Question	Scheme	Marks	AOs		
	Part (a) is a `Show that' so equations need to be given in full to earn A marks				
3(a)	$C \qquad S \qquad B \\ G \qquad mg \qquad D \\ A \qquad F \qquad D$				
	Moments equation: (M1A0 for a moments inequality)	M1	3.3		
	$\begin{split} \mathbf{M}(A), \ mga\cos\theta &= 2Sa\sin\theta\\ \mathbf{M}(B), \ mga\cos\theta + 2Fa\sin\theta &= 2Ra\cos\theta\\ \mathbf{M}(C), \ F \times 2a\sin\theta &= mga\cos\theta\\ \mathbf{M}(D), \ 2Ra\cos\theta &= mga\cos\theta + 2Sa\sin\theta\\ \mathbf{M}(G), \ Ra\cos\theta &= Fa\sin\theta + Sa\sin\theta. \end{split}$				
	$(\diamondsuit) R = mg \mathbf{OR} (\leftrightarrow) F = S$		3.4		
	Use their equations (they must have enough) and $F \le \mu R$ to give an inequality in μ and θ only (allow DM1 for use of $F = \mu R$ to give an <i>equation</i> in μ and θ only)	DM1	2.1		
	$\mu \ge \frac{1}{2} \cot \theta *$	A1*	2.2a		
		(5)			
3 (b)	$C \qquad N \qquad B$ $G \qquad mg \qquad D$ $\frac{1}{2}mg \qquad A \qquad kmg$				
3(0)	Moments equation:	M1	3.4		
	$\begin{split} M(A), \ mga\cos\theta &= 2Na\sin\theta\\ M(B), \ mga\cos\theta + 2kmga\sin\theta &= 2Ra\cos\theta + \frac{1}{2}mg2a\sin\theta\\ M(D), \ 2Ra\cos\theta &= mga\cos\theta + N2a\sin\theta\\ M(G), \ kmga\sin\theta + Na\sin\theta &= \frac{1}{2}mga\sin\theta + Ra\cos\theta \end{split}$	A1	1.1b		

		S.C. M(C), $mga\cos\theta + \frac{1}{2}mg2a\sin\theta = kmg2a\sin\theta$ M1A1B1 $1 + \frac{5}{4} = \frac{5k}{2}$ M1 k = 0.9 A1		
		N = kmg - F OR $R = mgUse their equations (they must have enough) to solve for k$	BI	3.3
		(numerical)	DM1	3.1b
		k = 0.9 oe	A1	1.1b
			(5)	
			(10 n	narks)
Not	es:			
3 a	M1	Any moments equation with correct terms, condone sign errors and si	in/cos conf	fusion
	A1	Correct equation		
	B1	Correct equation		
	DM1	Dependent on M1, for using their equations (they must have enough) give an inequality in μ and θ only	and $F \leq f$	uR to
		(allow M1 for use of $F = \mu R$ to give an equation in μ and θ only)	thorno	
	A1*	$F = \mu R$ anywhere, A0)	they use	
3b	M1	Any moments equation with correct terms, condone sign errors		
	A1	Correct equation		
	B1	Correct equation		
	DM1	Dependent on M1, for using their equations (they must have enough) substituted, to solve for k , which must be numerical.) with trig	
	A1	cao		

Question	Scheme	Marks	AOs
9(a)	Moments about A (or any other complete method)	M1	3.3
	$T2a\sin a = Mga + 3Mgx$	A1	1.1b
	$T = \frac{Mg(a+3x)}{2a'\frac{3}{5}} = \frac{5Mg(3x+a)}{6a} * \qquad \text{GIVEN ANSWER}$	A1*	2.1
		(3)	
(b)	$\frac{5Mg(3x+a)}{6a}\cos a = 2Mg \qquad \text{OR} \qquad 2Mg.2a\tan \alpha = Mga + 3Mgx$	M1	3.1b
	$x = \frac{2a}{3}$	A1	2.2a
		(2)	
(c)	Resolve vertically OR Moments about B	M1	3.1b
	$Y = 3Mg + Mg - \frac{5Mg(3.\frac{2a}{3} + a)}{6a}\sin a 2aY = Mga + 3Mg(2a - \frac{2a}{3})$ Or: $Y = 3Mg + Mg - \left(\frac{2Mg}{\cos \alpha}\right)\sin \alpha$	Alft	1.1b
	$Y = \frac{5Mg}{2}$ N.B. May use $R\sin\beta$ for Y and/or $R\cos\beta$ for X throughout	A1	1.1b
	$ \tan \beta = \frac{Y}{X} \text{or } \frac{R \sin \beta}{R \cos \beta} = \frac{\frac{5Mg}{2}}{2Mg} $	M1	3.4
	$=\frac{5}{4}$	A1	2.2a
		(5)	
(d)	$\frac{5Mg(3x+a)}{6a} \le 5Mg \text{and solve for } x$	M1	2.4
	$x \le \frac{5a}{3}$	Al	2.4
	For rope not to break, block can't be more than $\frac{5a}{3}$ from A oe		
	Or just: $x \le \frac{5a}{3}$, if no incorrect statement seen.	B1 A1	2.4
	N.B. If the correct inequality is not found, their comment must mention 'distance from <i>A</i> '.		
		(3)	
		(13 ו	marks)

Question	Scheme	Marks	AO
4(a)	Drum smooth , or no friction, (therefore reaction is perpendicular to the ramp)	B1	2.4
		(1)	
(b)	N.B. In (b), for a moments equation, if there is an extra $\sin \theta$ or $\cos \theta$ on a length, give M0 for the equation e.g. M(A): $20g \times 4\cos\theta = 5N\sin\theta$ would be given M0A0		
	R $A \longrightarrow F$ N C		
	Possible equns	M1	3.3
	$(\nearrow): F\cos\theta + R\sin\theta = 20g\sin\theta$	A1	1.1b
	(\land) $R + N\cos\theta = 20g\cos\theta + F\sin\theta$	M1	3.4
	$(\rightarrow): F = N \sin \theta$	A1	1.1b
	$M(A): \ 20g \times 4\cos\theta = 5N$	M1	3.4
	$M(B): 3N + R \times 8\cos\theta = F \times 8\sin\theta + 20g \times 4\cos\theta$ $M(C): R \times 5\cos\theta = F \times 5\sin\theta + 20g \times \cos\theta$ $M(G): R \times 4\cos\theta = F \times 4\sin\theta + N$	A1	1.1b
	(The values of the 3 unknowns are: N = 150.528; F = 42.14784; R = 51.49312)		
	Alternative 1: using cpts along ramp (<i>X</i>) and perp to ramp(<i>Y</i>) Possible equations:	M1	3.3
	$(\nearrow): X = 20g\sin\theta$	A1	1.1b
	$(\sim): Y + N = 20g\cos\theta$	M1	34
	$(\uparrow): X\sin\theta + Y\cos\theta + N\cos\theta = 20g$	1011	5.4
	$(\rightarrow): X\cos\theta = Y\sin\theta + N\sin\theta$	A1	1.1b
	$M(A): 20g \times 4\cos\theta = 5N$ $M(B): 20g \times 4\cos\theta = 8V + 3N$	M1	3.4
	$M(C): 20g \times \cos\theta = 5Y$	Al	1.1b
	$M(G): 4Y = N \times 1$ (The values of the 3 unknowns are: N = 150.528; X = 54.88; Y = 37.632)		

	Alternative 2: using horizontal cpt (<i>H</i>) and cpt perp to ramp		
	(S) (\nearrow) : $H\cos\theta = 20g\sin\theta$	M1	3.3
	$(\tilde{)}: S + N = H \sin \theta + 20g \cos \theta$	A1	1.1b
	$(\uparrow): S\cos\theta + N\cos\theta = 20g$	M1	2.4
	$(\rightarrow): H = S\sin\theta + N\sin\theta$		3.4
	$M(A): 20g \times 4\cos\theta = 5N$	A1	1.1b
	$M(B): 20g \times 4\cos\theta + H \times 8\sin\theta = 8S + 3N$	M1	3.4
	$M(C): 20g \times \cos\theta + H \times 5\sin\theta = 5S$	A 1	1 11
	$M(G): 4S = N \times 1 + H \times 4 \sin \theta$	AI	1.10
	(The values of the 3 unknowns are: N = 150.528; H = 57.1666; S = 53.638666)		
	Solve their 3 equations for F and R OR X and Y OR H and S	M1	1.1b
	$ \text{Force} = \sqrt{R^2 + F^2}$ Main scheme		
	OR = $\sqrt{X^2 + Y^2}$ Alternative 1	M1	3.1b
	OR = $\sqrt{(H^2 + S^2 - 2HS\cos(90^\circ - \theta))}$ Alternative 2		
	Magnitude = $67 \text{ or } 66.5 \text{ (N)}$	A1	2.2a
		(9)	
(c)	Magnitude of the normal reaction (at <i>C</i>) will decrease .	B1	3.5a
		(1)	
		(11)	

Question	Scheme	Marks	AOs
4(a)	Take moments about A	M1	3.3
	$N \times \frac{4a}{\sin \alpha} = Mg \times 3a \cos \alpha$	A1	1.1b
	$\frac{9Mg}{25}$ *	A1*	1.1b
		(3)	
4(b)	Resolve horizontally	M1	3.4
	$(\rightarrow) F = \frac{9Mg}{25}\sin\alpha$	A1	1.1b
	Resolve vertically	M1	3.4
	$(\uparrow) R + \frac{9Mg}{25} \cos \alpha = Mg$	A1	1.1b
	Other possible equations:		
	(\nwarrow), $R\cos\alpha + \frac{9Mg}{25} = Mg\cos\alpha + F\sin\alpha$		
	$(\nearrow), Mg\sin\alpha = F\cos\alpha + R\sin\alpha$		
	$M(C), Mg.2a\cos\alpha + F.5a\sin\alpha = R.5a\cos\alpha$		
	$M(G), \frac{9Mg}{25}.2a + F.3a\sin\alpha = R.3a\cos\alpha$		
	M(B), Mg.3a cos α + F.6a sin α = R.6a cos α + $\frac{9Mg}{25}a$		
	$(F = \frac{36Mg}{125}, R = \frac{98Mg}{125})$		
	$F = \mu R$ used	M1	3.4
	Eliminate <i>R</i> and <i>F</i> and solve for μ	M1	3.1b
	Alternative equations if they have at A:		
	X horizontally and Y perpendicular to the rod. S = 4 - 9Mg		
	$(1, Y), Y + \frac{1}{25} = Mg\cos\alpha + X\sin\alpha$		
	$(\nearrow), Mg\sin\alpha = X\cos\alpha$		
	$(\uparrow), \frac{\gamma mg}{25} \cos \alpha + Y \cos \alpha = Mg$		
	$(\rightarrow), Y \sin \alpha + \frac{9Mg}{25} \sin \alpha = X$		

		$M(C), Mg.2a\cos\alpha + X.5a\sin\alpha = Y.5a$		
		$M(G), \frac{9Mg}{25}.2a + X.3a \sin \alpha = Y.3a$ M1A1 M1A1		
		$M(B), Mg.3a\cos\alpha + X.6a\sin\alpha = Y.6a + \frac{9Mg}{25}a$		
		$(X = \frac{4Mg}{3}, Y = \frac{98Mg}{75})$		
		Then $F = \mu R$ becomes: $X - Y \sin \alpha = \mu Y \cos \alpha$ M1		
		Eliminate X and Y and solve for μ M1		
		$\mu = \frac{18}{49}$ (0.3673accept 0.37 or better)	A1	2.2a
			(7)	
			(10 n	narks)
Not	es:			
4 a	M1	Correct no. of terms, dim correct, condone sin/cos confusion and sign e equation in <i>N</i> and <i>Mg</i> only.	errors for a	n
		For perp distance allow any of : $\frac{4a}{\sin \alpha}, \frac{4a}{\cos \alpha}, 5a$ but		
		use of any of : $6a, 5a \sin \alpha, 4a \cos \alpha, \dots$ or anything involving $\tan \alpha$ is	M0	
		Also M0 if no <i>a</i> 's in their first equation.		
	A1	Correct equation, trig does not need to be substituted		
	A1*	Given answer correctly obtained.		
4b	M1	Correct no. of terms, dim correct, condone sin/cos confusion and sign e	errors	
	A1	Correct equation, trig does not need to be substituted but N does.		
	M1	Correct no. of terms, dim correct, condone sin/cos confusion and sign e	errors	
	A1	Correct equation, trig does not need to be substituted but N does.		
		N.B. The above 4 marks are for any two equations, either resolutions of one of each. Mark best two equations. Equations may appear in part (a) but must be used in (b) to earn marks.	r moments	or
		Must be used, e.g. seen on the diagram. i.e. M0 if merely quoting it.		
	M1	(M0 if $F = \mu \times \frac{9Mg}{25}$ used)		
	M1	Must have 3 equations (and all 3 previous M marks)		
	A1	Accept 0.37 or better		

Question	Scheme	Marks	AOs
9(a)	Take moments about A (or any other complete method to produce an equation in S , W and α only)	M1	3.3
	$Wa\cos\alpha + 7W2a\cos\alpha = S2a\sin\alpha$	A1 A1	1.1b 1.1b
	Use of $\tan \alpha = \frac{5}{2}$ to obtain S	M1	2.1
	S = 3W *	A1*	2.2a
		(5)	
(b)	R = 8W	B1	3.4
	$F = \frac{1}{4} R (= 2W)$	M1	3.4
	$P_{\text{MAX}} = 3W + F$ or $P_{\text{MIN}} = 3W - F$	M1	3.4
	$P_{\text{MAX}} = 5W$ or $P_{\text{MIN}} = W$	A1	1.1b
	$W \le P \le 5W$	A1	2.5
		(5)	
(c)	M(A) shows that the reaction on the ladder at B is unchanged	M1	2.4
	also <i>R</i> increases (resolving vertically)	M1	2.4
	which increases max F available	M1	2.4
		(3)	
		(13 marks)

Question Number	Scheme	Marks	Notes
4(a)	M(A) or alternative complete method to an equation in <i>T</i> only	M1	Must have all terms. Terms must be dimensionally correct. Condone sign errors and sin/cos confusion.
	$T \times 2a = mg \times 3a\sin 60^\circ + mg \times 6a\sin 60^\circ$	A1	Unsimplified equation with at most one error
		A1	Correct unsimplified equation
	$T = 9mg\frac{\sqrt{3}}{4}$	A1 (4)	With trig. substituted. 3.90mg or better
(b)	$R(\rightarrow) R = T\cos 60^{\circ}$	M1	Resolve horizontally. Condone sin/cos confusion
	$\left(=9mg\frac{\sqrt{3}}{4}\times\frac{1}{2}\right)$	A1ft	Follow their <i>T</i> . Allow with $\cos 60^{\circ}$
	$R = \frac{9\sqrt{3}}{8}mg$	A1ft (3)	1.95mg or better. Follow their (a).
Alt 4(b)	$2mg\cos 60^\circ = R\cos 30^\circ - F\cos 60^\circ$ $T - F\cos 30 = 2mg\cos 30^\circ + R\cos 60^\circ$	(M1)	Resolve parallel and perpendicular to the rod and eliminate F
	$\frac{5mg\sqrt{3}}{4} - \frac{R}{2} = -\sqrt{3}mg + \frac{3R}{2}$	(A1ft)	Equation in R only. Follow their T
	$R = \frac{9\sqrt{3}}{8}mg$	(A1ft)	With trig. substituted. Follow their (a)
(c)	$\mathbf{R}\left(\uparrow\right) T\cos 30^\circ - F = mg + mg$	M1	Resolve vertically. Need all terms. Condone sign errors and sin/cos confusion. Allow for $\pm F$
		A1	Unsimplified equation with at most one error. Allow for $\pm F$
	$F = 9mg\frac{\sqrt{3}}{4} \times \frac{\sqrt{3}}{2} - 2mg\left(=\frac{11}{8}mg\right)$	A1	Correct unsimplified expression for F , with trig. substituted. Allow for $\pm F$. Seen or implied.
	$\mu = \frac{F}{R} = \frac{\frac{11}{8}mg}{\frac{9\sqrt{3}}{8}mg}$	dM1	Use of $F = \mu R$ Dependent on the two previous M marks
	$=\frac{11}{9\sqrt{3}}$ (=0.71 or 0.706 or better)	A1 (5)	(g cancels)
(c) alt 1 st 3 marks	$2mg\cos 60^\circ = R\cos 30^\circ - F\cos 60^\circ$	(M1)	Resolve parallel to the rod. Need all terms. Condone sign errors and sin/cos confusion. Allow for $\pm F$
	$mg = \frac{27}{16}mg - \frac{1}{2}F$	(A1)	Unsimplified equation with at most one error. Allow for $\pm F$. sin/cos confusion is one error
	$F = \frac{11}{8}mg$	(A1)	Correct unsimplified expression for <i>F</i> . Allow for $\pm F$. Seen or implied.
		[12]	

Q	Scheme	Marks	Notes
5a	$R \xrightarrow{5 \text{ m}} F$		
	Take moments about A:	M1	Must be dimensionally correct. Condone sin/cos confusion
	$5N = 4\cos\theta W$	A1	
	$N = \frac{12}{25}W = 0.48W$ *Given Answer*	A1	
		(3)	
5b	$G = \frac{1}{4}N = 0.12W$	B1	Seen or implied
	Resolve vertically	M1	Needs all terms. Condone sin/cos confusion and sign errors
	$\ddagger: R + N\cos\theta + G\sin\theta = W$	A1	(R = 0.616W)
	Resolve horizontally	M1	Needs all terms. Condone sin/cos confusion and sign errors
	$\leftrightarrow: F + G\cos\theta = N\sin\theta$	A1	(F = 0.312W)
	$\mu = \frac{N\sin\theta - G\cos\theta}{W - N\cos\theta - G\sin\theta}$	DM1	Use $F = \mu R$ to find μ Dependent on 2 preceding M marks
	$=\frac{0.48W\times0.8-0.12W\times0.6}{W-0.48W\times0.6-0.12W\times0.8}=\frac{0.312}{0.616}$		
	$= 0.51 (0.50649) \left(\frac{39}{77}\right)$	A1	
		(7)	
		[10]	
	NB, One of the two equations required for part (b) could be a moments equation: $M(P) 1 \times W \cos \theta + 5F \sin \theta = 5R \cos \theta$ $M(B) 3N + 8R \cos \theta = 4W \cos \theta + 8F \sin \theta$		

Question Number	Scheme	Marks		
4a	Moments about $A: 0.5 \times 2g + 2 \times 5g(=11g) = T\cos\theta \times 4 = T \times \frac{3}{5} \times 4$	M1A2		
	$T = 11g \times \frac{5}{12} = \frac{55}{12}g = 44.9$ (45) (N)	A1	(4)	
	Notes			
	N.B. If all g's are missing, mark as a MR.			
	M1 for M(A), with usual rules First A1 and second A1 for a correct equation in T only i.e. must be using a correct angle (but value of trig ratio not needed at this stage) Deduct 1 mark for each incorrect term. (A1A0 or A0A0) Third A1 for 45 or 44.9 (N) (A0 for 45.0)			
4b	Resolving: $\leftrightarrow H = I \sin q$ OR M(D), $H = 3 = 2g = 0.5 + 5g = 2$	M1		
	$T\cos q + V = 7g \qquad \text{OR} \qquad M(B), V' = 2g' = 3.5 + 5g' = 2$	M1A1		
	Pythagoras: $ R = \sqrt{41.65^2 + 35.93^2} = 55.0$ (55) (N)	M1A1	(5)	
	Notes			
	First M1 for resolving horizontally or $M(D)$ with usual rules to give equation in <i>T</i> only. (<i>T</i> does not need to be substituted) Second M1 for resolving vertically or $M(B)$ with usual rules First A1 for a correct equation in <i>T</i> only. (<i>T</i> does not need to be substituted) Third M1 (independent but must have found 2 components) for squaring, adding and rooting their 2 components Second A1 for 55 or 55.0			
4c	Use of $F \le F_{\text{max}} = \mu R$: $V \le \mu H$ (Must have found H and V)	M1		
	$m^3 \frac{V}{H} = \frac{41.65}{35.93} = \frac{51}{44}$, 1.2 or better.	A1	(2)	
	Notes			
	M1 for use of $V \le \mu H$			
	M0 for use of $V = H$ or $V < H$			
	$m^3 \frac{V}{H} = \frac{51}{44}$ Allow fraction (since g cancels) or 1.2 or better			

Question Number	Scheme	Marks	
5 a	Moments about A: $6g(\times 1) \times \sin 70 = T \sin 30 \times 2$	M1A2	r.
	T = 55.3 (N) or 55 (N)	A1	(4)
5b	Resolve horizontally: $T \cos 50 = R(=35.5)$	B1 ft	
	Resolve vertically: $T\sin 50 = 6g \pm F$	M1A1	ft
	$ F = 16.5 \ (16.473)$		
	Use $F = \mu R$: $\mu = \frac{6g - T\sin 50}{T\cos 50}$ (with their values)	M1	
	= 0.464 or 0.46	A1	(5)
5c	Use of tan and their components: $\tan^{-1}\left(\frac{35.5}{16.5}\right)$	M1	
	$= 65.1^{\circ} \text{ or } 65^{\circ} \text{ to the upward vertical}$	A1	(2)
	or equivalent (24.9° or 25° above the		
	notes		
	First M1 for a complete method to find T with usual rules correct no of		
	terms, allow sin/cos confusion, dim correct (missing g is an A error) and		
5 a	allow incorrect angles.		
	First A2 for a correct equation (A1A0 for one error)		
	I hird A1 for 55 (N) or 55.3 (N)		
	First M1 for resolving vertically with usual rules must be using 40° or		
	50°		
	First A1 ft for a correct equation (<i>T</i> does not need to be substituted)		
	Second M1, independent, for use of $F = \mu R$, must have found an F and		
5b	an R		
	Second A1 for 0.46 or 0.464		
	N.B. They may resolve in other directions e.g. along the rod or		
	First B1 for a correct equation seen		
	M1A1 for the better equation seen usual rules etc.		
	First M1 for a complete method to find the angle (must have found the		
5c	two components) with either the horizontal or vertical		
	First A1 for 65° or 65.1° to the upward vertical oe (A0 for just an angle)		
	Or the angle marked on a clear diagram with an arrow.		

Question	Scheme	Marks	Notes
7(a)	$M(A) S.2a\cos 30^\circ = mga\sin 30^\circ$	M1	Correct number of terms. Terms must be dimensionally correct Condone trig confusion
		A1	At most one error Consistent trig confusion is one error
		A1	Correct unsimplified equation
	$S = \frac{mg\sqrt{3}}{6}$	A1 (4)	Accept exact equivalent Accept 0.289mg or better
(b)	R = mg; $F = S$	B1	Resolve vertically and horizontally - must be stated or shown on a diagram. (Used here if seen in (a))
	$\frac{mg\sqrt{3}}{6} \le \mu mg$	M1	Use of $F \le \mu R$ (not for $F = \mu R$ followed by a fudge of the inequality)
	$\frac{\sqrt{3}}{6} \le \mu$	A1	*Answer Given* CSO
	8	(3)	
	$ \begin{array}{c} \downarrow \\ kmg \\ \downarrow \\ mg \\ U \\ \frac{\sqrt{3}}{5} \\ \end{array} $	Di	
	$\Upsilon: U = mg + kmg = mg(1+k)$	BI	Or equation in U and k from a second moments equation.
	M(A): $T \times 2a \times \frac{\sqrt{3}}{2} = mga \times \frac{1}{2} + kmg2a \times \frac{1}{2}$ M(B): $mg \times \frac{a}{2} + \frac{U\sqrt{3}}{2} \times \sqrt{3}a - Ua$	M1	Need all three terms. Condone $\mu = \frac{\sqrt{3}}{6}$ Terms must be dimensionally correct.
	$M(B): \ mg \times \frac{1}{2} + \frac{1}{5} \times \sqrt{3}a = 0a$ $M(X): \ kmga + mg \times \frac{a}{2} = \frac{U\sqrt{3}}{5} \times \sqrt{3}a$		Condone sign errors (X is point of intersection of lines of action of
	M(corner): $aU = Ta\sqrt{3} + mg\frac{a}{2}$		T and U)
	$\Rightarrow 2T\cos 30^\circ = mg\sin 30^\circ + 2kmg\sin 30^\circ$	A1	Correct unsimplified moments equation
	$\Rightarrow \frac{3}{5}U = \frac{1}{2}mg + kmg$	A1	Correct equation in U (and k) μ correct if used
	$\Rightarrow \frac{3}{5}(1+k) = \frac{1}{2}+k$	DM1	Solve for <i>k</i> . Dependent on preceding M
	$k = \frac{1}{4}$	A1 (6)	
		13	

Question Number	Scheme	Marks	Notes
6a	Taking moments about A:	M1	Requires all terms - condone trig confusion and sign errors
	$bF = 3mga\cos\theta + mg \times 2a\cos\theta$	A2	-1 each error
	$bF = 5mga\cos\theta$ $F = \frac{5mga}{b}\cos\theta$	A1 (4)	*Given answer*
6b	Component of R parallel to <i>AB</i> : $(R\cos(\phi - \theta))$	M1	Requires all terms - condone trig confusion
	$= 3mg\sin\theta + mg\sin\theta = 4mg\sin\theta$	A1	Correct unsimplified
	Component of R perpendicular to <i>AB</i> :	M1	Requires all terms - condone consistent trig confusion and sign errors
	$(R\sin(\phi-\theta))+F=4mg\cos\theta$	A1	Correct unsimplified
	Alternatives for M1A1: <i>M</i> (<i>B</i>)		$2aR\sin(\phi-\theta) + 3mga\cos\theta = F(2a-b)$
	<i>M</i> (<i>C</i>)		$bR\sin(\phi-\theta) + (2a-b)mg\cos\theta$ $= 3mg(b-a)\cos\theta$
	$(R\sin(\phi-\theta)) = 4mg\cos\theta - \frac{5mga}{b}\cos\theta$	A1	Correct with F substituted.
	ISW for incorrect work after correct components seen	(5)	
6c	Use of $R\sin(\phi-\theta) > 0$	M1	
	Solve for <i>b</i> in terms of <i>a</i> : $4 > \frac{5a}{b}, (2a \ge)b > \frac{5}{4}a$	A1	2 <i>a</i> not required CSO
		(2)	
		[11]	
6(b)	Misread of directions in (b) $X = F \sin \theta = \frac{5mga}{b} \cos \theta \sin \theta$	M1	Allow with <i>F</i> . Requires all terms - condone trig confusion
		A1	F substituted.
	$Y = 4mg - F\cos\theta = 4mg - \frac{5mga}{b}\cos^2\theta$	M1	Allow with <i>F</i> . Requires all terms - condone trig confusion and sign errors.
		Al	Correct unsimplified
	For any 0 ton to ton 0	Al	Correct substituted
6(c)	For $\varphi > \theta$, $\tan \varphi > \tan \theta$		
	$\tan \varphi = \frac{Y}{X} = \frac{4 - \frac{5a}{b}\cos^2 \theta}{\frac{5a}{b}\cos \theta \sin \theta} > \tan \theta$	M1	
	$4 - \frac{5a}{b}\overline{\cos^2 \theta} > \frac{5a}{b}\sin^2 \theta$		
	$4 > \frac{5a}{b} \left(\cos^2 \theta + \sin^2 \theta \right) \implies b > \frac{5}{4}a$	A1	CSO