

Question Number	Scheme	Marks
6.	Let $X=$ the number of seeds that germinate	
	Let $Y=$ the number of seeds that don't germinate. $x_{\text {obs }}=66, y_{\text {obs }}=9$	
	$\mathrm{H}_{0}: p=0.96, \mathrm{H}_{1}: p<0.96$ or $\mathrm{H}_{0}: p=0.04, \mathrm{H}_{1}: p>0.04$ or $\mathrm{H}_{0}: \lambda=3, \mathrm{H}_{1}: \lambda>3$	B1 B1
	$\{Y \sim \operatorname{Bin}(75,0.04)$ approximates to $\} Y \sim \operatorname{Po}(3)$	B1
		M1
	$=1-0.9962$	
	$=0.0038 \quad$ CR: $Y \geqslant 9$	A1
	$\{0.0038<0.01\}$	
	Reject H_{0} or significant or 9 lies in the CR	dM1
	Either - There is evidence that the producer has overstated the probability/percentage/proportion/number of bean seeds that germinate. - Producer's claim is not true. - There is evidence that the producer has understated the probability/percentage/proportion/number/ of bean seeds that don't germinate.	A1 cso
		[7]
		7
	Notes	
	$\mathbf{1 s t}^{\text {st }} \mathbf{B 1}$ for $\mathrm{H}_{0}: p=0.96$ or $\mathrm{H}_{0}: p=0.04$ or $\mathrm{H}_{0}: /=3$ $\mathbf{2}^{\text {nd }} \mathbf{B 1}$ for $\mathrm{H}_{0}: p=0.96$ and $\mathrm{H}_{1}: p<0.96$ or $\mathrm{H}_{0}: p=0.04$ and $\mathrm{H}_{1}: p>0.04$ or $\mathrm{H}_{0}: /=3$ and $\mathrm{H}_{1}: />3$ $3^{\text {rd }}$ B1 $\mathrm{Po}(3)$ seen or implied $\mathbf{1}^{\text {st }} \mathbf{M 1}$ for writing or using $1-\mathrm{P}(Y \leqslant 8)$ or giving $\mathrm{P}(Y \leqslant 7)=0.9881$ or $\mathrm{P}(Y \geqslant 8)=0.0119$ for a CR method (may be implied by probability $=0.0038$ or correct $C R$) $\mathbf{1}^{\text {st }} \mathbf{A 1}$ for 0.0038 or CR: $Y \geqslant 9$ $\mathbf{2}^{\text {nd }} \mathbf{M 1}$ Dependent on the $1^{\text {st }}$ M1. For a correct statement i.e. significant/reject $\mathrm{H}_{0} / 9$ is in CR Follow through their probability/CR and their H_{1} May be implied by a correct contextual statement. Ignore comparison of probability with the significance level. Do not allow non-contextual conflicting statements. $\mathbf{2}^{\text {nd }}$ A1cso fully correct solution and correct contextual statement	
	B1 B1 Correct hypotheses (same mark scheme as above) B0 $\mathrm{N}(72,2.88)$ M1 $\frac{ \pm(66.5-72)}{\sqrt{2.88}}(= \pm 3.24)$ A0 awrt 0.0006 dM1 A0cso (same mark scheme as above)	

Question Number	Scheme	Marks
$2(a)$ (b) (c)	List of all the customers (who eat in the restaurant)	B1 (1)
	Customer(s) (who ate in the restaurant)	B1 (1)
	Advantage: more/total accuracy, unbiased	B1
	Disadvantage: time consuming to obtain data and analyse it, expensive, difficult to ensure entire population is included	B1 (2)
(d)	$\mathrm{H}_{0}: p=0.3 \quad \mathrm{H}_{1}: p>0.3$	B1
	$X \sim \mathrm{~B}(50,0.3)$	M1
	$\mathrm{P}(X \geqslant 20)=1-\mathrm{P}(X \leqslant 19) \quad \text { or } \quad \mathrm{CR} \mathrm{P}(X \leqslant 20)=0.9522$	M1
	= $1-0.9152 \quad \mathrm{P}(X \geqslant 21)=0.0478$	
	$=0.0848$ ($X \geqslant 21$	A1
	Do not reject $\mathrm{H}_{0} /$ not significant/20 is not in critical region	M1
	The percentage of customers who would like more choice on the menu is not more than Bill believes. or There is no evidence to reject Bill's belief.	
		A1cso
		(6)
		Total (10)
Notes		
(a)	B1 Need the idea of list/register/database and 'customer(s)' Do not allow customer's opinions. 'All' may be implied. Do not allow a partial list e.g. 'A list of 50 customers'	
(b)	B1 customer(s)	
(c)	If not labelled, assume the response refers to a census. $1^{\text {st }} \mathrm{B} 1$ is for the advantage and $2^{\text {nd }} \mathrm{B} 1$ is for the disadvantage.	
(d)	B1 need both hypotheses with p	
	M1 for $1-\mathrm{P}(X \leqslant 19)$ or	
	M1 a correct conclusion for their probability. May be implied by a correct contextual conclusion. A1 a correct contextual conclusion for their hypotheses and a fully correct solution with no errors seen. Must mention 'customers' and 'choice' or 'Bill' and 'belief'.	
	NB P $(X=20)$ can score B1M1M0A0M0A0	

Question Number	Scheme			Marks
2(a)	Only 2 outcomes Heads and Tails oe			
	Constant probability of spinning a Head/Tail oe			
	Coin is spun a fixed number of times oe			
	Each spin of the coin is independent oe			B1 B1
				(2)
(b)	$T \sim \mathrm{~B}(6,0.5)$			
	$\mathrm{P}(T \leq$	$-\mathrm{P}(T \leq 4)=0.9844-0.8906$	or $6\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right) \mathbf{0 e}$	M1
		$=0.09375$ or $\frac{3}{32}$ oe	awrt 0.0938	A1
				(2)
(c)	$\mathrm{P}(T=4,5,6)=1-\mathrm{P}(T \leq 3)$			M1
		$=1-0.6563$		
		$=0.3437$ or $\frac{11}{32}$	awrt 0.344	A1
				(2)
(d)	$\mathrm{P}(H=3,4,5,6)=1-\mathrm{P}(H \leq 2)$			B1M1d
	$=1-0.8306$			
	$=0.1694$ or $\frac{347}{2048}$		awrt 0.169	A1
				(3)
	Notes			Total 9
(a)	B1 A correct statement - does not need to be in context B1 A second correct statement in context include coin or heads or tails(do not allow H and T) or spins/flip oe.			
(b)	M1 [writing or using $\mathrm{B}(6,0.5)$ and writing or using $\mathrm{P}(T \leq 5)-\mathrm{P}(T \leq 4)$] or [6			$)^{6} \mathrm{oe}\right]$
(c)	M1 for realising they need find $\mathrm{P}(T=4,5$ or 6$)$ eg $1-\mathrm{P}(T \leq 3)$ or $\mathrm{P}(T \geq 4)$			
(d)		writing/using $\mathrm{B}(6,0.25)$ and $\mathrm{P}(H \geq 3)$ oe	writing/using $\mathrm{B}(6,0.75)$ and $\mathrm{P}(T \leq 3)$	
		dep on B 1 for $1-\mathrm{P}(H \leq 2)$	$\begin{aligned} & \text { dep on B1 } \\ & \begin{aligned} (0.25)^{6}+6 & (0.75)(0.25)^{5} \\ & +15(0.75)^{2}(0.25)^{4}+20(\end{aligned} \end{aligned}$	$0.75)^{3}(0.25)^{3}$
	A1 NB NB	Only accept correct use of H and T in the probability statement unless their variable is correctly defined awrt 0.169 with no incorrect working gains B1M1A1		

Question Number	Scheme		Marks
	Allow any letter instead of X or c for this question		
1 (a)	$X \sim \mathrm{~B}(25,0.2)$	M1 Writing or using $\mathrm{B}(25,0.2)$ or $\mathrm{B}(25,1 / 5)$ [allow $\mathrm{Po}(5)$] May be written in full or implied by a correct CR (allow written as a probability statement)	M1
	$\begin{aligned} & {[\mathrm{P}(X \geq 9)=] 0.0468} \\ & {[\mathrm{P}(X \leq 1)=] 0.0274} \end{aligned}$	$\mathbf{1}^{\text {st }} \mathbf{A 1}$ both awrt 0.0468 and awrt 0.0274 seen.	A1
	$X=[0 \leq] \quad X \leq 1$	$\mathbf{2}^{\text {nd }}$ A1 $X \leq 1$ or $X<2$ or $0 \leq X \leq 1$ or [0,1] or 0,1 or equivalent statements. $X \leq c$ and $c=1$	A1
	$9 \leq X \quad[\leq 25]$	$\mathbf{3}^{\text {rd }}$ A1d dependent on seeing a probability from the $\mathrm{B}(25,0.2)$ and $X \geq 9$ or $X>8$ or $9 \leq X \leq 25$ or $9,10,11,12,13,14,15,16,17,18,19,20,21,22$, $23,24,25$ or $[9,25]$ or equivalent statements. $X \geq c$ and $c=9$	A1d
	NB These two final 2 A marks must be for statements with " X " only(or list) - not in probability statements SC If a probability from the $\mathrm{B}(25,0.2)$ is seen and they either have both CR correct but written as probability statements or the CR is written as $1 \geq X \geq 9$ they get A1 A0 for final 2 marks		
(b)	$\begin{aligned} & \mathrm{H}_{0}: p=0.2 \\ & \mathrm{H}_{1}: p<0.2 \end{aligned}$	B1 both hypotheses with p or π and clear which is H_{0} and which is H_{1}	B1
	$\mathrm{P}(X \leq 6)=0.1034$ or $\mathrm{CR} X \leq 5$	$\mathbf{1}^{\text {st }} \mathbf{M 1}$ writing or using $\mathrm{B}(50,0.2)$ and writing or using $\mathrm{P}(X \leq 6)$ or $\mathrm{P}(X \geq 7)$ on its own. May be implied by a correct CR	M1
		$\mathbf{1}^{\text {st }} \mathbf{A 1}$ awrt 0.103. Allow CR $X \leq 5$ or $X<6$. or if not using CR allow awrt 0.897 .	A1
	Insufficient evidence to reject H_{0}, Accept H_{0}, Not significant. 6 does not lie in the Critical region.	$\mathbf{2}^{\text {nd }} \mathbf{M 1}$ dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non-contextual statements). ft their Prob/CR compared with $0.05 / 6 /(0.95$ if using 0.8979$)$. Do not follow through their hypotheses	M1d
	No evidence that increasing the batch size has reduced the percentage of broken pots (oe) or evidence that there is no change in the percentage of broken pots (oe)	$\mathbf{2}^{\text {nd }}$ A1cso Conclusion must contain the words reduced/ no change/not affect oe number/percentage/proportion/ probability oe, and pots. All previous marks must be awarded for this mark to be awarded. Do not allow the potters claim /belief is wrong/true NB Correct contextual statement on its own scores M1A1	A1cso
			(Total 9)

Question Number	Scheme		Marks
2(a)		notes	
	$X \sim \mathrm{~B}(30,0.25)$	B 1 : using $\mathrm{B}(30,0.25)$	B1
	$\mathrm{P}(X \leq 10)-\mathrm{P}(X \leq 4)=0.8943-0.0979$	M1: using $\mathrm{P}(X \leq 10)-\mathrm{P}(X \leq 4)$ or $\mathrm{P}(X \geq 5)-\mathrm{P}(X \geq 11)$ oe	M1 A1
	$=0.7964$	A1: awrt 0.796	
	NB a correct answer gains full marks		

(b)	$\mathrm{H}_{0}: p=0.25 \quad \mathrm{H}_{1}: p<0.25$	B1: Both hypotheses correct, labelled H_{0} or NH or H_{n} and H_{1} or AH or H_{a}, must use p or $p(x)$ or π	B1
	$\mathrm{B}(15,0.25)$	M1: for using B(15, 0.25)	
	$\mathrm{P}(X \leq 1)=0.0802$	A1: awrt 0.0802 or CR $X \leq 1$ (allow $\mathrm{P}(X \geq 2)=0.9198$)	M1 A1
	NB: Allow M1 A1 for a correct CR with no	correct working	
	Reject H_{0} or Significant or 1 1ies in the critical region	M1: A correct statement - do not allow contradictory non contextual statements. Follow through their Probability/CR (for 1 or 2 tail test). If no H_{1} given then M 0 . Ignore their comparison. For a probabillity <0.5, statement must be correct compared to 0.1 for 1 tail test and 0.05 for 2 tailed test or if the probability >0.5, statement must be correct compared to 0.9 for 1 tail test and 0.95 for 2 tailed test.	dM1 A1cso
	There is evidence that the radio company's claim is true. Or The new transmitter will reduce the proportion of houses unable to receive radio	A1: cso (all previous marks awarded) and a correct statement containing the word company if writing about the claim or radio if full context.	

