Question	Scheme	Marks	AOs
	Part (a) is a 'Show that..' so equations need to be given in full to earn A marks		
3(a)			
	Moments equation: (M1A0 for a moments inequality)	M1	3.3
	$\mathrm{M}(A), m g a \cos \theta=2 S a \sin \theta$ $\mathrm{M}(B), m g a \cos \theta+2 F a \sin \theta=2 R a \cos \theta$ $\mathrm{M}(C), F \times 2 a \sin \theta=m g a \cos \theta$ $\mathrm{M}(D), 2 R a \cos \theta=m g a \cos \theta+2 S a \sin \theta$ $\mathrm{M}(G), R a \cos \theta=F a \sin \theta+S a \sin \theta$.	A1	1.1b
	(\downarrow) $R=m g$ OR (\leftrightarrow) $F=S$	B1	3.4
	Use their equations (they must have enough) and $F \leq \mu R$ to give an inequality in μ and θ only (allow DM1 for use of $F=\mu R$ to give an equation in μ and θ only)	DM1	2.1
	$\mu \geq \frac{1}{2} \cot \theta^{*}$	A1*	2.2a
		(5)	
3(b)			
	Moments equation:	M1	3.4
	$\begin{aligned} & \mathrm{M}(A), m g a \cos \theta=2 N a \sin \theta \\ & \mathrm{M}(B), m g a \cos \theta+2 k m g a \sin \theta=2 R a \cos \theta+\frac{1}{2} m g 2 a \sin \theta \\ & \mathrm{M}(D), 2 R a \cos \theta=m g a \cos \theta+N 2 a \sin \theta \\ & \mathrm{M}(G), k m g a \sin \theta+N a \sin \theta=\frac{1}{2} m g a \sin \theta+R a \cos \theta \end{aligned}$	A1	1.1b

Question	Scheme	Marks	AOs
9(a)	Moments about A (or any other complete method)	M1	3.3
	$T 2 a \sin a=M g a+3 M g x$	A1	1.1b
	$T=\frac{M g(a+3 x)}{2 a^{\prime} \frac{3}{5}}=\frac{5 M g(3 x+a)}{6 a} * \quad \text { GIVEN ANSWER }$	A1*	2.1
		(3)	
(b)	$\frac{5 M g(3 x+a)}{6 a} \cos a=2 M g \quad$ OR $\quad 2 M g .2 a \tan \alpha=M g a+3 M g x$	M1	3.1b
	$x=\frac{2 a}{3}$	A1	2.2a
		(2)	
(c)	Resolve vertically OR Moments about B	M1	3.1b
	$Y=3 M g+M g-\frac{5 M g\left(3 \cdot \frac{2 a}{3}+a\right)}{6 a} \sin a \quad 2 a Y=M g a+3 M g\left(2 a-\frac{2 a}{3}\right)$ Or: $Y=3 M g+M g-\left(\frac{2 M g}{\cos \alpha}\right) \sin \alpha$	A1ft	1.1b
	$Y=\frac{5 M g}{2}$ N.B. May use $R \sin \beta$ for Y and/or $R \cos \beta$ for X throughout	A1	1.1b
	$\tan \beta=\frac{Y}{X} \quad$ or $\frac{R \sin \beta}{R \cos \beta}=\frac{\frac{5 M g}{2}}{2 M g}$	M1	3.4
	$=\frac{5}{4}$	A1	2.2a
		(5)	
(d)	$\frac{5 M g(3 x+a)}{6 a} \leq 5 M g$ and solve for x	M1	2.4
	$x \leq \frac{5 a}{3}$	A1	2.4
	For rope not to break, block can't be more than $\frac{5 a}{3}$ from A oe Or just: $\quad x \leq \frac{5 a}{3}$, if no incorrect statement seen. N.B. If the correct inequality is not found, their comment must mention 'distance from A '.	B1 A1	2.4
		(3)	
(13 marks)			

Question	Scheme	Marks	AO
4(a)	Drum smooth, or no friction, (therefore reaction is perpendicular to the ramp)	B1	2.4
		(1)	
(b)	N.B. In (b), for a moments equation, if there is an extra $\sin \theta$ or $\cos \theta$ on a length, give M 0 for the equation e.g. $\mathrm{M}(A): 20 g \times 4 \cos \theta=5 N \sin \theta$ would be given M0A0		
	Possible equns$\begin{aligned} & (\nearrow): F \cos \theta+R \sin \theta=20 g \sin \theta \\ & (\nwarrow): N+R \cos \theta=20 g \cos \theta+F \sin \theta \\ & (\uparrow) R+N \cos \theta=20 g \\ & (\rightarrow): F=N \sin \theta \\ & \mathrm{M}(A): 20 g \times 4 \cos \theta=5 N \\ & \mathrm{M}(B): 3 N+R \times 8 \cos \theta=F \times 8 \sin \theta+20 g \times 4 \cos \theta \\ & \mathrm{M}(C): R \times 5 \cos \theta=F \times 5 \sin \theta+20 g \times \cos \theta \\ & \mathrm{M}(G): R \times 4 \cos \theta=F \times 4 \sin \theta+N \end{aligned}$	M1	3.3
		A1	1.1b
		M1	3.4
		A1	1.1b
		M1	3.4
		A1	1.1b
	(The values of the 3 unknowns are: $N=150.528 ; F=42.14784 ; R=51.49312$)		
	Alternative 1: using epts along ramp (X) and perp to $\operatorname{ramp}(V)$ Possible equations: $\begin{aligned} & (\nearrow): X=20 g \sin \theta \\ & (\nwarrow): Y+N=20 g \cos \theta \\ & (\uparrow): X \sin \theta+Y \cos \theta+N \cos \theta=20 g \\ & (\rightarrow): X \cos \theta=Y \sin \theta+N \sin \theta \\ & \mathrm{M}(A): 20 g \times 4 \cos \theta=5 N \\ & \mathrm{M}(B): 20 g \times 4 \cos \theta=8 Y+3 N \\ & \mathrm{M}(C): 20 g \times \cos \theta=5 Y \\ & \mathrm{M}(G): 4 Y=N \times 1 \end{aligned}$	M1	3.3
		A1	1.1b
		M1	3.4
		A1	1.1b
		M1	3.4
		A1	1.1b
	(The values of the 3 unknowns are: $N=150.528 ; X=54.88 ; Y=37.632$)		

Question	Scheme	Marks	AOs
4(a)	Take moments about A	M1	3.3
	$N \times \frac{4 a}{\sin \alpha}=M g \times 3 a \cos \alpha$	A1	1.1b
	$\frac{9 M g}{25} *$	A1*	1.1b
		(3)	
4(b)	Resolve horizontally	M1	3.4
	$(\rightarrow) F=\frac{9 M g}{25} \sin \alpha$	A1	1.1b
	Resolve vertically	M1	3.4
	(\uparrow) $R+\frac{9 M g}{25} \cos \alpha=M g$	A1	1.1b
	Other possible equations: $\begin{aligned} & (\nwarrow), R \cos \alpha+\frac{9 M g}{25}=M g \cos \alpha+F \sin \alpha \\ & (\nearrow), M g \sin \alpha=F \cos \alpha+R \sin \alpha \\ & \mathrm{M}(C), M g \cdot 2 a \cos \alpha+F .5 a \sin \alpha=R .5 a \cos \alpha \\ & \mathrm{M}(G), \frac{9 M g}{25} \cdot 2 a+F .3 a \sin \alpha=R .3 a \cos \alpha \\ & \mathrm{M}(B), M g .3 a \cos \alpha+F .6 a \sin \alpha=R .6 a \cos \alpha+\frac{9 M g}{25} a \\ & \left(F=\frac{36 M g}{125}, R=\frac{98 M g}{125}\right) \end{aligned}$		
	$F=\mu R$ used	M1	3.4
	Eliminate R and F and solve for μ	M1	3.1b
	Alternative equations if they have at A : X horizontally and Y perpendicular to the rod. $\begin{aligned} & \left(\mathbb{)}, Y+\frac{9 M g}{25}=M g \cos \alpha+X \sin \alpha\right. \\ & (\nearrow), M g \sin \alpha=X \cos \alpha \\ & (\uparrow), \frac{9 M g}{25} \cos \alpha+Y \cos \alpha=M g \\ & (\rightarrow), Y \sin \alpha+\frac{9 M g}{25} \sin \alpha=X \end{aligned}$		

		$\mathrm{M}(C), M g .2 a \cos \alpha+X .5 a \sin \alpha=Y .5 a$ $M(G), \frac{9 M g}{25} \cdot 2 a+X .3 a \sin \alpha=Y .3 a$ $M(B), M g .3 a \cos \alpha+X .6 a \sin \alpha=Y .6 a+\frac{9 M g}{25} a$ $\left(X=\frac{4 M g}{3}, Y=\frac{98 M g}{75}\right)$ Then $F=\mu R \quad$ becomes: $X-Y \sin \alpha=\mu Y \cos \alpha$ Eliminate X and Y and solve for μ		

Question	Scheme	Marks	AOs
9(a)	Take moments about A (or any other complete method to produce an equation in $S, \mathrm{~W}$ and α only)	M1	3.3
	$W a \cos \alpha+7 W 2 a \cos \alpha=S 2 a \sin \alpha$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Use of $\tan \alpha=\frac{5}{2}$ to obtain S	M1	2.1
	$S=3 W^{*}$	A1*	2.2a
		(5)	
(b)	$R=8 W$	B1	3.4
	$F=\frac{1}{4} R(=2 W)$	M1	3.4
	$P_{\mathrm{MAX}}=3 W+F$ or $P_{\mathrm{MIN}}=3 W-F$	M1	3.4
	$P_{\mathrm{MAX}}=5 \mathrm{~W}$ or $P_{\mathrm{MIN}}=W$	A1	1.1b
	$W \leq P \leq 5 W$	A1	2.5
		(5)	
(c)	$\mathrm{M}(A)$ shows that the reaction on the ladder at B is unchanged	M1	2.4
	also R increases (resolving vertically)	M1	2.4
	which increases max F available	M1	2.4
		(3)	
(13 marks)			

Q	Scheme	Marks	Notes
5a			
	Take moments about A :	M1	Must be dimensionally correct. Condone $\sin /$ cos confusion
	$5 N=4 \cos \theta W$	A1	
	$N=\frac{12}{25} W=0.48 W \quad * \text { Given Answer* }$	A1	
		(3)	
5b	$G=\frac{1}{4} N=0.12 \mathrm{~W}$	B1	Seen or implied
	Resolve vertically	M1	Needs all terms. Condone sin/cos confusion and sign errors
	$\downarrow: R+N \cos \theta+G \sin \theta=W$	A1	$(R=0.616 \mathrm{~W})$
	Resolve horizontally	M1	Needs all terms. Condone $\sin /$ cos confusion and sign errors
	$\leftrightarrow: F+G \cos \theta=N \sin \theta$	A1	$(F=0.312 \mathrm{~W})$
	$\mu=\frac{N \sin \theta-G \cos \theta}{W-N \cos \theta-G \sin \theta}$	DM1	Use $F=\mu R$ to find μ Dependent on 2 preceding M marks
	$=\frac{0.48 W \times 0.8-0.12 W \times 0.6}{W-0.48 W \times 0.6-0.12 W \times 0.8}=\frac{0.312}{0.616}$		
	$=0.51(0.50649 \ldots)\left(\frac{39}{77}\right)$	A1	
		(7)	
		[10]	
	NB, One of the two equations required for part (b) could be a moments equation: $\mathrm{M}(P) \quad 1 \times W \cos \theta+5 F \sin \theta=5 R \cos \theta$ $\mathrm{M}(B) \quad 3 N+8 R \cos \theta=4 W \cos \theta+8 F \sin \theta$		

Question Number	Scheme	Marks
4a	Moments about $A: 0.5 \times 2 g+2 \times 5 g(=11 g)=T \cos \theta \times 4=T \times \frac{3}{5} \times 4$	M1A2
	$T=11 g \times \frac{5}{12}=\frac{55}{12} g=44.9(45)(\mathrm{N})$	A1 (4)
	Notes	
	N.B. If all g 's are missing, mark as a MR. M1 for $\mathrm{M}(A)$, with usual rules First A1 and second A1 for a correct equation in T only i.e. must be using a correct angle (but value of trig ratio not needed at this stage) Deduct 1 mark for each incorrect term. (A1A0 or A0A0) Third A1 for 45 or 44.9 (N) (A0 for 45.0)	
4b	Resolving: $\leftrightarrow H=T \sin q$ OR $\mathrm{M}(D), H^{\prime} 3=2 g^{\prime} 0.5+5 g^{\prime} 2$	M1
	$\downarrow T \cos q+V=7 \mathrm{~g} \quad$ OR $\quad \mathrm{M}(B), V^{\prime} 4=2 g^{\prime} 3.5+5 g^{\prime} 2$	M1A1
	Pythagoras: $\|R\|=\sqrt{41.65^{2}+35.93^{2}}=55.0$ (55) (N)	M1A1 (5)
	Notes	
	First M1 for resolving horizontally or $\mathrm{M}(D)$ with usual rules to give equation in T only. (T does not need to be substituted) Second M1 for resolving vertically or $\mathrm{M}(B)$ with usual rules First A1 for a correct equation in T only. (T does not need to be substituted) Third M1 (independent but must have found 2 components) for squaring, adding and rooting their 2 components Second A1 for 55 or 55.0	
4c	Use of $F \leq F_{\max }=\mu R: V \leq \mu H \quad$ (Must have found H and V)	M1
	$m^{3} \frac{V}{H}=\frac{41.65}{35.93 . .}=\frac{51}{44}, 1.2$ or better	A1 (2)
	Notes	
	M1 for use of $V \leq \mu H$ M0 for use of $V=H$ or $V<H$ $m^{3} \frac{V}{H}=\frac{51}{44}$ Allow fraction (since g cancels) or 1.2 or better	

Question Number	Scheme	Marks
5a	Moments about A : $6 \mathrm{~g}(\times 1) \times \sin 70=T \sin 30 \times 2$	M1A2
	$T=55.3(\mathrm{~N})$ or $55(\mathrm{~N})$	A1 (4)
5b	Resolve horizontally: $\quad T \cos 50=R(=35.5)$	B1 ft
	Resolve vertically: $\quad T \sin 50=6 \mathrm{~g} \pm F$	M1A1 ft
	$\|F\|=16.5 \quad(16.473 \ldots)$	
	Use $F=\mu R: \quad \mu=\frac{6 g-T \sin 50}{T \cos 50} \quad$ (with their values)	M1
	$=0.464$ or 0.46	A1 (5)
5c	Use of \tan and their components: $\tan ^{-1}\left(\frac{35.5}{16.5}\right)$	M1
	$=65.1^{\circ}$ or 65° to the upward vertical	A1 (2)
	or equivalent (24.9° or 25° above the	[11]
	horizontal)	
	Notes	
5a	First M1 for a complete method to find T, with usual rules, correct no. of terms, allow sin/cos confusion, dim correct (missing g is an A error) and allow incorrect angles. First A2 for a correct equation (A1A0 for one error) Third A1 for $55(\mathrm{~N})$ or 55.3 (N)	
5b	First B1 ft for resolving horizontally (T does not need to be substituted) First M1 for resolving vertically with usual rules, must be using 40° or 50^{0} First A1 ft for a correct equation (T does not need to be substituted) Second M1, independent, for use of $F=\mu R$, must have found an F and an R Second A1 for 0.46 or 0.464 N.B. They may resolve in other directions e.g. along the rod or perpendicular to the rod or take moments e.g. about B or C First B1 for a correct equation seen M1A1 for the better equation seen, usual rules etc.	
5c	First M1 for a complete method to find the angle (must have found the two components) with either the horizontal or vertical	
	First A1 for 65^{0} or 65.1^{0} to the upward vertical oe (A0 for just an angle)	
	Or the angle marked on a clear diagram with an arrow.	

