to the normal found.	
	dx = 4 $dx = 4$ $giving x = 2$ $dx = 4$	A1		Both coordinates required	
	y = 1.5 EITHER So the equation of the tangent is $y - \frac{3}{2} = \frac{1}{4}(x - 2)$ Which is the same equation as the normal to C ₁	E1		Correct equation for the tangent in form that makes it clear it is the same line as the normal.	
	OR show that point (2, 1.5) lies on normal So the normal to C_1 is a tangent to C_2	(E1) [7]			

Question	Answer	Marks	AOs		Guidance
	SPECIAL CASE when the candidate tries to show that the normal to C ₂ is a tangent to C ₁ C ₂ is $y = 4.25x - x^2 - 3$	B1		Finding the equation of C ₂ . Any form	
	Normal to $y = 4.25x - x^2 - 3$ $\frac{dy}{dx} = 4.25 - 2x$ At (0, 1) $\frac{dy}{dx} = 4.25$	M1		Finding the derivative	
	Gradient of normal is $-\frac{4}{3}$	A1		Finding negative reciprocal of their gradient	
	Equation of normal is $y = -\frac{4}{17}x + 1$ EITHER point of intersection with C ₁	A0 M1		Attempt to solve simultaneous equations	(0, 1) does not lie on C ₂
	$4x^{2} - 4x + 1 = -\frac{4}{17}x + 1$ OR Attempt to find both coordinates of the point on C ₁ with gradient $-\frac{4}{17}$	(M1)		Attempting to find the point on C_1 where tangent parallel to the normal found.	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 8x - 4 = -\frac{4}{17}$			No further marks are available 4/7 maximum	

Q	uestion	Answer	Marks	AOs		Guidance
10	i	† velocity	B1	1.1a	Two line segments with one horizontal	
		4				
			D1	1.1.	(T, 4) and $(12.5, 4)$ labelled on indicated on	
			BI	1.1a	(1, 4) and $(12.5, 4)$ labelled of indicated on scales Allow their 2.5 marked instead of T	
		time	[2]		On axes labelled y and t oe	
		न 12.5 →	[=]			
	ii	$\frac{1}{2} \times 4 \times (12.5 \pm (12.5 - T)) = 45$	M1	3.1a	Attempt to find area of trapezium or both the	Suvat equations can
		$\frac{1}{2}$ $(12.3 + (12.3 - 1)) = 43$			the triangle $\begin{pmatrix} 1 \\ -T \times A \end{pmatrix}$ and the rectangle	be used for two
					the thangle $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and the rectangle	phases of motion.
					$(12.5-T) \times 4$.	
		T 25	A1	1.1b	cao	
		I = 2.5	[2]			
	iii	EITHER				
		4 4 2	M1	1.1a	Soi	
		$a = \frac{1}{25} = 1.6 \text{ m s}^2$				
			A1	3.3	FT their T	
		$s = - \times 1.6t^2 = 0.8t^2$	[2]			
		OR				
		$a = \frac{4}{16} = 1.6 \text{ m s}^{-2}$	M1		Soi	
		$u = \frac{1}{2.5} = 1.0 \text{ m/s}$			FT their T	
		$v = \int a \mathrm{d}t = 1.6t + c$				
		When $t = 0$, $v = 0$ so $c = 0$				
		$s = \int y dt = 0.8t^2 + c$				
		when $t = 0$, $s = 0$ so $c = 0$	A1		Must be complete solution – do not award	
		Giving $s = 0.8t^2$	[2]		without consideration of $+c$ at least once	
	iv	$0.8t^2 = 4$	B1FT	3.4	FT their quadratic model in (iii)	
		$t = \sqrt{5} = 2.24$ s				

v $\int_{0}^{1} \frac{1}{\sqrt{1-1}} \frac{1}{1-1$		7 MiSwei	WIATKS	AUS		Guidance
vi Total distance (area under the graph) can only be equal if $S > T$ E1 3.5c Needs to give reason relating to the refinement of the model. Graphs not required If $S > T$ [1] If $S = T$ Vi Vi If $S = T$ If $S = T$ If $S = T$ Vi Vi If $S = T$ If $S = T$ Vi Vi If $S = T$ If $S = T$ Vi Vi If $S = T$ Vi Vi Vi If $S = T$ Vi Vi Vi If $S = T$ Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi </th <th>V</th> <th>velocity</th> <th>B1</th> <th>1.1a</th> <th>Must have curved section of the graph decreasing gradient. <i>S</i> must be labelled.</th> <th></th>	V	velocity	B1	1.1 a	Must have curved section of the graph decreasing gradient. <i>S</i> must be labelled.	
vi Vi Total distance (area under the graph) can only be equal if $S > T$ If $S > T$ If $S = T$ T S If $S = T$ T T S If $S = T$ 4 4 4 4 4 5 5 5 5 5 5 5 5		S time	[1]			
[1]	vi	Total distance (area under the graph) can only be equal if $S > T$	E1	3.5c	Needs to give reason relating to the refinement of the model. Graphs not required	"It takes longer to reach 4 ms ⁻¹ " is not
$If S = T$ $\downarrow velocity$ $\downarrow f S = T$ $\downarrow velocity$ $\downarrow f S = T$		If $S > T$	[1]		or the mouth Gruphe not required	sufficient reason
$T=S$ If $S < T$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ ime		If S = T $f S = T$ $f S = T$ $f S = T$ $f S < T$ $f S$				

Q	uestion	Answer	Marks	AOs		Guidance
11	i	$v = kx^n$	B1	3.3	Allow any letters used for constant of	
			[1]		proportionality and power.	
	ii	$\ln v = \ln(kx^n)$	M1	2.1	Taking natural logs of both sides and one	
					correct use of laws of logs used.	
		$\ln y = \ln k + \ln \left(x^n \right) = \ln k + n \ln x$	E1	2.1	Convincing argument.	
		· ()	[2]		AG	
	iii	lnx lny				
		Mercury -1.179 9.575	B 1	1.1b	At least 2 correct values	
		Jupiter 1.599 4.022	B1	1.1b	All correct and to 4sf	
			[2]			
	iv	EITHER				These values could
		9.575-4.022	M1	1.1a	using gradient formula	be found using the
		$b = \frac{1179 - 1599}{-1179 - 1599} = -1.999$ (-2.00 to 3st)	A1	3.1a	Allow -2	calculator STATS
		a = 7.218	A1	1.1b	a correct to at least 2 sf	mode, so allow
		<i>u</i> 7.210	[3]			without working
		OR				
		9.575 = a - 1.179b	M1		Setting up pair of equations by substitution of	Simultaneous
		4.022 = a + 1.599b			their values. Allow one slip.	equations can be
		Giving $a = 7.218$	A1		a correct to at least 2 sf	solved using
		b = -1.999 (-2.00 to 3sf)	A1		<i>b</i> correct to at least 2 sf	calcuator
			[3]			
	v	$v = 1363 r^{-2.00}$			FT their equation in (i)	
		y = 1505x	B 1	2.2a	awrt 1300 or 1400, or $e^{7.2}$ or better. FT their <i>a</i>	
			B1	3.3	Allow for x^{-2} or better. FT their b	
			[2]			
	vi	ÎΥ [B1	1.2	Appropriate curve with at least one horizontal	FT their equation in
					asymptote or vertical asymptote shown	(v) provided their
						function is a
			B1	1.1b	Both asymptotes correct	decreasing function
					Ignore $x < 0$ if shown	
		×	[2]			
	vii	Earth $x = 1$ $y = 1363 \times 1^{-2} = 1360$ W m ⁻² (3sf)	B1	3.4	FT their (v)	
			[1]			

Question			Answer			Marks	AOs		Guidance
			SCHEME FOR CANDIDATES USING LOG BASE 10						
	ii					SC1		Correct use of log instead of ln and no other error	
	iii		Mercury Jupiter	lnx -0.5122 0.6946	lny 4.158 1.747	B0 B1		All correct. Must be 4 sf	
	iv		As in main sci a = 3.1336 b = -1.999		M1 A1 A1				
	V		$y = 1360x^{-2}$			B1 B1		FT their equation in (i) awrt 1300 or 1400, or $e^{3.1}$ (= 22.2), $10^{3.1}$ or better. FT their <i>a</i> allow for x^{-2} or better. FT their <i>b</i>	
	vii	Earth $x = 1$, $y = 1363 \times 1^{-2} = 1360$ W m ⁻² (3sf)				B1		FT their (v)	

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2018

