Continued question 5
 Notes:

(a)

M1: For dealing with $\mathrm{P}(X \geqslant 16)$ - they need to use cumulative prob. function on calc
A1: awrt 0.0509 (from calculator)
(b)

B1: For both hypotheses in terms of p or π and H_{1} must be 2-tail
(c)

M1: For correct use of tables to find probability associated with critical value
A1: For the correct lower limit of the CR . Do not award for $\mathrm{P}(Y \leqslant 2)$
A1: For the correct upper limit
(d)

B1: ft on their 0.0355 and ($1-$ their 0.9520) provided each probability is less than 0.05
(e)

B1: ft for a comment that relates 12 to their CR and makes a consistent comment relating this to the manager's suspicion
(f)

BI: For a comment that: gives a suitable reason based on lack of independence or the sample not being random so the binomial model is not valid

Question	Scheme	Marks	AOs
6.	Using distance $=$ total area under graph (e.g. area of rectangle + triangle or trapezium or rectangle - triangle)	M1	2.1
	e.g. $D=U T+1 / 2 T h$, where h is height of triangle	A1	1.1b
	Using gradient $=$ acceleration to substitute $h=a T$	M1	1.1b
	$D=U T+1 / 2 a T^{2}$ *	A1 *	1.1b
		(4)	
(4 marks)			
Notes:			
M1: \quad For use of distance $=$ total area to give an equation in D, U, T and one other variable A1: For a correct equation M1: For using gradient $=a$ to eliminate the other variable to give an equation in D, U, T and a only A1*: For a correct given answer			

Question Number	Scheme	Marks
5c	First M1 for a complete method to find the speed / velocity(Could involve two suvat equations) Condone sign errors but must have correct numbers in their equation(s) First A1 for a correct equation (or equations) Second A1 for 16 or $16.3\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Must be positive (speed)	
6 a		B1 shape B1 270, V
6b	$\frac{V}{0.6}=\frac{5 V}{3} \quad$ Given answer	M1A1 (2)
6 c	Time decelerating is 5 V	B1
	$\begin{array}{lr} & \frac{1}{2} V \frac{5 V}{3}+\left(270-5 V-\frac{5 V}{3}\right) V+\frac{1}{2} V .5 V \\ \text { OR: } \quad \frac{1}{2}\left(270+270-5 V-\frac{5 V}{3}\right) V & =1500 \\ \hline \end{array}$	M1 A2
	$V^{2}-81 V+450=0 \quad$ Given answer	$\begin{aligned} & \hline \text { DM1A1 } \\ & (6) \end{aligned}$
6d	$\begin{aligned} & V^{2}-81 V+450=0 \\ & (V-6)(V-75)=0 \end{aligned} \quad \text { or } \quad V=\frac{81 \pm \sqrt{81^{2}-4 \times 450}}{2}$	M1 solving
	$V=6$ or 75	A1 A1
	$V=6$ since $(5 \times 75)>270$ or $V=75$ unrealistic	B1 (4)
		14
	Notes	
6 a	First B1 for a trapezium with line starting at the origin Second B 1 for 270 and V correctly marked	
6b	M1 for $(t=) \frac{V}{0.6} ; \quad$ N.B. M1A0 for $V=0.6 t$ then answer Must see division or intermediate step from $V=0.6 t$ e.g. Changing 0.6 into $3 / 5$. A1 for $t=\frac{5 V}{3}$ Given answer	

Question Number	Scheme	Marks
6 c	B1 for 5 V identified appropriately First M1 for clear attempt to equate the total area under graph to 1500 . (Must include all 3 parts (if not using the trapezium rule) with $\frac{1}{2}$ seen at least once to give equation in V only; may use (1 triangle +1 trapezium) or (rectangle - trapezium) (May use suvat for one or more parts of the area) A2 for a correct equation, -1 e.e.o.o. Second DM1 dependent on first M1 for multiplying out and collecting terms and putting into appropriate form Third A1 for correct equation. Given answer	
6d	First M1 for solving their 3 term quadratic equation for V N.B. This M1 can be implied by two correct roots but if either answer incorrect then an explicit method must be shown for this M mark. First A1 for $V=6$ Second A1 for $V=75$ B1 on ePEN but treat as DM1, dependent on both previous A marks, for either reason	
7 a	$T-3 m g \sin \alpha-F=3 m a$	M1A1
	$4 m g-T=4 m a$	M1A1 (4)
7b	$F=\frac{1}{4} R ; R=3 m g \cos \alpha$	B1; M1A1
	$\begin{aligned} T-2.4 m g & =3 m a \\ 4 m g-T & =4 m a \end{aligned}$	M1
	$a=\frac{8 g}{35} \quad \text { Given answer }$	A1 (5)
7c	Particles have same acceleration	B1 (1)
7d	$v^{2}=2 \times \frac{8 g}{35} \times 1.75 \quad(=0.8 g)$	M1 A1
	$-3 m g \sin \alpha-F=3 m a^{\prime}$	M1
	$a^{\prime}=-0.8 \mathrm{~g}$	A1
	$0=0.8 g+2 \times(-0.8 g) s$	M1 A1
	Total distance $=0.5+1.75=2.25(\mathrm{~m})$ Accept 2.3 (m)	A1 (7)
		17
	Notes	
7a	First M1 for equation of motion for A with usual rules First A1 for a correct equation Second M1 for equation of motion for B with usual rules Second A1 for a correct equation N.B. If using different tension in second equation, M0 for that equation	

Question Number	Scheme	Marks
7.(a)		B1 shape B1 figs. $\begin{equation*} (V, T, 180) \tag{2} \end{equation*}$
(b)	Time accelerating $=V / 1=V$ Time decelerating $=V / 0.5=2 V$ Time at constant speed, $T=180-(2 V+V)$ $T=180-3 V$ Printed answer	M1 A1
(c)	$\begin{aligned} & \frac{1}{2}(180+180-3 V) V=4800 \\ & V^{2}-120 V+3200=0 \\ & (V-40)(V-80)=0 \\ & V=40 \text { or } 80 \text { or both, since }(180-3 \times 80)<0 \end{aligned}$	M1 A1 A1 A1 DM1 A1, M1 (7) 11
	Notes	
7.(a)	First B1 for a trapezium, starting at the origin and finishing on the t-axis. Second B1 for V, T with delineators or marked on the top of the trapezium or oe and 180 correctly positioned.	
(b)	M 1 for both Time accelerating $=V / 1=V$ and Time decelerating $=V / 0.5=2 V$ M0 if no working for the $2 V$ as it's a 'Show that' or if they use $V /-0.5$ and fudge the -ve sign A1 for $T=180-(2 V+V)=180-3 V$ Printed answer	

Question	Scheme	Marks	Notes
5. (a)	R		B1 One graph correct shape Both graphs correct shape, on same sketch and intersecting (with different start times)

Question Number	Scheme	Marks	Notes
6.(a)	$v=u+a t \Rightarrow 14=3.5 a$	M1	Use of suvat to form an equation in a
	$a=4$	A1(2)	
6.(b)		B1	Graph for A or B
		B1	Second graph correct and both graphs extending beyond the point of intersection
		B1	Values 3.5, 14, T shown on axes, with T not at the point of intersection. Accept labels with delineators.
		(3)	NB 2 separate diagrams scores max B1B0B1
6.(c)	$\frac{1}{2} T .3 T, \quad \frac{(T+T-3.5)}{2} .14$	M1	Find distance for A or B in terms of T only. Correct area formulae: must see $\frac{1}{2}$ in area formula and be adding in trapezium
		A1	One distance correct
		A1	Both distances correct
	$\begin{aligned} & \frac{1}{2} T .3 T=\frac{(T+T-3.5)}{2} .14 \\ & \frac{1}{2} T .3 T=\frac{1}{2} \times 4 \times 3.5^{2}+14(T-3.5) \end{aligned}$	M1	Equate distances and simplify to a 3 term quadratic in T in the form $a T^{2}+b T+c=0$
	$3 T^{2}-28 T+49=0$	A1	Correct quadratic
$(3 T-7)(T-7)=0$		M1	Solve 3 term quadratic for T
	$T=\frac{7}{3}$ or 7	A1	Correct solution(s) - can be implied if only ever see $T=7$ from correct work.
	but $T>3.5, \quad T=7$	A1 (8)	
6.(d)	73.5 m	B1 (1)	From correct work only. B0 if extra answers.
6.(e)		B1	(A) Condone missing 4
		B1	(B) Condone graph going beyond $T=7$ Must go beyond 3.5. Condone no 3.
		$\begin{aligned} & \text { B1 } \\ & \text { (3) } \end{aligned}$	(A) Condone graph going beyond $T=7$ Must go beyond 3.5. B0 if see a solid vertical line. Sometimes very difficult to see. If you think it is there, give the mark.
		[17]	Condone separate diagrams.

	Alternative for (c) for candidates with a sketch like this:		Treat as a special case. B1B1B0 on the graph and then max 5/8 for (c) if they do not solve for the T in the question.

Question Number	Scheme	Marks	Notes
6(a)	$\begin{aligned} & v_{1}=8 \times 1.5(=12) \\ & v_{2}=12+0.8 \times 20 \\ & v_{2}=28 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 M1 A1 (3)	Use of $v=u+a t$ or equivalent for $t=8$ Follow their 12
(b)			
		B1 B1ft	shape nos: 8,$28 ; 12,28$ indicated. Follow their 12, 28
		(2)	
(c)	$\text { first } 8 \mathrm{~s}: \quad \text { dist }=\frac{1}{2} \times 8 \times 12 \quad(=48)$	M1 A1ft	Correct method for distance for the triangle (0-8) or the trapezium (8-28) Follow their 12
	$\text { next } 20 \mathrm{~s}: \quad \text { dist }=\frac{1}{2} \times(12+28) \times 20(=400)$	Alft	Follow their 12, 28
	Total dist $=448 \mathrm{~m}$	A1 (4)	Correct answer only (cao)
(d)	$0=28^{2}-2 \times 2.8 s$	M1	Find area of right hand triangle or an expression in T for the trapezium (rectangle + triangle).
	$s=\frac{28^{2}}{2 \times 2.8}(=140)$	A1ft	Follow their 28
	$448+140+28 T=2000$	DM1	Form an equation in T for their 16, 448 and 140
	$T=\frac{2000-448-140}{28}=50.4$	A1 (4)	Or better (50.42857...) Accept 50.

Question Number	Scheme	Marks
5a		
	Basic shape 20, $4 T$ and T placed correctly	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { DB1 } \\ \hline \end{array}$
		(2)
5b	Use of $v=u+a t$: constant speed $=0.6 \times 20=12\left(\mathrm{~ms}^{-1}\right)$	M1A1
	(Speed at end $=12-0.3 T$)	
	Using v - t graph: Distance: $705=\frac{12}{2}(4 T+(20+4 T))+\frac{T}{2}(12+(12-0.3 T))$	M1A2
	$=48 T+120+12 T-0.15 T^{2}=60 T+120-0.15 T^{2}$	
	Form 3 term quadratic and solve for T : $\Rightarrow 3 T^{2}-1200 T+11700=0 \quad\left(T^{2}-400 T+3900=0\right)$	M1
	$\Rightarrow(T-10)(T-390)=0 \quad T=10$ only	A1
		(7)
	Alternative:	
	Use of $v=u+a t:$ constant speed $=0.6 \times 20=12\left(\mathrm{~ms}^{-1}\right) \quad$ M1A1	
	Using $s=u t+\frac{1}{2} a t^{2}: \quad 705=(0.3 \times 400)+(4 T \times 12)+\left(12 T-0.15 T^{2}\right)$ M1A2	
	$\Rightarrow 0.15 T^{2}-60 T+585=0\left(T^{2}-400 T+3900=0\right)$	
	$\Rightarrow(T-10)(T-390)=0 \quad T=10$ only M1A1	
	(7)	
5c	Extra time: $(2 \times 20)-$ their $T \quad$ OR $\quad \frac{12-0.3 \times \text { their } T}{0.3}$	B1
	Total time: $20+5 T+40-T \quad$ (their T)	M1
	$=100$ (s)	A1
		(3)
	Alternative: Total time to decelerate to rest $=12 / 0.3=40 \quad$ B1	
	Total time A to $C=20+4 T+40=100 \quad$ M1A1	
		[12]

Question Number	Scheme	Marks
	Notes for question 5	
5a	First B1 for basic shape. Allow if 'extra triangle' on end included, provided B clearly marked	
	Second DB1 : may use, $20,20+4 T, 20+5 T$	
5b	First M1 for attempt to find constant speed ($v=u+a t$ or $a=$ gradient) 20×0.6	
	First A1 for 12	
	Second (generous) M1 for clear attempt to use $705=$ total area under the graph to give an equation in T only but must see $1 / 2$ used somewhere N.B. M0 if just a trapezium oe is used	
	Second A1 and Third A1: for any correct equation, -1 e.e.o.o.	
	Third M1 for forming and attempt to solve a 3 term quadratic (need evidence of solving e.g. formula or factorising, if T values are incorrect) otherwise this M mark can be implied if they state that $T=10$ with no working. ($T=390$ NOT needed)	
	Fourth A1 for $T=10$.	
	$\begin{aligned} & \text { N.B. For total area, could see: } \\ & \text { Trapezium }+ \text { Rectangle }+ \text { Triangle } \\ & 705=\frac{12}{2}(4 T+(20+4 T))+T(12-0.3 T)+\frac{1}{2} T \times 0.3 T \\ & \text { Triangle }+ \text { Rectangle }+ \text { Trapezium } \\ & 705=\frac{1}{2} .20 .12+(4 T \times 12)+\frac{1}{2} T(12+12-0.3 T) \\ & \text { Triangle }+ \text { Rectangle }+ \text { Rectangle }+ \text { Triangle } \\ & 705=\frac{1}{2} .20 .12+(4 T \times 12)+T(12-0.3 T)+\frac{1}{2} T \times 0.3 T \\ & \text { Triangle }+ \text { Rectangle }+ \text { Trapezium (at top }) \\ & 705=\frac{1}{2} \cdot 20.12+5 T(12-0.3 T)+\frac{1}{2} 0.3 T(5 T+4 T) \\ & \text { Rectangle }- \text { triangle }- \text { triangle } \\ & 705=12(20+5 T)-\frac{1}{2} \cdot 20.12-\frac{1}{2} T \times 0.3 T \end{aligned}$	
5c	B1 for either additional time is $\frac{12}{0.3}-T$ or time to decelerate is $\frac{12}{0.3}$	
	M1 for a correct method to find the total time, using their T $=20+4 T+T+\frac{12}{0.3}-T \quad \text { or } \quad 20+4 T+\frac{12}{0.3}$	
	A1 for 100 cao	

Question Number	Scheme	Marks
4(a) ALT	$\begin{aligned} & 0^{2}=11.2^{2}-2 g d \\ & d=6.4 \\ & \max \mathrm{ht} .=3.6+6.4=10 \mathrm{~m} \\ & 11.2^{2}=u^{2}-2 g \times 3.6 \\ & \quad u=14 \\ & 0^{2}=14^{2}-2 g h \\ & h=10 \mathrm{~m} \end{aligned}$	M1 A1 A1 A1 (4) M1 A1 A1 A1 (4)
(b)	$\begin{aligned} & 10=\frac{1}{2} g t^{2} \\ & t=\frac{10}{7} \\ & \text { Total }=2 \times \frac{10}{7}=2.9 \text { or } 2.86 \end{aligned}$	$\begin{aligned} & \hline \text { M1 A1 } \\ & \text { A1 } \\ & \text { dM1 A1 } \\ & \text { (5) } \end{aligned}$
(c)		B1 single line dB1 $V<-11.2$ B1 11.2 B1 1.1(4) (4)
	Notes	
4(a) ALT	M1 for a complete method to find d ($d=\operatorname{distance}$ from A to top) First A1 for a correct equation in d only. Second A1 for $d=6.4$ Third A1 for $6.4+3.6=10(\mathrm{~m})$ M1 for a complete method (must have $2^{\text {nd }}$ equation) to find h First A1 for $u=14$ Second A1 for correct $2^{\text {nd }}$ equation Third A1 for $h=10(\mathrm{~m})$	
4(b)	First M1 for a complete method to find an intermediate time (A to top or A to O) First A1 for a correct equation or equations. Second A1 for any intermediate time (e.g. $\mathrm{A} t_{\mathrm{TOP}}=8 / 7, \mathrm{~A} t_{\mathrm{O}}=2 / 7, \mathrm{~A} t_{\mathrm{O}}=18 / 7, \mathrm{~A} t_{A}=$	

$7 \text { (a) }$	$108 \times 1000 / 3600=30 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 (2)
(b)		B1 shape DB1 ft figs (2)
(c)	$\begin{gathered} 12000=\frac{1}{2} \times 30(480+480-4 T) \\ T=40 \\ a=30 / 40=0.75 \mathrm{~m} \mathrm{~s}^{-2} \end{gathered}$	M1 A2 A1 M1 A1 (6)
	Question 7(a) M1 for $108 \times 1000 / 3600$ oe A1 for 30 Question 7(b) First B1 for trapezium (B0 for triangle), from the origin, finishing on the t-axis. Second dependent B1 ft on their ' 30 ' and 480 or 108 and ($8 / 60$ oe). Question 7(c) First M1 for clear attempt at equating total area under a trapezium to distance travelled oe (equation must include at least one ' $1 / 2$ ') to give equation in ONE unknown. A2 for a correct equation , -1 each error. N.B. Repeated use of an incorrect v from part (a) is ONE error. Third A1 for $T=40$ (or 120) N.B. (First M1 only for $1 / 2(480+x) .30=12000$ First A1 for $480-x=160$; Second A1 if they divide 160 in ratio 1:3) (First M0 if they use $s=$ the full distance in any single suvat equation) Second M1 (independent) for a complete method to find a. Fourth A1 for 0.75	

