Question	Scheme	Marks	AOs
6(a)	$\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}=-3 \mathbf{i}-4 \mathbf{j}-5 \mathbf{k}+\mathbf{i}+\mathbf{j}+4 \mathbf{k}=\ldots$	M1	1.1b
	$=-2 \mathbf{i}-3 \mathbf{j}-\mathbf{k}$	A1	1.1b
		(2)	
(b)	At least 2 of $\left(A C^{2}\right)=" 2^{2}+3^{2}+1^{2} ",\left(A B^{2}\right)=3^{2}+4^{2}+5^{2},\left(B C^{2}\right)=1^{2}+1^{2}+4^{2}$	M1	1.1b
	$2^{2}+3^{2}+1^{2}=3^{2}+4^{2}+5^{2}+1^{2}+1^{2}+4^{2}-2 \sqrt{3^{2}+4^{2}+5^{2}} \sqrt{1^{2}+1^{2}+4^{2}} \cos A B C$	M1	3.1a
	$\begin{aligned} 14 & =50+18-2 \sqrt{50} \sqrt{18} \cos A B C \\ \Rightarrow & \cos A B C=\frac{50+18-14}{2 \sqrt{50} \sqrt{18}}=\frac{9}{10}^{*} \end{aligned}$	A1*	2.1
		(3)	
	(b) Alternative		
	$A B^{2}=3^{2}+4^{2}+5^{2}, B C^{2}=1^{2}+1^{2}+4^{2}$	M1	1.1b
	$\overrightarrow{B A} \cdot \overrightarrow{B C}=(3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}) \cdot(\mathbf{i}+\mathbf{j}+4 \mathbf{k})=27=\sqrt{3^{2}+4^{2}+5^{2}} \sqrt{1^{2}+1^{2}+4^{2}} \cos A B C$	M1	3.1a
	$27=\sqrt{50} \sqrt{18} \cos A B C \Rightarrow \cos A B C=\frac{27}{\sqrt{50} \sqrt{18}}=\frac{9}{10} *$	A1*	2.1
(5 marks)			
Notes			

(a)

M1: Attempts $\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}$
There must be attempt to add not subtract.
If no method shown it may be implied by two correct components
A1: Correct vector. Allow $-2 \mathbf{i}-3 \mathbf{j}-\mathbf{k}$ and $\left(\begin{array}{c}-2 \\ -3 \\ -1\end{array}\right)$ but not $\left(\begin{array}{c}-2 \mathbf{i} \\ -3 \mathbf{j} \\ -1 \mathbf{k}\end{array}\right)$
(b)

M1: Attempts to "square and add" for at least 2 of the 3 sides. Follow through on their $\overrightarrow{A C}$ Look for an attempt at either $a^{2}+b^{2}+c^{2}$ or $\sqrt{a^{2}+b^{2}+c^{2}}$
M1: A correct attempt to apply a correct cosine rule to the given problem; Condone slips on the lengths of the sides but the sides must be in the correct position to find angle $A B C$
A1*: Correct completion with sufficient intermediate work to establish the printed result.
Condone different labelling, e.g. $A B C \leftrightarrow \theta$ as long as it is clear what is meant
It is OK to move from a correct cosine rule $14=50+18-2 \sqrt{50} \sqrt{18} \cos A B C$
via $\cos A B C=\frac{54}{2 \sqrt{50} \sqrt{18}}$ o.e. such as $\cos A B C=\frac{(5 \sqrt{2})^{2}+(3 \sqrt{2})^{2}-(\sqrt{14})^{2}}{2 \times 5 \sqrt{2} \times 3 \sqrt{2}}$ to $\cos A B C=\frac{9}{10}$

Alternative:

M1: Correct application of Pythagoras for sides $A B$ and $B C$ or their squares
M1: Recognises the requirement for and applies the scalar product
A1*: Correct completion with sufficient intermediate work to establish the printed result

Question	Scheme	Marks	AOs
10			
	$\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$		
(a)	$\left\{\overrightarrow{C M}=\overrightarrow{C A}+\overrightarrow{A M}=\overrightarrow{C A}+\frac{1}{2} \overrightarrow{A B} \Rightarrow\right\} \overrightarrow{C M}=-\mathbf{a}+\frac{1}{2}(\mathbf{b}-\mathbf{a})$	M1	3.1a
	$\left\{\overrightarrow{C M}=\overrightarrow{C B}+\overrightarrow{B M}=\overrightarrow{C B}+\frac{1}{2} \overrightarrow{B A} \Rightarrow\right\} \overrightarrow{C M}=(-2 \mathbf{a}+\mathbf{b})+\frac{1}{2}(\mathbf{a}-\mathbf{b})$		
	$\Rightarrow \overrightarrow{C M}=-\frac{3}{2} \mathbf{a}+\frac{1}{2} \mathrm{~b}$ (needs to be simplified and seen in (a) only)	A1	1.1b
		(2)	
(b)	$\overrightarrow{O N}=\overrightarrow{O C}+\overrightarrow{C N} \Rightarrow \overrightarrow{O N}=\overrightarrow{O C}+\lambda \overrightarrow{C M}$	M1	1.1 b
	$\overrightarrow{O N}=2 \mathbf{a}+\lambda\left(-\frac{3}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}\right) \Rightarrow \overrightarrow{O N}=\left(2-\frac{3}{2} \lambda\right) \mathbf{a}+\frac{1}{2} \lambda \mathbf{b}$ *	A1*	2.1
		(2)	
$\begin{gathered} \text { (c) } \\ \text { Way } 1 \end{gathered}$	$\left(2-\frac{3}{2} \lambda\right)=0 \Rightarrow \lambda=\ldots$	M1	2.2a
	$\lambda=\frac{4}{3} \Rightarrow \overrightarrow{O N}=\frac{2}{3} \mathbf{b}\left\{\Rightarrow \overrightarrow{N B}=\frac{1}{3} \mathbf{b}\right\} \Rightarrow O N: N B=2: 1 *$	A1*	2.1
		(2)	
$\begin{gathered} (c) \\ \text { Way } 2 \end{gathered}$	$\overrightarrow{O N}=\mu \mathbf{b} \Rightarrow\left(2-\frac{3}{2} \lambda\right) \mathbf{a}+\frac{1}{2} \lambda \mathbf{b}=\mu \mathbf{b}$		
	$\mathbf{a}:\left(2-\frac{3}{2} \lambda\right)=0 \Rightarrow \lambda=\ldots \quad\left\{\mathbf{b}: \frac{1}{2} \lambda=\mu \& \lambda=\frac{4}{3} \Rightarrow \mu=\frac{2}{3}\right\}$	M1	2.2a
	$\lambda=\frac{4}{3}$ or $\mu=\frac{2}{3} \Rightarrow \overrightarrow{O N}=\frac{2}{3} \mathbf{b}\left\{\Rightarrow \overrightarrow{N B}=\frac{1}{3} \mathbf{b}\right\} \Rightarrow O N: N B=2: 1 *$	A1*	2.1
		(2)	

Question		Scheme	Marks	AOs
$\begin{gathered} 10(c) \\ \text { Way } 3 \end{gathered}$		$\overrightarrow{O B}=\overrightarrow{O N}+\overrightarrow{N B} \Rightarrow \mathbf{b}=\left(2-\frac{3}{2} \lambda\right) \mathbf{a}+\frac{1}{2} \lambda \mathbf{b}+K \mathbf{b}$		
		$\mathbf{a}:\left(2-\frac{3}{2} \lambda\right)=0 \Rightarrow \lambda=\ldots \quad\left\{\mathbf{b}: 1=\frac{1}{2} \lambda+K \quad \& \quad \lambda=\frac{4}{3} \Rightarrow K=\frac{1}{3}\right\}$	M1	2.2a
		$\lambda=\frac{4}{3}$ or $K=\frac{1}{3} \Rightarrow \overrightarrow{O N}=\frac{2}{3} \mathbf{b}$ or $\overrightarrow{N B}=\frac{1}{3} \mathbf{b} \Rightarrow O N: N B=2: 1 *$	A1	2.1
			(2)	
$\begin{aligned} & \hline 10(c) \\ & \text { Way } 4 \end{aligned}$		$\overrightarrow{O N}=\mu \mathbf{b} \& \overrightarrow{C N}=k \overrightarrow{C M} \Rightarrow \overrightarrow{C O}+\overrightarrow{O N}=k \overrightarrow{C M}$		
		$-2 \mathbf{a}+\mu \mathbf{b}=k\left(-\frac{3}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}\right)$		
		$\mathbf{a}:-2=-\frac{3}{2} k \Rightarrow k=\frac{4}{3}, \quad \mathbf{b}: \mu=\frac{1}{2} k \Rightarrow \mu=\frac{1}{2}\left(\frac{4}{3}\right)=\ldots$	M1	2.2a
		$\mu=\frac{2}{3} \Rightarrow \overrightarrow{O N}=\frac{2}{3} \mathbf{b}\left\{\Rightarrow \overrightarrow{N B}=\frac{1}{3} \mathbf{b}\right\} \Rightarrow O N: N B=2: 1 *$	A1	2.1
			(2)	
Notes for Question 10				
(a)				
M1: V	Valid attempt to find $\overrightarrow{C M}$ using a combination of known vectors a and \mathbf{b}			
A1: A	A simplified correct answer for $\overrightarrow{C M}$			
Note:	Give M1 for $\overrightarrow{C M}=-\mathbf{a}+\frac{1}{2}(\mathbf{b}-\mathbf{a})$ or $\overrightarrow{C M}=(-2 \mathbf{a}+\mathbf{b})+\frac{1}{2}(\mathbf{a}-\mathbf{b})$ or for $\{\overrightarrow{C M}=\overrightarrow{O M}-\overrightarrow{O C} \Rightarrow\} \overrightarrow{C M}=\frac{1}{2}(\mathbf{a}+\mathbf{b})-2 \mathbf{a}$ only o.e.			
(b)				
M1: U	Uses $\overrightarrow{O N}=\overrightarrow{O C}+\lambda \overrightarrow{C M}$			
A1*: C	Correct proof			
Note: ${ }^{\text {S }}$ S	Special Case			
	Give SC M1 A0 for the solution $\overrightarrow{O N}=\overrightarrow{O A}+\overrightarrow{A M}+\overrightarrow{M N} \Rightarrow \overrightarrow{O N}=\overrightarrow{O A}+\overrightarrow{A M}+\lambda \overrightarrow{C M}$			
	$\overrightarrow{O N}=\mathbf{a}+\frac{1}{2}(\mathbf{b}-\mathbf{a})+\lambda\left(-\frac{3}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}\right)\left\{=\left(\frac{1}{2}-\frac{3}{2} \lambda\right) \mathbf{a}+\left(\frac{1}{2}+\frac{1}{2} \lambda\right) \mathbf{b}\right\}$			
Note:A O $O N$ μ	Alternative 1: Give M1 A1 for the following alternative solution: $\begin{aligned} & \overrightarrow{O N}=\overrightarrow{O A}+\overrightarrow{A M}+\overrightarrow{M N} \Rightarrow \overrightarrow{O N}=\overrightarrow{O A}+\overrightarrow{A M}+\mu \overrightarrow{C M} \\ & \overrightarrow{O N}=\mathbf{a}+\frac{1}{2}(\mathbf{b}-\mathbf{a})+\mu\left(-\frac{3}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}\right)=\left(\frac{1}{2}-\frac{3}{2} \mu\right) \mathbf{a}+\left(\frac{1}{2}+\frac{1}{2} \mu\right) \mathbf{b} \\ & \mu=\lambda-1 \Rightarrow \overrightarrow{O N}=\left(\frac{1}{2}-\frac{3}{2}(\lambda-1)\right) \mathbf{a}+\left(\frac{1}{2}+\frac{1}{2}(\lambda-1)\right) \mathbf{b} \Rightarrow \overrightarrow{O N}=\left(2-\frac{3}{2} \lambda\right) \mathbf{a}+\frac{1}{2} \lambda \mathbf{b} \end{aligned}$			
(c) W	Way 1, Way 2 and Way 3			
M1: \quad D	Deduces that $\left(2-\frac{3}{2} \lambda\right)=0$ and attempts to find the value of λ			
A1*: C	Correct proof			
(c) W	Way 4			
M1: ${ }^{\text {a }}$	Complete attempt to find the value of μ			
A1*: C	Correct proof			

Question	Scheme	Marks	AOs
3 (a)	$\overrightarrow{A B}=(3 \mathbf{i}-3 \mathbf{j}-4 \mathbf{k})-(2 \mathbf{i}+5 \mathbf{j}-6 \mathbf{k})$	M1	1.1b
	$=\mathbf{i}-8 \mathbf{j}+2 \mathbf{k}$	A1	1.1 b
		(2)	
(b)	States $\overrightarrow{O C}=2 \times \overrightarrow{A B}$	M1	1.1b
	Explains that as $O C$ is parallel to $A B$, so $O A B C$ is a trapezium.	A1	2.4
		(2)	
(4 marks)			
Notes:			

(a)

M1: Attempts to subtract either way around. If no method is seen it is implied by two of $\pm \mathbf{1} \pm 8 \mathbf{j} \pm 2 \mathbf{k}$.
A1: $\mathbf{i}-8 \mathbf{j}+2 \mathbf{k}$ or $\left(\begin{array}{r}1 \\ -8 \\ 2\end{array}\right)$ but not $(1,-8,2)$
(b)

M1: Compares their $\mathbf{i}-8 \mathbf{j}+2 \mathbf{k}$ with $2 \mathbf{i}-16 \mathbf{j}+4 \mathbf{k}$ by stating any one of

- $\overrightarrow{O C}=2 \times \overrightarrow{A B}$
- $\left(\begin{array}{r}2 \\ -16 \\ 4\end{array}\right)=2 \times\left(\begin{array}{r}1 \\ -8 \\ 2\end{array}\right)$
- $\overrightarrow{O C}=\lambda \times \overrightarrow{A B}$ or vice versa

This may be awarded if $A B$ was subtracted "the wrong way around" or if there was one numerical slip
A1: A full explanation as to why $O A B C$ is a trapezium.
Requires fully correct calculations, so part (a) must be $\overrightarrow{A B}=(\mathbf{i}-8 \mathbf{j}+2 \mathbf{k})$
It requires a reason and minimal conclusion.
Example 1:
$\overrightarrow{O C}=2 \times \overrightarrow{A B}$, therefore $O C$ is parallel to $A B$ so $O A B C$ is a trapezium
Example 2:
A trapezium has one pair of parallel sides. As $\overrightarrow{O C}=2 \times \overrightarrow{A B}$, they are parallel, so \checkmark.
Example 3
As $\left(\begin{array}{r}2 \\ -16 \\ 4\end{array}\right)=2 \times\left(\begin{array}{r}1 \\ -8 \\ 2\end{array}\right), O C$ and $A B$ are parallel, so proven
Example 4
Accept as $\overrightarrow{O C}=\lambda \times \overrightarrow{A B}$, they are parallel so true
Note: There are two definitions for a trapezium. One stating that it is a shape with one pair of parallel sides, the other with only one pair of parallel sides. Any calculations to do with sides $O A$ and $C B$ in this question may be ignored, even if incorrect.

Question Number	Scheme	Marks	AO's
2	Attempts any one of $\begin{gathered} (\pm \overrightarrow{P Q}=) \pm(\mathbf{q}-\mathbf{p}),(\pm \overrightarrow{P R}=) \pm(\mathbf{r}-\mathbf{p}),(\pm \overrightarrow{Q R}=) \pm(\mathbf{r}-\mathbf{q}) \\ (\pm \overrightarrow{P Q}=) \pm(\overrightarrow{O Q}-\overrightarrow{O P}),(\pm \overrightarrow{P R}=) \pm(\overrightarrow{O R}-\overrightarrow{O P}),(\pm \overrightarrow{Q R}=) \pm(\overrightarrow{O R}-\overrightarrow{O Q}) \end{gathered}$	M1	1.1 b
	Attempts e.g. $\begin{gathered} \mathbf{r}-\mathbf{q}=2(\mathbf{q}-\mathbf{p}) \\ \mathbf{r}-\mathbf{p}=3(\mathbf{q}-\mathbf{p}) \\ \frac{2}{3}(\mathbf{q}-\mathbf{p})=\frac{1}{3}(\mathbf{r}-\mathbf{q}) \\ \mathbf{q}=\mathbf{p}+\frac{1}{3}(\mathbf{r}-\mathbf{p}) \\ \mathbf{q}=\mathbf{r}+\frac{2}{3}(\mathbf{p}-\mathbf{r}) \end{gathered}$	dM1	3.1a
	E.g. $\Rightarrow \mathbf{r}-\mathbf{q}=2 \mathbf{q}-2 \mathbf{p} \Rightarrow 2 \mathbf{p}+\mathbf{r}=3 \mathbf{q} \Rightarrow \mathbf{q}=\frac{1}{3}(\mathbf{r}+2 \mathbf{p}) *$	A1*	2.1
		(3)	

Notes:

M1: Attempts any of the relevant vectors by subtracting either way around. This may be implied by sight of any one of $\pm(\mathbf{q}-\mathbf{p}), \pm(\mathbf{r}-\mathbf{p}), \pm(\mathbf{r}-\mathbf{q})$ ignoring how they are labelled
dM1: Uses the given information and writes it correctly in vector form that if rearranged would give the printed answer
$\mathbf{A 1 *}$: Fully correct work leading to the given answer. Allow $\mathrm{OQ}=\ldots$ as long as OQ has been defined as \mathbf{q} earlier.

In the working allow use of P instead of \mathbf{p} and Q instead of \mathbf{q} as long as the intention is clear.

\begin{tabular}{|c|c|c|}
\hline Qu \& Schem \& Marks \\
\hline 14 \& \begin{tabular}{l}
Attempts \(B A=\mathbf{a}-\mathbf{b}=-2 \mathbf{i}+2 \mathbf{j}-8 \mathbf{k}\) or \(B C=\mathbf{c}-\mathbf{b}=-4 \mathbf{i}+4 \mathbf{j}\) either way around \\
Finds \(\overrightarrow{O D}=\mathbf{a}-\mathbf{b}+\mathbf{c}=(-2 \mathbf{i}+2 \mathbf{j}-8 \mathbf{k})+(-\mathbf{i}+3 \mathbf{j}+6 \mathbf{k})=-3 \mathbf{i}+5 \mathbf{j}-2 \mathbf{k}\)
\end{tabular} \& M1
M1 A1 \\
\hline (c) \& \begin{tabular}{l}
\[
\cos \theta=\frac{\left(\begin{array}{r}
-2 \\
2 \\
-8
\end{array}\right) \cdot\left(\begin{array}{r}
-4 \\
4 \\
0
\end{array}\right)}{\sqrt{(-2)^{2}+2^{2}+(-8)^{2}} \sqrt{(-4)^{2}+4^{2}}}=\frac{16}{\sqrt{72} \sqrt{32}}=\frac{1}{3}
\] \\
So angle is 1.23 radians or 70.5 degrees \\
Area \(=\sqrt{72} \sqrt{32} \sin \theta=45.3\) or \(32 \sqrt{2} \mathbf{~ o e}\) \\
Area \(=\frac{3}{2} \times 45.3^{\prime \prime}=67.9\) or \(48 \sqrt{2} \mathbf{~ o e}\)
\end{tabular} \& dM1 A1
A1
M1A1

M1 A1

(11 marks)

\hline \multicolumn{3}{|l|}{\multirow[t]{6}{*}{| (a) |
| :--- |
| M1: For attempting one of $\mathbf{b}-\mathbf{a}$ or $\mathbf{a}-\mathbf{b}$ or $\mathbf{c}-\mathbf{b}$ or $\mathbf{b}-\mathbf{c}$. It must be correct for at least one of the components. Condone coordinate notation for the first two M marks |
| M1: For attempting $\mathbf{d}=\mathbf{a}-\mathbf{b}+\mathbf{c}=$ It must be correct for at least one of the components. |
| A1: cao. Correct answer no working scores all 3 marks. It must be the vector (either form) and not a coordinate Note this can be attempted by finding the mid point E of $A C$ and then using $\mathbf{d}=\mathbf{b}+2 \overrightarrow{B E}$ but it must be a full method M1 Attempts $m p_{A C}=(0,2,2)$ and uses M1 Attempts $(3,-1,6)+2 \times(-3,3,-4)$ A1 |
| (b) |
| M1: Uses correct pair of vectors, so $\pm k \overrightarrow{B A}$ and $\pm k \overrightarrow{B C}$. Each must be correct for at least one of the components |
| dM1: A clear attempt to use the dot product formula to find $\cos \theta=k,-1<k<1$. It is dependent upon having chosen the correct pair of vectors. Allow for arithmetical slips in both their dot product calculation and the moduli, but the process must be correct. |
| It could also be found using the cosine rule. $\frac{72+32-72}{2 \sqrt{72} \sqrt{32}}=$ |
| (M1 is for attempt at all three lengths, so $\pm \overrightarrow{B A}, \pm \overrightarrow{B C}, \pm \overrightarrow{A C}$ and dM1 correct angle attempted using the correct formula) |
| A1: For $1 / 3$ or $-1 / 3$ or equivalent - may be implied by 70.5 or 109.5 or 1.23 radians or 1.91 radians |
| A1: cso for awrt 70.5 degrees or 1.23 radians. (Note that invcos $(-1 / 3)=109.5$ followed by 70.5 is A0 unless accompanied by a convincing argument that the angle 109.5 is the exterior angle, and therefore the interior angle is 70.5. It is not awarded for simply finding the acute angle. A diagram with correct angles would be ok) |
| M1: Uses correct area formula for parallelogram. |
| You may see the area of the triangle $A B C$ doubled which is fine. |
| A1: Obtains awrt 45.3. Allow this from an angle of 109.5 |
| (d) |
| M1: Realises connection with part (c) and uses 1.5 times answer to the area of $A B C D$ (It can be implied by 67.9) |
| A1: awrt 67.9 |}}

\hline \& \&

\hline \& \&

\hline \& \&

\hline \& \&

\hline \& \&

\hline
\end{tabular}

Question Number	Scheme	Marks
9(a)	Attempts $\left(\begin{array}{r}2 \\ 3 \\ -2\end{array}\right) \cdot\left(\begin{array}{r}5 \\ -6 \\ 1\end{array}\right)=\sqrt{\left(2^{2}+3^{2}+(-2)^{2}\right)} \sqrt{\left(5^{2}+(-6)^{2}+1^{2}\right)} \cos (\angle C A B)$	M1
	$\angle C A B=\arccos \left(-\frac{10}{\sqrt{17} \sqrt{62}}\right)=107.94^{\circ}$	dM1A1
		(3)
(b)	Area $=\frac{1}{2} \sqrt{17} \sqrt{62} \sin \left(107.94^{\circ}\right)=15.44$	M1A1
		(2)
(c)	Calculates $\|B C\|=\sqrt{(5-2)^{2}+(-6-3)^{2}+(1--2)^{2}}$	M1
	Uses Area $=\frac{1}{2}\|B C\| \times\|A D\| \Rightarrow 15.44=\frac{1}{2} \times \sqrt{99} \times\|A D\| \Rightarrow\|A D\|=3.10$	M1A1
		(3)
		(8 marks)
ALT (a)	Calculates $\|B C\|=\sqrt{(5-2)^{2}+(-6-3)^{2}+(1--2)^{2}}$	M1
	Uses cosine rule $\cos \angle C A B=\frac{17+62-99}{2 \times \sqrt{17} \times \sqrt{62}}$	dM1
	$\Rightarrow \angle C A B=\arccos \left(-\frac{20}{2 \sqrt{17} \sqrt{62}}\right)=107.94^{\circ}$	A1
		(3)
ALT (b)	$\begin{gathered} \text { Area }= \\ \sqrt{s(s-a)(s-b)(s-c)}=\sqrt{\left(\frac{\sqrt{17}+\sqrt{62}+\sqrt{99}}{2}\right)\left(\frac{\sqrt{17}-\sqrt{62}+\sqrt{99}}{2}\right)\left(\frac{\sqrt{17}+\sqrt{62}-\sqrt{99}}{2}\right)\left(\frac{\sqrt{62}+\sqrt{99}-\sqrt{17}}{2}\right)} \end{gathered}$	M1A1
Alt (b) ii	Area $=\frac{1}{2} \sqrt{\|A B\|^{2}\|A C\|^{2}-(\overrightarrow{A B} \cdot \overrightarrow{A C})^{2}}=\frac{1}{2} \sqrt{17 \times 62-100}=\frac{3}{2} \sqrt{106}$	M1A1
ALT (b)	Area $=$ $\frac{1}{2}\|a \times b\|=\frac{1}{2}\left\|\begin{array}{ccc} i & j & k \\ 2 & 3 & -2 \\ 5 & -6 & 1 \end{array}\right\|=\frac{1}{2}\|-9 i-12 j-27 k\|=\frac{1}{2} \sqrt{9^{2}+12^{2}+27^{2}}=15.44$	M1A1
ALT (c)	Calculates $\|B C\|=\sqrt{(5-2)^{2}+(-6-3)^{2}+(1--2)^{2}}$	M1
	$\frac{\sin (\text { "107.94") }}{B C}=\frac{\sin B}{" \sqrt{62} "} \Rightarrow B=48.84 \ldots \Rightarrow A D=" \sqrt{17} " \sin B=3.10$	M1A1

(a)

M1: Attempts to use $\mathbf{a} . \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$ where $\mathbf{a}= \pm(2 \mathbf{i}+3 \mathbf{j}-2 \mathbf{k}), \quad \mathbf{b}= \pm(5 \mathbf{i}-6 \mathbf{j}+\mathbf{k})$ I.e. correct use of Pythagoras to find and multiply the lengths together and multiplies and adds components (allow arithmetic slips) for dot product. dM1: Dependent upon previous M1. For continuing to find $\angle C A B$ using invcos. Allow $\operatorname{arc} \cos \left(\frac{ \pm 10}{\sqrt{17} \sqrt{62}}\right)$ Implied by previous $\mathrm{M} 1+$ angle rounding to 108° or $72.1^{\circ}(\mathrm{NB} \cos \theta=-0.308 \ldots)$

