Scheme	Marks	AO
[R = no. of red beads in Aliya's bracelet] $R \sim B(18, 0.14)$	B1	3.3
	(1)	
	54	
P(R = 1) = 0.19403 awrt 0.194	BI	1.1b
$P(R \ge 4) = 1 - P(R \le 3) = 1 - [0.76184]$	M1	3.4
= 0.2381588 awrt <u>0.238</u>	A1	1.1b
	(3)	
Requires $p = 0.14$ to be constant so need a large number of beads in the	D1	2.51
probability then it could be suitable	DI	5.50
	(1)	
$H_0: p = 0.14$ $H_1: p \neq 0.14$	B1	2.5
[X = number of red beads in the sample] $X \sim B(75, 0.14)$	M1	3.3
$P(X \le 4) = 0.01506$ or if B(75, 0.14) seen awrt 0.02	A1	3.4
$\{0.02 < 0.025 \text{ so significant or reject H}_0\}$	A1	2.2b
There is evidence that the proportion of red beads has changed	(4)	
<i>p</i> -value is $2 \times "0.01506" = 0.030123 = awrt 0.03$	B1ft	1.1b
	(1)	
(10 marks)		
Notes	(10 mark	,
B1 for B(18, 0.14) accept in words e.g. <u>binomial</u> with $n = 18$ and $p = 0.1$	4	
B1 for awrt 0.194 M1 for interpreting "at least 4" Need 1 – P($R \le 3$) and 1 – $p[0 \le n \le 1]$ P($R = 3$) = 0.233 OK		
A1 for awrt 0.238		
B1 for mention of <u>large number of beads</u> and need for $p = 0.14$ to be constant for it to be		
suitable. Do NOT accept e.g. "events are independent"		
P1 for both hypotheses correct with use of n or π		
M1 for selecting a suitable model: sight or correct use of B(75, 0.14)		
May be implied by sight of 0.015 or better $\underline{\text{or }}[P(X > 4) =] 0.9849$ i.e. 0.985 or better		
1 st A1 for use of the correct model awrt 0.015 (accept awrt 0.02 following a correct expression)		
Allow 1 st A1 for awrt 0.985 <u>only if</u> correct comparison with 0.975 is seen. Sight of $P(75, 0, 14)$ and $P(Y \le 4) = ayrt 0.02$ scores M1A1		
No sight of B(75, 0.14) and $T(X \le 4)$ a write 0.02 scores M1(\Rightarrow)A1[C	ondone $P(X)$	(=4) = 1
2^{nd} A1 (dep on M1A1) for a correct conclusion in context mentioning "proportion", "red" and		
	"c]	nanged"
If there is a statement about H ₀ or significance it must be compatib May see CP i.e. $Y \le 4$ (mark when prob seen) and $Y \ge 18$ (prob = 0.0140)	le. 6) Ignore i	nnor
limit $X \ge 10$ (prob – 0.0140)	o) ignore (ipper
NB for information $P(X=4) = 0.0104$ and can only score M1A0A	A0 if B(75,	0.14) seen
B1ft for awrt 0.03 Allow ft of their probability in (d) provided at least 3s: NB on answer of 0.02 in (d) log ding to 0.04 in (e) is PO	fused	
IND all allower of 0.02 In (d) leading to 0.04 In (e) IS BU	020	D1 m ft
	Scheme [<i>R</i> = no. of red beads in Aliya's bracelet] $R \sim B(18, 0.14)$ P(<i>R</i> = 1) = 0.19403 awrt 0.194 P(<i>R</i> \ge 4) = 1 - P(<i>R</i> \le 3) = 1 - [0.76184] = 0.2381588 awrt <u>0.238</u> Requires $p = 0.14$ to be constant so need a large number of beads in the sack to ensure that removing 18 beads does not appreciably affect this probability, then it could be suitable. H ₀ : $p = 0.14$ H ₁ : $p \neq 0.14$ [<i>X</i> = number of red beads in the sample] <i>X</i> ~ B(75, 0.14) P(<i>X</i> \le 4) = 0.01506 or if B(75, 0.14) seen awrt 0.02 {0.02 < 0.025 so significant <u>or</u> reject H ₀ } There is evidence that the proportion of red beads has changed <i>p</i> -value is 2×"0.01506" = 0.030123 = awrt 0.03 Notes B1 for B(18, 0.14) accept in words e.g. binomial with $n = 18$ and $p = 0.1$ B1 for awrt 0.194 M1 for interpreting "at least 4" Need 1 – P($R \le 3$) and 1 – p [$0] FA A1 for awrt 0.238 B1 for both hypotheses correct with use of p or \piM1 for scleeting a suitable model: sight or correct use of B(75, 0.14)May be implied by sight of 0.015 or better or [P(X > 4) =] 0.9849HA1 for use of the correct model awrt 0.015 (accept awrt 0.02 followingAllow 1st A1 for awrt 0.985 only if correct comparison with 0.975Sight of B(75, 0.14) and P(X \le 4) = awrt 0.02 scores M1A1No sight of B(75, 0.14) and P(X \le 4) = awrt 0.02 scores M1A1No sight of B(75, 0.14) and P(X \le 4) = awrt 0.02 scores M1A1No sight of B(75, 0.14) and P(X \le 4) = awrt 0.02 scores M1A1No sight of B(75, 0.14) and P(X \le 4) = awrt 0.015 scores M1(=) >A1[C2nd A1 (dep on M1A1) for a correct conclusion in context mentioning "pIf there is a statement about H0 or significance it must be compatibMay see CR i.e. X \le 4 (mark when prob seen) and X \ge 18 (prob = 0.0140limitNB for information P(X = 4) = 0.0104 and can only score M1A0/B1ft for awrt 0.03 Allow ft of their probability in (d) provided at least 3s:NB an answer of 0.02 in (d) leading to 0.94 in (c) is B0$	SchemeMarks $ R = no. of red beads in Aliya's bracelet] R ~ B(18, 0.14)$ B1 $P(R = 1) = 0.19403 awrt 0.194$ B1 $P(R \ge 4) = 1 - P(R \le 3) = 1 - [0.76184]$ M1 $= 0.2381588 awrt 0.238$ A1 $Requires p = 0.14$ to be constant so need a large number of beads in the sack to ensure that removing 18 beads does not appreciably affect this probability, then it could be suitable.B1 $H_0: p = 0.14$ H_1: $p \ne 0.14$ B1 $ X = number of red beads in the sample] X ~ B(75, 0.14)$ M1 $P(X \le 4) = 0.01506$ or if $B(75, 0.14)$ seen awrt 0.02A1 $\{0.02 < 0.025$ so significant or reject H_0 }A1There is evidence that the proportion of red beads has changed(4) p -value is $2 \times "0.01506" = 0.030123 = awrt 0.03$ B1ft(1)(1)B1for awrt 0.194M1for interpreting "at least 4" Need $1 - P(R \le 3)$ and $1 - p$ [$0] P(R = 3) = 0A1for awrt 0.238B1for neutron of large number of beads and need for p = 0.14 to be constant for it it suitable. Do NOT accept e.g. "events are independent"B1for solution of large number of beads and need for p = 0.14 to be constant for it it suitable. Do NOT accept e.g. "events are independent"B1for both hypotheses correct with use of p \ or \piM1for suble by sight of 0.015 or better of P(X > 4) = 0.9849 i.e. 0.985 ^{4} A1 for use of the correct model awrt 0.015 (accept awrt 0.02 following a correct e. Allow 1" A1 for awrt 0.985 only if correct comparison with 0.975 is seen.Sight of B(75, 0.14) but sight of awrt 0.015 scores MI$

Question Number	Scheme	Marks	
3. (a)	$P(X \le 7) = 0.8883 \text{ or } P(X \le 8) = 0.9644 \text{ or } P(X \ge 8) = 0.1117 \text{ or } P(X \ge 9) = 0.0356$	M1	
	Critical Region is $X \ge 9$ (o.e.)	A1	
(b) (c)	(1 - 0.9644=) 0.0356 [NB Calculator gives: 0.03557486] Reject H ₀ /Significant <u>or</u> value of <i>p</i> is > 0.45		
		(1)	
(d)(1) (ii)	Conclusion would not change as H_0 would still be rejected	BI B1	
(II)	Conclusion would change as 110 would not be rejected	DI	
		(2)	
		[6]	
	Notes		
(a)	M1 for one of these 4 probabilities - may be implied by a correct critical region A1 for $X \ge 9$ (allow $X \ge 8$) (o.e.) e.g. [9, 12], {9, 10, 11, 12} etc Ans. only 2/2 NB Must be $X \ge 9$ for A1, do not award for just seeing P($X \ge 9$)		
(b)	B1 for 0.0356 or better		
(c)	B1f ft their critical region in (a) Must say "reject" and "H ₀ " No contradictory statements Just saying "9 is not in the critical region" is <u>not</u> enough Allow a restart i.e. calculating $P(X \ge 9) = 0.0356 < 0.05$ so significant		
	If they score B0 in (c) then score B0B0 in (d)		
(d)	In (c) they reject H_0 In (c) they accept H_0		
(i)	B1 for "No", "no change", "significant" etc B0 whatever they say		
(ii)	B1 for "Yes", "do not reject H_0 " etc B1 for "no change" or "do not reje	ct H ₀ " etc	
CR	(i) NB new CR is $X \ge 9$ but can treat any incorrect mention of CR as ISW (ii) NB new CR is $X \ge 10$ but can treat any incorrect mention of CR as ISW		

Question Number	Scheme	Marks	
5. (a)(i)	$H_0: p = 0.35$ $H_1: p \neq 0.35$	B1	
(ii)	B(15,0.35)	M1	
	CR $X \le 1 \cup X \ge 10$ (Allow any letter)	A1A1	
		(4)	
(b)	8 is not in CR	M1	
	There is evidence that the Company's <u>claim</u> is true	A1ft	
		(2)	
(c)	0.0142 + 0.0124 = 0.0266	B1	
		(1)	
		[7]	
	Notes		
(a) (i)	B1 both hypotheses correct. Must mention p (or π). Words only is B0		
(ii)	M1 Writing B(15,0.35) May be implied by e.g. $P(X < 1) = 0.0142$ or $P(X < 9) = 0.9876$		
	1 st A1 $X \le 1$ (accept $X \le 2$) Allow $0 \le X \le 1$ but P($X \le 1$) is A0		
	$2^{nd} A1 X \ge 10 \text{ (accept } X > 9) \text{ Allow } 10 \le X \le 15 \text{ but } P(X \ge 10) \text{ is } A0$		
	Either correct answer will imply M1		
(b)	M1 for a reason that matches their CR. "Interpret" their CR of $P(X \ge 10)$ as	$X \ge 10$ etc	
	Allow calculation of $P(X \ge 8) = 1 - 0.8868 = 0.1132$ and "not sig" comm	nent	
	Do not allow contradictory remarks e.g. 8 is not in CR so significant (thi	s gets M0)	
	A1ft for a conclusion correct for their CR in context		
	Must mention "claim" or "peas" and "germinating"		
	NB A correct contextual claim on its own scores M1A1		
(c)	B1 for 0.0266 or awrt 0.0266 (calc gives 0.02662196)		

Question Number	Scheme	Marks		
6.	Let $X =$ the number of seeds that germinate			
	Let Y = the number of seeds that don't germinate. $x_{obs} = 66$, $y_{obs} = 9$			
	$\begin{array}{c} H_0: p = 0.96 , \ H_1: p < 0.96 \ \text{or} \ H_0: p = 0.04 , \ H_1: p > 0.04 \ \text{or} \ H_0: \lambda = 3, \ H_1: \lambda > 3 \\ \hline \{Y \sim \text{Bin}(75, 0.04) \text{ approximates to} \} \ Y \sim \text{Po}(3) \end{array}$			
	$P(Y \ge 9) = 1 - P(Y \le 8) \text{ or } P(Y \le 7) = 0.9881 \Longrightarrow P(Y \ge 8) = 0.0119$ $P(Y \le 8) = 0.9962$	M1		
	=1-0.9962			
	$= 0.0038 \qquad \qquad \text{CR: } Y \ge 9$	A1		
	$\left\{ 0.0038 < 0.01 \right\}$			
	Reject H_0 or significant or 9 lies in the CR	dM1		
	 There is evidence that the <u>producer</u> has <u>overstated</u> the <u>probability/percentage/proportion/number</u> of bean <u>seeds</u> that <u>germinate</u>. 			
	• <u>Producer's claim is not true</u> .			
	• There is evidence that the <u>producer</u> has <u>understated</u> the <u>probability/percentage/proportion/number/</u> of bean <u>seeds</u> that <u>don't germinate</u> .	A1 cso		
		[7]		
		7		
	Notes			
	I st BI for $H_0: p = 0.96$ or $H_0: p = 0.04$ or $H_0: 7 = 3$			
	2nd B1 for $H_0: p = 0.96$ and $H_1: p < 0.96$			
	or H_0 : $p = 0.04$ and H_1 : $p > 0.04$			
	or $H_0: 1 = 3$ and $H_1: 1 > 3$			
	3rd B1 Po(3) seen or implied 1 st M1 for writing or using 1 $P(Y \le 9)$ or giving $P(Y \le 7) = 0.0991$ or $P(Y > 9) = 0.0110$ for a CP method			
	(may be implied by probability = 0.0038 or correct CR)	r a civinculoa		
	1 st A1 for 0.0038 or CR: $Y \ge 9$			
	2nd M1 Dependent on the 1 st M1. For a correct statement i.e. significant/reject $H_0/9$ is in CR Follow through their probability/CR and their H_1			
	May be implied by a correct contextual statement.			
	Ignore comparison of probability with the significance level.			
	Do not allow non-contextual conflicting statements. 2 nd Alcso fully correct solution and correct contextual statement			
	2 Areso fully concer solution and concer contextual statement			
	B1 B1Correct hypotheses (same mark scheme as above)B0N(72, 2.88)b) (((5 - 72))			
	M1 $\frac{\pm (00.5 - 1/2)}{\sqrt{2.88}} (=\pm 3.24)$			
	$\sqrt{2.88}$			
	dM1A0cso (same mark scheme as above)			

Question Number	Scheme		
2(a)	List of all the <u>customers</u> (who eat in the restaurant)		
(b)	<u>Customer(s)</u> (who ate in the restaurant)	B1 (1)	
(c)	Advantage: more/total accuracy, unbiased		
(d)	Disadvantage: time consuming to obtain data and analyse it, expensive, difficult to ensure entire population is included Let $X =$ the number of customers who would like more choice on the menu.	B1 (2)	
	H ₀ : $p = 0.3$ H ₁ : $p > 0.3$	B1	
	<i>X</i> ~B(50,0.3)	M1	
	$P(X \ge 20) = 1 - P(X \le 19)$ or $CR P(X \le 20) = 0.9522$	M1	
	$= 1 - 0.9152$ $P(X \ge 21) = 0.0478$		
	$= 0.0848 X \ge 21$	A1	
	Do not reject $H_0/$ not significant/20 is not in critical region	M1	
	The percentage of <u>customers</u> who would like more <u>choice</u> on the menu is not more than Bill believes.		
	There is no evidence to reject <u>Bill's belief</u> .		
		Alcso	
		(6)	
		Total (10)	
	Notes		
(a)	 B1 Need the idea of list/register/database and 'customer(s)' Do not allow customer's opinions. 'All' may be implied. Do not allow a partial list e.g. 'A list of 50 customers' 		
(b)	B1 customer(s)		
(c)	If not labelled, assume the response refers to a census. $1^{st} B1$ is for the advantage and $2^{nd} B1$ is for the disadvantage.		
(d)	B1 need both hypotheses with p M1 using B(50,0.3) M1 for $1-P(X \le 19)$ or		
	$P(X \le 20) = 0.9522 \text{ or } P(X \ge 21) = 0.0478$ leading to a critical region $X > k$ of	or $X \ge \mathbf{k}$	
	A1 awrt 0.0848 or critical region $X \ge 21$ or $X \ge 20$ M1 a correct conclusion for their probability. May be implied by a correct contextual conclusion. A1 a correct contextual conclusion for their hypotheses and a fully correct solution with no errors seen. Must mention 'customers' and 'choice' <u>or</u> 'Bill' and 'belief'.		
	NB P(<i>X</i> =20) can score B1M1M0A0M0A0 NB normal approximation gives 0.082(457) and loses all A marks		

Question Number		Schen	ıe	Marks
2(a)	Only 2	outcomes Heads and Tails oe		
	Consta	nt probability of spinning a Head /	Tail oe	
	Coin is	spun a fixed number of times oe		
	Each s	oin of the coin is independent oe		B1 B1
				(2)
(b)	$T \sim B(6$	5, 0.5)		
	$P(T \le 5)$	$(5) - P(T \le 4) = 0.9844 - 0.8906$	or $6\left(\frac{1}{2}\right)^5\left(\frac{1}{2}\right)$ oe	M1
		$= 0.09375 \text{ or } \frac{3}{32} \text{ oe}$	awrt 0.0938	A1
		52		(2)
(c)	P(T=4	$4,5,6) = 1 - P(T \le 3)$		M1
	`	= 1 - 0.6563		
		$= 0.3437$ or $\frac{11}{32}$	awrt 0.344	A1
				(2)
(d)	P(H = 3)	$(3,4,5,6) = 1 - P(H \le 2)$		B1M1d
		= 1 - 0.8306		
		$= 0.1694 \text{ or } \frac{347}{2048}$	awrt 0.169	A1
				(3)
		Note	8	Total 9
(a)	B1 A correct statement – does not need to be in context B1 A second correct statement in context include coin or heads or tails(do not allow H and T) or spins/flip oe.			
(b)	M1 [wi	riting or using B(6, 0.5) and writing	g or using $P(T \le 5) - P(T \le 4)$] or $[6(\frac{1}{2})]$	$- \int_{0}^{6} \mathbf{oe}$]
(c)	M1 for	realising they need find $P(T = 4, 5)$	or 6) eg $1 - P(T \le 3)$ or $P(T \ge 4)$	
(d)	B1	writing/using B(6, 0.25) and $P(H \ge 3)$ oe	writing/using B(6, 0.75) and P($T \le 3$	3)
			dep on B1	
	M1d	dep on B1 for $1 - P(H \le 2)$	$(0.25)^6 + 6(0.75)(0.25)^5$	
			$+15(0.75)^{2}(0.25)^{4}+20(0.25)^{4}$	$(0.75)^3 (0.25)^3$
	A1	awrt 0.169	awrt 0.169	
	NB Only accept correct use of H and T in the probability statement unless their variable is correctly defined			heir variable is
	NB awrt 0.169 with no incorrect working gains B1M1A1			

Question Number	Scheme		Marks	
	Allow any letter instead of X or c for this question			
1 (a)	X ~ B(25, 0.2)	M1 Writing or using B(25,0.2)or B(25,1/5) [allow Po(5)] May be written in full or implied by a correct CR (allow written as a probability statement)	M1	
	$[P(X \ge 9) =] 0.0468$ $[P(X \le 1) =] 0.0274$	1 st A1 both awrt 0.0468 and awrt 0.0274 seen.	A1	
	$\begin{array}{c} 1 \\ \hline X = \begin{bmatrix} 0 \le \end{bmatrix} \\ X \le 1 \end{array}$	2nd A1 $X \le 1$ or $X < 2$ or $0 \le X \le 1$ or [0,1] or 0,1 or equivalent statements. $X \le c$ and $c = 1$	A1	
	$9 \le X \ [\le 25]$	3rd A1d dependent on seeing a probability from the B(25, 0.2) and $X \ge 9$ or $X > 8$ or $9 \le X \le 25$ or 9,10,11,12,13,14,15,16,17,18,19,20,21,22, 23,24,25 or [9,25] or equivalent statements. $X \ge c$ and $c = 9$	A1d	
	NB These two final 2 A marks must be for statements with "X" only(or list) – not in probability statements or the B(25, 0.2) is seen and they either have both CR correct but we probability statements or the CR is written as $1 \ge X \ge 9$ they get A1 A0 for final 2 marks			
(b)	H ₀ : $p = 0.2$ H ₁ : $p < 0.2$	B1 both hypotheses with p or π and clear which is H ₀ and which is H ₁	B1	
	$P(X \le 6) = 0.1034 \text{ or } CR X \le 5$	1 st M1 writing or using B(50, 0.2) and writing or using P($X \le 6$) or P($X \ge 7$) on its own. May be implied by a correct CR 1 st A1 awrt 0.103 Allow CR $X \le 5$ or $X \le 6$	M1	
	Insufficient evidence to reject H ₀ , Accept H ₀ , Not significant. 6 does not lie in the Critical region.	or if not using CR allow awrt 0.897. 2nd M1 dependent on previous M being awarded. A correct statement (do not allow if there are contradicting non-contextual statements). ft their Prob/CR compared with 0.05/6/(0.95 if using 0.8979). Do not follow through their hypotheses	M1d	
	No evidence that increasing the batch size has reduced the percentage of broken pots (oe) or evidence that there is no change in the percentage of broken pots (oe)	2 nd A1cso Conclusion must contain the words reduced/ no change/not affect oe number/percentage/proportion/ probability oe, and pots. All previous marks must be awarded for this mark to be awarded. Do not allow the potters claim /belief is wrong/true NB Correct contextual statement on its own scores M1A1	A1cso (5)	
			(Total 9)	

Question Number	Scheme		Marks
2(a)		notes	
	$X \sim B(30, 0.25)$	B1: using B(30, 0.25)	B1
	$P(X \le 10) - P(X \le 4) = 0.8943 - 0.0979$	M1: using $P(X \le 10) - P(X \le 4)$ or $P(X \ge 5) - P(X \ge 11)$ oe	M1 A1
	= 0.7964	A1: awrt 0.796	
	NB a correct answer gains full marks		

(b)	$H_0: p = 0.25$ $H_1: p < 0.25$	B1: Both hypotheses correct, labelled H_0 or NH or H_n and H_1 or AH or H_a , must use <i>p</i> or <i>p</i> (<i>x</i>) or π	B1
	B(15, 0.25)	M1: for using B(15, 0.25)	
	$P(X \le 1) = 0.0802$	A1: awrt 0.0802 or CR $X \le 1$ (allow P($X \ge 2$) = 0.9198)	M1 A1
	NB: Allow M1 A1 for a correct CR with no	incorrect working	
	Reject H ₀ or Significant or 1 lies in the critical region	M1: A correct statement – do not allow contradictory non contextual statements. Follow through their Probability/CR (for 1 or 2 tail test). If no H ₁ given then M0. Ignore their comparison. For a probability < 0.5, statement must be correct compared to 0.1 for 1 tail test and 0.05 for 2 tailed test or if the probability > 0.5, statement must be correct compared to 0.9 for 1 tail test and 0.95 for 2 tailed test.	dM1 A1cso
	There is evidence that the radio <u>company's</u> claim is true.	A1: cso (all previous marks awarded) and a correct statement containing the	
	Or	word company if writing about the	
	The new transmitter will reduce the	claim	
	proportion of houses unable to receive radio	or radio if full context.	