

Mark Scheme (Results)

October 2017

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2017
Publications Code WST02_01_1710_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment.
 Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

www.yesterdaysmathsexam.com

Question Number	Scheme	Marks	
1(a)	$\frac{200 - \mu}{0.2} = -1.6449$	M1 A1	
		1411 741	
	$\mu = 200.3$ awrt 200.3	A1	
		(3)	
(b)	X~B(8, 0.05)	B1	
	$P(X \ge 3) = 1 - P(X \le 2)$	M1	
	= 1 - 0.9942	A 1	
	= 0.0058 awrt <u>0.0058</u>	A1 (3)	
(c)	Y~Po(3)	B1 (3)	
(C)	$P(Y > 5) = 1 - P(Y \le 5)$	M1	
	= 1 - 0.9161		
	= 0.0839 awrt 0.0839	A1	
		(3)	
	Notes	Total 9	
1 (a)	M1 $\pm \frac{200 - \mu}{\sqrt{0.04}} = \pm z \text{ value}, z > 1$		
	A1 for a correct equation with compatible signs and $z = 1.6449$ or better		
	A1 200.3 (condone awrt 200.3)		
	Note: M1A0A1 is possible		
(b)	B1 writing or using B(8, 0.05)		
	M1 writing or using $1 - P(X \le 2)$		
(.)	A1 awrt 0.0058		
(c)	B1 writing or using Po(3) M1 writing or using $1-P(Y \le 5)$		
	A1 awrt 0.0839		

Question Number	Scheme		Marks
2(a)	$\int_{0}^{10} k \int_{0}^{10} (12s - 20 - s^{2}) ds = 1$		M1
	$k \int_{2}^{10} (12s - 20 - s^{2}) ds = 1$ $k \left[6s^{2} - 20s - \frac{s^{3}}{3} \right]_{2}^{10} = 1$		A1
	$k\left(\frac{200}{3} + \frac{56}{3}\right) = 1$		dM1
	$\frac{256}{3}k = 1$ $k = \frac{3}{256}$		A1cso (4)
(b)	E(S) = 6		B1 (4)
(c)	$E(S^2) = k \int_{2}^{10} (12s^3 - 20s^2 - s^4) ds$		M1
	$= \frac{3}{256} \left[3s^4 - \frac{20s^3}{3} - \frac{s^5}{5} \right]_2^{10}$		A1ft
,	$= 39.2$ Var (S) = $39.2 - 6^2 = 3.2$		M1
	s.d $(S) = \sqrt{3.2} = 1.7888$		dM1 A1
	∴ standard deviation = £1788.85	awrt £1790	A1ft (6)
(d)	$\frac{3}{256} \int_{7.1}^{10} (12s - 20 - s^2) ds$		M1
	= 0.2989 = 0.3 (1 dp)		A1 (2)
(e)	$P(X \le 5) = 0.8822$ $P(5 < X \le 6) = P(X \le 6) - P(X \le 5)$ $= 0.9614 - 0.8822$		M1
	= awrt 0.079		A1ft
	$P(6 < X \le 12) = 1 - P(X \le 6) = 0.0386$		M1
	Bonus earnt = $1000 \times 0.0792 + 5000 \times 0.0386$ = £79.20 + £193.00		M1 A1
	=£272.20	awrt £270	$\begin{pmatrix} A_1 \\ (5) \end{pmatrix}$
			Total 18

	Notes
2(a)	M1: attempting to integrate, at least one integral $s^n \to s^{n+1}$, ignore limits and does not need to be put equal to 1 A1: correct integration, ignore limits and does not need to be set equal to 1 M1: dependent on first M being awarded, use of both limits and setting equal to 1 Must see an intermediate line of working for this M1 mark to be scored A1 cso (condone use of x instead of s , condone missing ds , etc.)
(b)	Ignore (£)6000 if 6 is seen
(c)	M1 attempting to integrate s^2 'their $f(s)$ ' $k \int_2^{10} (12s^3 - 20s^2 - s^4) ds$. $s^n \to s^{n+1}$ A1ft correct integration (or correct ft integration of s^2 'their $f(s)$ ') M1 using $E(S^2) - [E(S)]^2$ M1 dependent upon previous M1 for square rooting $Var(S)$ ($Var(S)$ must be > 0) A1 awrt 1.79 (allow exact equivalent) A1ft awrt 1790 (dependent on all method marks scored for $1000 \times their s.d.$)
(d)	M1 correct expression and attempt to integrate with correct limits (ft their f(s)) $\frac{3}{256} \int_{7.1}^{10} (12s - 20 - s^2) ds \text{ or } 1 - \frac{3}{256} \int_{2}^{7.1} (12s - 20 - s^2) ds$ A1 awrt 0.3
(e)	M1 Writing or using $P(X \le 6) - P(X \le 5)$ or a correct expression for $P(X = 6)$ i.e. $12C6(\text{'their (d)'})^6(1 - \text{'their (d)'})^6$ where $X \sim B(12, \text{"their ans to (d)"})$ A1ft awrt 0.079 (allow f.t. their answer to (d)) M1 Writing or using $1 - P(X \le 6)$, where $X \sim B(12, \text{"their ans to (d)"})$ M1 $1000 \times \text{"their 0.0792"} + 5000 \times \text{"their 0.0386"}$ A1 awrt £270 (2sf)
	NB if they use 0.2989 they can gain full marks. M1: $P(X = 6) = {12 \choose 6} (0.2989)^6 (1 - 0.2989)^6$ A1: = 0.078254 awrt 0.078
	M1: $P(6 < X \le 12) = 1 - P(X \le 6) = 0.0378589$ M1: Bonus earnt = $1000 \times 0.078254 + 5000 \times 0.0378589$ = £78.25 + £189.29 A1: = £267.54 (allow 267.55) awrt £270

Question Number	Scheme	Marks
3(a)	$P(B \ge 10) = 1 - P(B \le 9)$	M1
	=1-0.7166	
	= 0.2834 awrt <u>0.283</u>	A1 (2)
(b)	Expected number of weeks = $0.2834 \times 50 = 14.2$ accept 14	M1 A1 (2)
(c)	$P(B \ge n) < 0.04$ where $B \sim Po(8)$	
	P(B > 12) = 0.0638	M1
	P(B > 13) = 0.0342	1411
	∴13	A1 (2)
(d)	H_0 : $\lambda = 8(80)$ H_1 : $\lambda > 8(80)$	B1 (2)
	Y~N(80, 80)	M1M1
	$P(Y \ge 95) = P\left(Z > \frac{94.5 - 80}{\sqrt{80}}\right)$	M1 dM1
	= P(Z > 1.62)	A1
	= 0.0526 Do not reject H ₀	M1
	There is no evidence that reducing the price of a <i>Birdscope</i> has increased	Alcso
	demand.	(0)
	Notes	(8) Total 14
3(a)	M1 For writing or using $1-P(B \le 9)$	1014114
	A1 awrt 0.283	
(b)	M1 for their (a) \times 50	
	A1 awrt 14 (isw if 15 follows from awrt 14.2)	
(c)	M1 for any of these three lines (oe) A1 13	
(d)	B1 both hypotheses. Allow λ or μ , 8 or 80	
	M1Using Normal with mean 80	
	M1 Using Normal with mean = variance. Does not need to be 80. May be	seen in the
	standardisation calculation. M1 ((95 or 95 5 or 94 5) - their mean)	
	$M1 \pm \left(\frac{(95 \text{ or } 95.5 \text{ or } 94.5) - their \text{ mean}}{their \text{ sd}}\right)$	
	M1 dep on previous M1 being awarded. Using a continuity correction 95	
	A1 correct standardisation and tail. Award for $Z > \frac{94.5 - 80}{\sqrt{80}}$ or $Z > \text{awrt } 1$.62 or a
	correct probability	
	M1 A correct statement – do not allow contradictory non contextual statements.	
	Follow through their Probability/CR and H ₁ . If no H ₁ given then M0 A1 cso (all previous marks awarded) and a correct statement containing the word	
Ĭ.	AT CSO (all previous marks awarucu) and a correct statement comaning in	c word

_	estion ımber	Scheme	Marks
	l(a)	$\frac{\alpha-6}{}=0.6$	M1
		α $\alpha = 15$	A1
	a >		(2)
	(b)	$P(4 < X < 10) = \frac{10-4}{15}$, $= \frac{2}{5}$ oe	M1, A1
	(a)	Macr. 10	(2)
	(c)	$Mean = 10$ $10\sqrt{3}$	B1
		Standard deviation = $\frac{10\sqrt{3}}{3}$ or awrt 5.77 or $\frac{20}{\sqrt{12}}$	B1
	(.)		(2)
	(d)	P(Y-4 < 2) = P(2 < Y < 6)	M1
		$=\frac{1}{5}$	A1
	\		(2)
(6	e) (i)	$[P(X \text{ in middle 4cm}) \times P(Y \text{ in middle 4cm}) =]\frac{4}{15} \times \frac{4}{20}$	M1
		$=\frac{4}{75}$	A1
	(ii)	, , , , , , , , , , , , , , , , , , , ,	711
	(II <i>)</i>	[P(X in middle 5cm) × P(Y in middle 10 cm) =] $\frac{5}{15} \times \frac{10}{20} = \frac{1}{6}$	M1 A1
		[P(within 5 cm of the sides of the screen) =] $1 - \frac{1}{6} = \frac{5}{6}$	dM1A1
		Notes	(6) Total 14
	(a)	$M1 \frac{\alpha - 6}{\alpha} = 0.6 \text{ (oe) or } \frac{6}{\alpha} = 0.4 \text{ (oe)}$	
	(b)	$M1 \frac{\alpha}{\frac{10-4}{\text{their (a)}}} \alpha$	
	(-)	M1 their (a)	
	(d)	M1 Writing or using P $(2 < Y < 6)$	
,	e)(i)	$M1 \frac{4}{\text{their(a)}} \times \frac{4}{20}$	
		A1 $\frac{4}{75}$ or awrt 0.0533	
	(ii)	/5	
	(11)	$M1 \frac{5}{\text{their(a)}} \times \frac{10}{20}$	
		A1 $\frac{1}{6}$ or awrt 0.167	
		dM1 dep on previous M1 for 1 – "their 0.167"	
		A1 $\frac{5}{2}$ or awrt 0.833	
		6	
		SC M0A0M1A0 for $(20 \times \alpha) - 50$ or $\frac{(20 \times \alpha) - n}{(20 \times \alpha)}$ where $0 < n < 300$ $n \neq 50$	J

Question Number	Scheme	Marks
5(a)	F(6) = 1	
	4k(12-7)=1	M1
	$k = \frac{1}{20}$	A1
	$\alpha^2 - 2\alpha - 3 = 4(2\alpha - 7)$	M1
	$\alpha^2 - 10\alpha + 25 = 0$	
	$\left(\alpha - 5\right)^2 = 0$	
	$\alpha = 5$	A1cao
	$P(4.5 < X \le < 5.5) = F(5.5) - F(4.5)$	M1
	$=4\times\frac{1}{20}\times(11-7)-\frac{1}{20}\times(4.5^2-9-3)$	dM1
	$= \frac{31}{80} \text{ or } 0.3875 \text{ or awrt } 0.388$	A1
(b)		(7)
(b)	$\left \frac{1}{20} (2y - 2) \right \qquad 3 \le y \le 5$	M1
	$f(y) = \begin{cases} \frac{1}{20}(2y-2) & 3 \le y \le 5 \\ \frac{2}{5} & 5 < y \le 6 \\ 0 & \text{otherwise} \end{cases}$	A1ft
	0 otherwise	A1 (3)
	Notes	Total 10
(a)	M1 Using F(6) = 1 to get a linear equation in k i.e. $4k(12-7)=1$	
	A1 $\frac{1}{20}$ or 0.05	
	M1 Using $F(\alpha)$ ie $\alpha^2 - 2\alpha - 3 = 4(2\alpha - 7)$	
	A1 cao 5	
	M1 writing or using F(5.5) – F(4.5) M1 dep on previous M1 for subst 4.5 and 5.5 into the appropriate lines	
	(allow ft for their value of α which may mean both values are	
	substituted into the same line)	
	A1 $\frac{31}{80}$ or awrt 0.388	
	Correct answer only scores 5 out of 7	
(b)	Correct answer without finding α can score 5 out 7 condone use of $<$ in place of \le or vice versa throughout	
	M1 attempt to differentiate $x^n \to x^{n-1}$	
	A1ft either 1^{st} or 2^{nd} line correct (ft their value of k and α) allow use of k a A1 fully correct including 0 otherwise	$\stackrel{\circ}{\operatorname{nd}} \alpha$

Scheme	Marks
$X \sim N\left(\frac{1}{n}, \frac{5}{5}, n\right)$	M1A1
$P(X < 50) = P\left(Z < \frac{49.5 - \frac{1}{6}n}{\sqrt{\frac{5}{36}n}}\right)$	M1 dM1
$\frac{49.5 - \frac{1}{6}n}{\sqrt{\frac{5}{36}n}} = -2.4$	M1 A1
$49.5 - \frac{1}{6}n = -2.4 \frac{\sqrt{5n}}{6}$	
$n - 2.4\sqrt{5}\sqrt{n} - 297 = 0$	M1 A1
$\sqrt{n} = \frac{2.4\sqrt{5} \pm \sqrt{(2.4\sqrt{5})^2 + 4 \times 297}}{2}$ = $9\sqrt{5}$ or awrt 20.1	M1
n = 405 only	A1cao
Notes	Total 10
M1 Using Normal with mean $\frac{1}{6}n$ A1 Using Normal with mean and Var correct M1 $\pm \left(\frac{(48.5 \text{ or } 49 \text{ or } 49.5 \text{ or } 50 \text{ or } 50.5) - their mean}{their sd}\right)$ M1 dep on previous M1 being awarded for using a continuity correction 49 ± 0.5 or 50 ± 0.5 M1 setting $\frac{(48.5 \text{ or } 49 \text{ or } 49.5 \text{ or } 50 \text{ or } 50.5) - their mean}{their sd} = z \text{ value } z > 2$ A1 A correct equation with compatible signs with z value awrt $z = 2.4 +$	
	$X-N\left(\frac{1}{6}n,\frac{5}{36}n\right)$ $P(X < 50) = P\left(Z < \frac{49.5 - \frac{1}{6}n}{\sqrt{\frac{5}{36}n}}\right)$ $\frac{49.5 - \frac{1}{6}n}{\sqrt{\frac{5}{36}n}} = -2.4$ $49.5 - \frac{1}{6}n = -2.4\frac{\sqrt{5n}}{6}$ $n - 2.4\sqrt{5}\sqrt{n} - 297 = 0$ $\sqrt{n} = \frac{2.4\sqrt{5} \pm \sqrt{(2.4\sqrt{5})^2 + 4 \times 297}}{2}$ $= 9\sqrt{5} \text{ or awrt } 20.1$ $n = 405 \text{ only}$ Notes M1 Using Normal with mean and Var correct $M1 \pm \left(\frac{(48.5 \text{ or } 49 \text{ or } 49.5 \text{ or } 50 \text{ or } 50.5) - their mean}{their sd}\right)$ M1 dep on previous M1 being awarded for using a continuity correction $49 \pm 0.5 \text{ or } 50 \pm 0.5$ M1 setting $\frac{(48.5 \text{ or } 49 \text{ or } 49.5 \text{ or } 50 \text{ or } 50.5) - their mean}{their sd} = z \text{ value } z > 2$ A1 A correct equation with compatible signs with z value awrt 2.4 M1 rearranging to get a 3TQ in \sqrt{n} or n A1 for a correct 3TQ equation in \sqrt{n} or n e.g. $n - 2.4\sqrt{5}\sqrt{n} - 297 = 0$ M1 Solving (allow one slip in an expression) their 3TQ leading to $\sqrt{n} = 0$

