| Question | Scheme | Marks | AOs |
| :---: | :--- | :---: | :---: |
| $\mathbf{1 0 ( a )}$ | Selects a correct strategy. E.g uses an odd number is $2 k \pm 1$ | B1 | 3.1 a |
|  | Attempts to simplify $(2 k \pm 1)^{3}-(2 k \pm 1)=\ldots$ | M1 | 2.1 |
|  | $\ldots \ldots \ldots . .$. and factorise $8 k^{3} \pm 12 k^{2} \pm 4 k=4 k\left(2 k^{2} \pm 3 k \pm 1\right)=$ | dM1 | 1.1 b |
|  | Correct work with statement $4 \times .$. is a multiple of 4 | A1 | 2.4 |
|  | Any counter example with correct statement. <br> Eg. $2^{3}-2=6$ which is not a multiple of 4 | (4) |  |
|  |  | B1 | 2.4 |

(5 marks)

| Alt (a) | Selects a correct strategy. Factorises $k^{3}-k=k(k-1)(k+1)$ | B1 | 3.1a |
| :---: | :--- | :---: | :---: |
|  | States that if $k$ is odd then both $k-1$ and $k+1$ are even | M1 | 2.1 |
|  | States that $k-1$ multiplied by $k+1$ is therefore a multiple of 4 | dM1 | 1.1 b |
|  | Concludes that $k^{3}-k$ is a multiple of 4 as it is odd $\times$ multiple of 4 | A1 | 2.4 |
|  |  | $\mathbf{( 4 )}$ |  |

## Notes:

(a)

Note: May be in any variable (condone use of $n$ )
B1: Selects a correct strategy. E.g uses an odd number is $2 k \pm 1$
M1: Attempts $(2 k \pm 1)^{3}-(2 k \pm 1)=\ldots$ Condone errors in multiplying out the brackets and invisible brackets for this mark. Either the coefficient of the $k$ term or the constant of $(2 k \pm 1)^{3}$ must have changed from attempting to simplify.
dM1: Attempts to take a factor of 4 or $4 k$ from their cubic

A1: Correct work with statement $4 \times$.. is a multiple of 4
(b)

B1: Any counter example with correct statement.

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 2(i) | $x^{2}-8 x+17=(x-4)^{2}-16+17$ | M1 | 3.1a |
|  | $=(x-4)^{2}+1$ with comment (see notes) | A1 | 1.1b |
|  | As $(x-4)^{2} \geqslant 0 \Rightarrow(x-4)^{2}+1 \geqslant 1$ hence $x^{2}-8 x+17>0$ for all $x$ | A1 | 2.4 |
|  |  | (3) |  |
| (ii) | For an explanation that it may not always be true Tests say $x=-5 \quad(-5+3)^{2}=4 \quad$ whereas $(-5)^{2}=25$ | M1 | 2.3 |
|  | States sometimes true and gives reasons <br> Eg. when $\quad x=5 \quad(5+3)^{2}=64$ whereas $(5)^{2}=25$ True <br> When $\quad x=-5 \quad(-5+3)^{2}=4 \quad$ whereas $(-5)^{2}=25$ Not true | A1 | 2.4 |
|  |  | (2) |  |
| (5 marks) |  |  |  |
|  | Notes |  |  |

## (i) Method One: Completing the Square

M1: For an attempt to complete the square. Accept $(x-4)^{2}$...
A1: For $(x-4)^{2}+1$ with either $(x-4)^{2} \geqslant 0,(x-4)^{2}+1 \geqslant 1$ or $\min$ at $(4,1)$. Accept the inequality statements in words. Condone $(x-4)^{2}>0$ or a squared number is always positive for this mark.
A1: A fully written out solution, with correct statements and no incorrect statements. There must be a valid reason and a conclusion

$$
\begin{aligned}
& x^{2}-8 x+17 \\
= & (x-4)^{2}+1 \geqslant 1 \text { as }(x-4)^{2} \geqslant 0
\end{aligned}
$$

scores M1 A1 A1

Hence $(x-4)^{2}+1>0$
$x^{2}-8 x+17>0$
$(x-4)^{2}+1>0$
This is true because $(x-4)^{2} \geqslant 0$ and when you add 1 it is going to be positive
$x^{2}-8 x+17>0$
$(x-4)^{2}+1>0$
which is true because a squared number is positive incorrect and incomplete
$x^{2}-8 x+17=(x-4)^{2}+1$
Minimum is $(4,1)$ so $x^{2}-8 x+17>0$
scores M1 A1 A0
correct but not explained
$x^{2}-8 x+17=(x-4)^{2}+1$
Minimum is $(4,1)$ so as $1>0 \Rightarrow x^{2}-8 x+17>0$
scores M1 A1 A1
correct and explained

## Question 15

## Score as below so M0 A0 M1 A1 or M1 A0 M1 A1 are not possible

## Generally the marks are awarded for

M1: Suitable approach to answer the question for $n$ being even OR odd
A1: Acceptable proof for $n$ being even OR odd
M1: Suitable approach to answer the question for $n$ being even AND odd
A1: Acceptable proof for $n$ being even AND odd WITH concluding statement.
There is no merit in a

- student taking values, or multiple values, of $n$ and then drawing conclusions. So $n=5 \Rightarrow n^{3}+2=127$ which is not a multiple of 8 scores no marks.
- student using divided when they mean divisible. Eg. "Odd numbers cannot be divided by 8 " is incorrect. We need to see either "odd numbers are not divisible by 8 " or "odd numbers cannot be divided by 8 exactly"
- stating $\frac{n^{3}+2}{8}=\frac{1}{8} n^{3}+\frac{1}{4}$ which is not a whole number
- stating $\frac{(n+1)^{3}+2}{8}=\frac{1}{8} n^{3}+\frac{3}{8} n^{2}+\frac{3}{8} n+\frac{3}{8}$ which is not a whole number

There must be an attempt to generalise either logic or algebra.

## Example of a logical approach

| Logical <br> approach | States that if $n$ is odd, $n^{3}$ is odd | M1 | 2.1 |
| :---: | :---: | :---: | :---: |
|  | so $n^{3}+2$ is odd and therefore cannot be divisible by 8 | A1 | 2.2 a |
|  | States that if $n$ is even, $n^{3}$ is a multiple of 8 | M1 | 2.1 |
|  | So (Given $n \in \mathbb{N}$ ), $n^{3}+2$ is not divisible by 8 | A1 | 2.2 a |
|  | (4) |  |  |
| $\mathbf{4}$ marks |  |  |  |

First M1: States the result of cubing an odd or an even number
First A1: Followed by the result of adding two and gives a valid reason why it is not divisible by 8 .
So for odd numbers accept for example
"odd number +2 is still odd and odd numbers are not divisible by 8 "
" $n^{3}+2$ is odd and cannot be divided by 8 exactly"
and for even numbers accept
"a multiple of 8 add 2 is not a multiple of 8 , so $n^{3}+2$ is not divisible by $8 "$
"if $n^{3}$ is a multiple of 8 then $n^{3}+2$ cannot be divisible by 8
Second M1: States the result of cubing an odd and an even number
Second A1: Both valid reasons must be given followed by a concluding statement.

## Example of algebraic approaches

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} 15 \\ \begin{array}{c} \text { Algebraic } \\ \text { approach } \end{array} \end{gathered}$ | (If $n$ is even,) $n=2 k$ and $n^{3}+2=(2 k)^{3}+2=8 k^{3}+2$ | M1 | 2.1 |
|  | Eg.'This is 2 more than a multiple of 8 , hence not divisible by 8 ' Or 'as $8 k^{3}$ is divisible by $8,8 k^{3}+2$ isn't' | A1 | 2.2a |
|  | (If $n$ is odd,) $n=2 k+1$ and $n^{3}+2=(2 k+1)^{3}+2$ | M1 | 2.1 |
|  | $=8 k^{3}+12 k^{2}+6 k+3$ <br> which is an even number add 3 , therefore odd. Hence it is not divisible by 8 <br> So (given $n \in \mathbb{N}$,) $n^{3}+2$ is not divisible by 8 | A1 | 2.2a |
|  |  | (4) |  |
| $\underset{\text { algebraic }}{\text { Alt }}$ approach | (If $n$ is even,) $n=2 k$ and $\frac{n^{3}+2}{8}=\frac{(2 k)^{3}+2}{8}=\frac{8 k^{3}+2}{8}$ | M1 | 2.1 |
|  | $=k^{3}+\frac{1}{4} \mathrm{oe}$ <br> which is not a whole number and hence not divisible by 8 | A1 | 2.2a |
|  | (If $n$ is odd,) $n=2 k+1$ and $\frac{n^{3}+2}{8}=\frac{(2 k+1)^{3}+2}{8}$ | M1 | 2.1 |
|  | $=\frac{8 k^{3}+12 k^{2}+6 k+3}{8} * *$ <br> The numerator is odd as $8 k^{3}+12 k^{2}+6 k+3$ is an even number +3 hence not divisible by 8 <br> So (Given $n \in \mathbb{N}$, ) $n^{3}+2$ is not divisible by 8 | A1 | 2.2a |
|  |  | (4) |  |
| Notes |  |  |  |

Correct expressions are required for the M's. There is no need to state "If $\boldsymbol{n}$ is even," $n=2 k$ and 'If $\boldsymbol{n}$ is odd, $n=2 k+1$ " for the two M's as the expressions encompass all numbers. However the concluding statement must attempt to show that it has been proven for all $n \in \mathbb{N}$

Some students will use $2 k-1$ for odd numbers
There is no requirement to change the variable. They may use $2 n$ and $2 n \pm 1$
Reasons must be correct. Don't accept $8 k^{3}+2$ cannot be divided by 8 for example. (It can!)
Also $* * "=\frac{8 k^{3}+12 k^{2}+6 k+3}{8}=k^{3}+\frac{3}{2} k^{2}+\frac{3}{4} k+\frac{3}{8}$ which is not whole number" is too vague so A0

| Question | Scheme |  | Marks | AOs |
| :---: | :---: | :---: | :---: | :---: |
| 13 (a) | States $(2 a-b)^{2} . .0$ |  | M1 | 2.1 |
|  | $4 a^{2}+b^{2} . .4 a b$ |  | A1 | 1.1b |
|  | $($ As $a>0, b>0) \quad \frac{4 a^{2}}{a b}+\frac{b^{2}}{a b} \ldots \frac{4 a b}{a b}$ |  | M1 | 2.2a |
|  | Hence $\frac{4 a}{b}+\frac{b}{a} \ldots 4 \quad *$ | CSO | A1* | 1.1b |
|  |  |  | (4) |  |
| (b) | $a=5, b=-1 \Rightarrow \frac{4 a}{b}+\frac{b}{a}=-20-\frac{1}{5}$ which is less than 4 |  | B1 | 2.4 |
|  |  |  | (1) |  |
| (5 marks) |  |  |  |  |

## Notes

(a) (condone the use of $>$ for the first three marks)

M1: For the key step in stating that $(2 a-b)^{2}$.. 0
A1: Reaches $4 a^{2}+b^{2} \ldots 4 a b$
M1: Divides each term by $a b \Rightarrow \frac{4 a^{2}}{a b}+\frac{b^{2}}{a b} \ldots \frac{4 a b}{a b}$
A1*: Fully correct proof with steps in the correct order and gives the reasons why this is true:

- when you square any (real) number it is always greater than or equal to zero
- dividing by $a b$ does not change the inequality as $a>0$ and $b>0$
(b)

B1: Provides a counter example and shows it is not true.
This requires values, a calculation or embedded values(see scheme) and a conclusion. The conclusion must be in words eg the result does not hold or not true
Allow 0 to be used as long as they explain or show that it is undefined so the statement is not true.

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 11 (a) <br> Way 1 | Since $x$ and $y$ are positive, their square roots are real and so $(\sqrt{x}-\sqrt{y})^{2} \geq 0$ giving $\quad x-2 \sqrt{x} \sqrt{y}+y \geq 0$ | M1 | 2.1 |
|  | $\therefore 2 \sqrt{x y} \leq x+y$ provided $x$ and $y$ are positive and so $\sqrt{x y} \leq \frac{x+y}{2} *$ | A1* | 2.2a |
|  |  | (2) |  |
| Way 2 <br> Longer method | Since $\quad(x-y)^{2} \geq 0$ for real values of $x$ and $y, x^{2}-2 x y+y^{2} \geq 0$ and so $4 x y \leq x^{2}+2 x y+y^{2}$ i.e. $4 x y \leq(x+y)^{2}$ | M1 | 2.1 |
|  | $\therefore 2 \sqrt{x y} \leq x+y$ provided $x$ and $y$ are positive and so $\sqrt{x y} \leq \frac{x+y}{2}$ * | A1* | 2.2a |
|  |  | (2) |  |
| (b) | Let $x=-3$ and $y=-5$ then LHS $=\sqrt{15}$ and RHS $=-4$ so as $\sqrt{15}>-4$ result does not apply | B1 | 2.4 |
|  |  | (1) |  |
| (3 marks) |  |  |  |
| Notes: |  |  |  |
| (a) <br> M1: Need two stages of the three stage argument involving the three stages, squaring, square rooting terms and rearranging <br> A1*: Need all three stages making the correct deduction to achieve the printed result |  |  |  |
| (b) <br> B1: Chooses two negative values and substitutes, then states conclusion |  |  |  |


| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 16 | NB any natural number can be expressed in the form: $3 k, 3 k+1,3 k+2$ or equivalent e.g. $3 k-1,3 k, 3 k+1$ |  |  |
|  | Attempts to square any two distinct cases of the above | M1 | 3.1a |
|  | Achieves accurate results and makes a valid comment for any two of the possible three cases: E.g. <br> $(3 k)^{2}=9 k^{2}\left(=3 \times 3 k^{2}\right)$ is a multiple of 3 | A1 <br> M1 on <br> EPEN | 1.1b |
|  | $(3 k+1)^{2}=9 k^{2}+6 k+1=3 \times\left(3 k^{2}+2 k\right)+1$ <br> is one more than a multiple of 3 $\begin{aligned} & (3 k+2)^{2}=9 k^{2}+12 k+4=3 \times\left(3 k^{2}+4 k+1\right)+1 \\ & \left(\text { or }(3 k-1)^{2}=9 k^{2}-6 k+1=3 \times\left(3 k^{2}-2 k\right)+1\right) \end{aligned}$ <br> is one more than a multiple of 3 |  |  |
|  | Attempts to square in all 3 distinct cases. <br> E.g. attempts to square $3 k, 3 k+1,3 k+2$ or e.g. $3 k-1,3 k, 3 k+1$ |  | 2.1 |
|  | Achieves accurate results for all three cases and gives a minimal conclusion (allow tick, QED etc.) | Al | 2.4 |
|  |  | (4) |  |
| (4 marks) |  |  |  |

