

Mark Scheme (Results)

January 2014

Pearson Edexcel International Advanced Level

Statistics 1 (WST01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code IA037873
All the material in this publication is copyright
© Pearson Education Ltd 2014

www.yesterdaysmathsexam.com

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

www.yesterdaysmathsexam.com

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question	www.yesterdaysmathsexam.com Scheme	Marks	
Number	Gonemic	Warks	
1.(a)	$S_{cs} = 380 - \frac{111 \times 21}{6} = -8.5$ o.e. $S_{ss} = 79 - \frac{21^2}{6} = 5.5$ o.e.	M1A1	
	$S_{ss} = 79 - \frac{21^2}{6} = 5.5$ o.e.	A1	
(b)	$r = \frac{S_{cs}}{\sqrt{S_{cc}S_{ss}}} = \frac{-8.5}{\sqrt{321.5 \times 5.5}} = -0.20214$ awrt -0.202	M1A1	(3)
(c)	No evidence of, or weak, correlation (between cost and satisfaction) from data <u>or</u> evidence of negative correlation. [Allow r close to zero or $r < 0$]	B1ft,	
	Poor basis for a decision, Brad is wrong or equivalent, e.g. "paying more doesn't give a better service"	dB1ft	
		Total 7	(2)
	Notes	10001	
(a)	M1 for a correct expression for S_{cs} or S_{ss}	•	
	1st A1 for $S_{cs} = -8.5$ (Condone $S_{xy} =$) accept $-\frac{17}{2}$		
	$2^{\text{nd}} \text{ A1 for } S_{ss} = 5.5$ (Condone S_{yy} or even $S_{xx} =$) accept $\frac{11}{2}$		
(b)	M1 for attempt at correct formula, values must be substituted. Must have their S_{cs} , S_{ss} and given S_{cc} in the correct places. Condone missing "-" Award M1A0 for awrt -0.20 or even -0.2 with no expression seen M0 for $\frac{380}{\sqrt{79\times2375}}$ or $\frac{380}{\sqrt{79\times321.5}}$		
(c)	If $ r > 1$ score B0B0 in (c) 1 st B1 for a reason: no or weak (or negative) correlation (between cost and satisfaction) This may be implied by a contextual statement e.g. "as he pays more satisfaction decreases"		
	2 nd d B1 dependent on suitable reason for saying that Brad's decision is wrong	g/bad/poor e	tc
ft	If $0.5 < r \le 1$ allow the following ft 1^{st} B1 for positive correlation 2^{nd} dB1 for Brad's decision is a good one		

Question Number	Scheme	Marks
2. (a)	$a = \frac{77 \times 1 + 82 \times 2 + \dots}{15} = \frac{1385}{15} = \frac{277}{3} = 92.\dot{3}$ awrt 92.3	M1 A1
	$b = [89.5 +] \frac{7.5 - 5}{9 - 5} (94.5 - 89.5) = 92.625$ awrt 92.6	M1 A1
	$c = \frac{1 \times 77^2 + 2 \times 82^2 \dots}{15} - 92.\dot{3}^2 = 64.88\dots$ awrt 64.9	M1 A1
(b)	Median in 2010 (92.6 kg) > Median in 1990 (82.0 kg) Mean in 2010 (92.3 kg) > Mean in 1990 (83.0 kg) Rugby coach's claim supported. either dep	(6) B1 dB1 (2)
	Notes	Total 8
(a)	Correct answer only in part (a) scores full marks and answers must be decimal:	s not fractions
(4)	NB mid points are: 77, 82, 87, 92, 97, 102, 107	
а	1 st M1 for attempt to use correct midpoints in an expression for mean.	
b From above	Accept $\frac{\sum fx}{15}$ with at least 3 correct fx products seen and intention to $\frac{\text{or}}{15}$ 1300 < $\frac{1}{5}$ for awrt 92.3 (don't insist on 3 sf) 2nd M1 for $\frac{7.5-5}{9-5}$ (94.5-89.5) or $\frac{8-5}{9-5}$ (94.5-89.5) May see them come down from the top of the interval, look out for $\frac{94.5-1}{9-5}$ (94.5-89.5) or $\frac{9-8}{9-5}$ (94.5-89.5) Correct end point and [] not needed for M1 i.e. M1 is for correct fraction x correct awrt 92.6 For $n+1$ case (gives 93.25 so allow awrt 93.3) Don The correct answer must not follow from an incorrect expression.	ect class width
(b)	3 rd M1 for a fully correct expression ft their a e.g. $\frac{128855}{15} - a^2$ or $\frac{2577}{3}$ 3 rd A1 for awrt 64.9 (Accept $s^2 = 69.5238$ or awrt 69.5) Don't insist on 1 st B1 for a suitable reason i.e. identifying an increase in mean or median Ignore any comment about variance. 2 nd dB1 dependent on a suitable reason for stating that the coach's claim is so Allow these marks provided both their $a > 83.0$ and their $b > 82.0$ If it is NOT the case that both $a > 83.0$ and $b > 82.0$ then allow a ft scored for both a and b in part (a)	3 sf

Question Number	Scheme	Marks	
3. (a)	800 -	B2/1/0 -1eeoo	
(b)	'Negative correlation' or 'as t increases, p decreases' or 'Points close to a straight line' or 'linear correlation'	B1	
(c)	$b = \frac{S_{tp}}{S_{tt}} = \frac{-6080}{254} (= -23.937)$ $a = \overline{p} - b\overline{t} = 470 + 23.937 \times 19.5 = 936.7717$	(1) M1 M1, A1	
	p = 936.7717 - 23.937t awrt $p = 937 - 23.9t$	A1 (4)	
(d)	$p = 937.7717 - 23.937 \times 20, = 458.0315$ awrt (£) 458	M1, A1 (2)	
(e)	Extrapolation or 39 (or it's) outside the range of data (or table) BUT B0 if they calculate p and say this is outside the range of the data Not a good decision or the prediction would be unreliable	B1 dB1 (2) Total 11	
	Notes		
(a)	1 st B1 for at least 7 points plotted correctly (i.e. within (not on) the circles on the overlay) 2 nd B1 for all 8 points plotted correctly (i.e. within (not on) the circles on the overlay)		
(b)	B1 for a suitable comment conveying the idea of linear correlation NB "negative relationship" or "skew" scores B0 but apply ISW if a correct ans. is seen		
(c)	1^{st} M1 for a correct expression for gradient b or awrt -24 Allow fractions e.g. $-\frac{3040}{127}$ 2^{nd} M1 for a correct method for a . Follow through their value for b Allow sign slip on b only if a correct formula for a is seen 1^{st} A1 for a = awrt 937 2^{nd} A1 for a correct equation in p and t (not x,y) with a = awrt 937 and b = awrt -23.9 No fractions		
(d)	M1 for substituting $t = 20$ in their equation A1 for awrt 458 [NB use of 3sf for a and b will give awrt £459 but scores A0 here]		
(e)	1 st B1 for a suitable reason that would lead to stating that the decision was poor/bad/wrong Stating that 39 is an "outlier" is B0 2 nd dB1 dependent on a suitable reason and stating, or implying, it is <u>not</u> a sensible decision		

Question Number	Scheme	Marks
4. (a)	$a + \frac{1}{10} + \frac{1}{5} + \frac{3}{10} + b = 1$ or $a + b = \frac{2}{5}$	M1
	$-a+0+\frac{1}{5}+\frac{6}{10}+3b=\frac{9}{5}$ or $3b-a=1$	M1
	Solving gives $a = \frac{1}{20}, b = \frac{7}{20}$	M1A1
		(4)
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1B1 -1eeoo
	P(V < 2.5) F(2) 13	(2)
(c)	$P(X < 2.5) = F(2) = \frac{13}{20} \text{ or } 0.65$	B1 (1)
(d)	$E(X^2) = 1 \times 0.05 + 0 + 1 \times 0.2 + 4 \times 0.3 + 9 \times 0.35 \left[= 4.6 \text{ or } \frac{23}{5} \right]$	M1
	$Var(X) = E(X^2) - 1.8^2$ [= 1.36 or $\frac{34}{25}$]	M1
	$Var(3-2X) = (-2)^2 Var(X)$	M1
	$=4\times1.36=5.44$ 5.44	A1 (4)
		(4) Total 11
	Notes	
(a)	1^{st} M1 for a correct linear equation in a and b based on sum of probs. = 1 2^{nd} M1 for an attempt at a second linear equation in a and b based on $E(X) = 1.8$ Allow	1:
	3 rd M1 for an attempt to solve their 2 linear equations. Must reduce to a linear	equation in
	one variable. May be implied by 1^{st} M1 and 2^{nd} M1 followed by correct dependent on all 3 Ms scored for $a = 0.05$ and $b = 0.35$ or exact fraction	
ALT	State a and b correctly 1^{st} M1 for explicitly showing that sum of probs. = 1 2^{nd} M1 for explicitly showing that $E(X) = 1.8$ 3^{rd} M1 for an overall comment "therefore $a = \dots$ and $b = \dots$ " No comment loses this mark and A1	
(b)	1^{st} B1 for at least 4 correct values for $F(x)$ 2^{nd} B1 for all values of $F(x)$ correct Condone no $F(x)$ or even $P(x)$ if in a correct table. If not in a table they must state $F(-1) = 0.05$ etc	
(d)	1^{st} M1 for an attempt to find E(X^2). At least 3 correct terms or sight of 4.6 or co	errect Var(X)
	NB $\frac{4.6}{5}$ loses the M1 for E(X^2) and the next M1 for Var(X) too	
	2^{nd} M1 for an attempt to find $\text{Var}(X)$. Follow through their "4.6" but must see -3^{rd} M1 for correct use of $\text{Var}(aX + b)$ formula. Condone -2^2 if this later become	-1.8 ² or 1.36 les +4
	A1 for 5.44 Accept $\frac{136}{25}$ or exact equivalent	

Question Number	Scheme	Marks
5. (a)	$\begin{array}{ c c c c c c }\hline S & & & & & & & & & & & & & & & & & & $	B1 B1 B1 B1
(b)	F and S or R and S	B1 (4) (1)
(c)	$P\left(\left[F \cup R \cup S\right]'\right) = \frac{33}{100} \text{ or } \underline{\textbf{0.33}}$	B1
(d)	$P([F \cup R \cup S]') = \frac{33}{100} \text{ or } \underline{0.33}$ $P(R) = \frac{30 + 12}{100} = \frac{21}{50} \text{ or } \underline{0.42}$	(1) B1 (1)
(e)	$P(F \cup S) = \frac{30 + 25}{100} = \frac{11}{20} \text{ or } \underline{0.55}$ $\left[P(F \mid R)\right] = \frac{P(F \cap R)}{P(R)} = \frac{"0.30"}{"0.42"}$	B1 (1)
(f)	$[P(F R)] = \frac{P(F \cap R)}{P(R)} = \frac{"0.30"}{"0.42"}$	M1
	$=\frac{30}{42}$ or $\frac{5}{7}$ (o.e.)	A1
		(2) Total 10
(a)	Notes In the diagram do not treat a blank space as zero. Allow probabilities or integers 1^{st} B1 for 3 labelled loops and a box. The 33 is not required for any marks in (a) 2^{nd} B1 for $F \subset R$ or indicated by zeros	
	3^{rd} B1 for 30 and 12 correctly placed and $n(F) = 30$ and $n(F' \cap R) = 12$ 4^{th} B1 for <i>S</i> a separate loop, or indicated by zeros, and the 25	
(b)	 B1 for S a separate loop, or indicated by zeros, and the 25 B1 for a correct pair. If there is more than one pair then each pair must be correct. Do not allow P(F) etc or e.g. P(R∩S) = 0 	
(c),(d),(e)	B1 cao for each answer. Accept any exact equivalent (fractions or decimals) for the probabilities	
(f)	M1 ft their "30" and their answer to (d). For a correct ratio of their probabilities or a correct ratio expression and at least one correct probability. If num > den score M0	
	A1 for $\frac{5}{7}$ or any exact equivalent. Must be proper fraction not $\frac{0.3}{0.42}$	
	NB $\frac{0.3}{0.42} = 0.714$ is A0 since it is not a proper fraction and the answer is r	not exact
	Condone $P(R F) = \frac{30}{42}$ and allow M1A1 for the correct answer	
	but $P(R \mid F) = \frac{P(R \cap F)}{P(F)} = \frac{0.30}{0.42} = \frac{30}{42}$ is M0A0	

Question Number	Scheme	Marks
6. (a)	$[X \sim N(1.04, 0.17^2)]$	
	$P(X < 1) = P\left(Z < \frac{1 - 1.04}{0.17}\right)$	M1
	= P(Z < -0.23529)	
	=1-0.5948=0.4052 (Accept 0.405-0.407)	M1A1 (3)
(b)		(3)
	$\frac{1-\mu}{0.17} = -1.6449$	M1 B1
	$\mu = 1 + 1.6449 \times 0.17 = 1.2796$ awrt 1.28	A1
(c)	$P(S < 1) = 0.01 \qquad \left[S \sim N(1.04, \sigma^2) \right]$	(3)
(C)		MIDI
	$\frac{1-1.04}{\sigma} = -2.3263$	M1B1
	$\sigma = \frac{0.04}{2.3263} = 0.0171946$ awrt 0.0172	A1
		(3) Total 9
	Notes	Total
(a)	1 st M1 for attempting to standardise with 1, 1.04 and 0.17 Allow \pm 2 nd M1 for attempting $1-p$ where $(0.5 A1 for answers in the range 0.405 ~ 0.407 (Calc gives 0.4069902)$	
(b)	Allow any alternative letters to μ and σ in parts (b) and (c) M1 for an attempt to standardise (allow ±) with 1, 0.17 and μ and set = ± any z value (z > 1) B1 for z = ± 1.6449 (or better. Calc gives 1.6448536) used as a z value. Do not allow 1 – 1.6449 [May be implied by answer that rounds to 1.2796] A1 for awrt 1.28 (can be scored for using a z value of 1.64 or 1.65) Must follow from correct working but a range of possible z values are OK	
Ans only	If answer is awrt 1.28 score M1B0A1 (unless of course $z = 1.6449$ seen) but awrt 1.2796 scores 3/3	
(c)	M1 for an attempt to standardise with 1, 1.04 and σ and set = \pm any z value ($ z > 2$) B1 for $z = \pm 2.3263$ (or better) (Calc gives 2.3263478) used as a z value If B0 scored in (b) for using a value in [1.64, 1.65] but not 1.6449 or better, allow awrt 2.32 or 2.33 here A1 for awrt 0.0172 Must follow from correct working but a range of possible z values are OK	
Ans only	If answer is awrt 0.0172 score M1B0A1 (unless of course $z = 2.3263$ or better is seen) If B1 scored in (b) and $z = 2.3263$ or better is <u>not</u> seen here then require an answer in the range $0.17194 < \sigma < 0.17195$ to award $3/3$	

	www.yesterdaysmathsexam.com		
Question Number	Scheme	Marks	
7. (a)	$[P(M \mid L) =] \frac{P(M \cap L)}{P(L)} = \frac{\frac{3}{5} \times \frac{1}{5}}{\frac{3}{10}}$	M1	
	$= \underline{0.40} \text{(o.e)}$	A1	
	$P(I \cap F) = \frac{3}{3} - \frac{3}{3} \times \frac{1}{3} = 3$	(2)	
(b)	$x = [P(L F)] = \frac{1(L+1)}{P(F)} = \frac{10-5\times5}{1-\frac{3}{5}} \text{ or } \frac{3}{5} \times \frac{1}{5} + \left(1-\frac{3}{5}\right) \times x = \frac{3}{10}$	M1	
	$x = [P(L F)] = \frac{P(L \cap F)}{P(F)} = \frac{\frac{3}{10} - \frac{3}{5} \times \frac{1}{5}}{1 - \frac{3}{5}} \text{ or } \frac{3}{5} \times \frac{1}{5} + \left(1 - \frac{3}{5}\right) \times x = \frac{3}{10}$ $x = \frac{0.3 - 0.12}{0.40} \text{ or } 0.4x = 0.3 - 0.12$	M1	
	x = 0.45 (o.e.)	A1	
(c)	$[P(M \cap R)] = 0.6 - P(M \cap L)$ or $0.6 \times (1 - 0.2)$	(3) M1	
	$[P(M \cap R)] = 0.6 - P(M \cap L) \qquad \underline{\text{or}} \qquad 0.6 \times (1 - 0.2)$ $= \underline{0.48} \text{(o.e.)}$	A1	
		(2)	
(d)	P(one is left handed and the other right handed) = $2 \times \frac{3}{10} \times \frac{7}{10}$, = $\frac{21}{50}$ or 0.42	M1, A1	
		(2) Total 9	
	Notes		
(a)	M1 for a fully correct ratio e.g. $\frac{0.12}{0.30}$ or a correct ratio expression and one cor	rect prob.	
	If numerator > denominator then M0		
	A1 for 0.40 or any exact equivalent		
(b)	1 st M1 for an equation for x with at least 2 of : $\left(\frac{3}{5} \times \frac{1}{5}\right)$ or $\frac{3}{10}$ or $\left(1 - \frac{3}{5}\right)$ correct	rt .	
	BUT $\frac{\frac{2}{5} \times \frac{3}{10}}{\frac{2}{2}}$ is M0 or allow M1 for $P(L \cap F) = 0.18$		
	$\frac{2}{5}$ 2 nd M1 for a fully correct expression for $x =$ or $0.4x =$		
	A1 for 0.45 or any exact equivalent		
(c)	M1 for a correct expression with 0.6 follow through their $P(M \cap L) = 0.12$		
	A1 for 0.48 or any exact equivalent		
(d)	M1 for a fully correct expression including the 2. Allow $1 - 0.3$ instead of 0	0.7	
	A1 for 0.42 or any exact equivalent		
	NB You may see Venn or tree diagram drawn but marks are given when	values are	
	used in correct expressions as above		
	M (2.8) 0		
	(0.48 (0.12) 0.18) 3 M		
	0.22 0.2 6 (0.55)		
	2 F (0.35) R		
	x L		

Question Number	Scheme	Marks
8. (a)	Total area of bars = 400 small squares	B1
5.7 (4.7)	Area required = $40 \times 4 + 20 \times 6 + 6 \times 10 = 340$ small squares	B1
	No of staff = "340" $\times \frac{40}{"400}$ ", = 34	M1, A1
		(4)
(b)	Median is $(2+)\frac{4}{12} \times 3 = 3$ or $(5-)\frac{8}{12} \times 3 = 3$	M1A1
(c)	Mean is $\frac{\sum fx}{40} = \frac{1 \times 16 + 3.5 \times 12 + 7.5 \times 6 + 15 \times 4 + 25 \times 2}{40} = \frac{213}{40} = 5.325$	(2) M1,A1
(d)	(Positive) skew but not negative <u>or</u> there are outliers (which affect mean) Median	(2) B1 dB1 (2)
		Total 10
	Notes	
(a)	1st B1 for a correct attempt to calculate the whole area (400 small squares of Accept 160+120+60+40+20 or 80+60+30+20+10=200 or frequencies:16 + or cm² 6.4 + 4.8 + 2.4 + 1.6 + 0.8 = 16 or key: 10 small squares = 2nd B1 for a correct attempt to calculate required area (Accept 160 + 120 + or frequencies: 16 + 12 + 6 or cm² 6.4 + 4.8 + 2.4 = 13.6 M1 for a correct expression using their 400 and their 340 A1 for 34 If using frequencies they get M1A1 together when 34 is seen. An answer of 34 will usually score 4/4 unless there is incorrect work	12 + 6 + 4 + 2 1 person (o.e.) 60)
(b)	NB frequencies are: 16, 12, 6, 4, 2 and mid-points are: 1, 3.5, 7.5, 15, 25 M1 for $\frac{20-16}{12} \times (5-2)$ or $\frac{20.5-16}{12} \times (5-2)$ or similar expressions working down Look out for methods based on areas should have 1^{st} bar $+\frac{1}{3}(2^{nd}$ bar) if working up or $(5^{th} + 4^{th} + 3^{rd}$ bars) $+\frac{2}{3}(2^{nd}$ bar) if working down. E.g. $16 + 4(x-2) = 20$ A1 for 3 or (if using $n + 1$ accept 3.125 or awrt 3.13)	
(c)	M1 for an attempt at $\frac{\sum fx}{40}$ where at least 3 correct products of $\sum fx$ are see $\frac{\text{or }\sum fx}{1} = \text{awrt } 200 \text{ (1 sf)}$ A1 for 5.325 or any exact equivalent e.g. $\frac{213}{40}$ and accept 5.33 Accept 5 h 19 mins or 5h 20 mins	een
(d)	1 st B1 for a reason e.g. that the data is skewed Allow mention of "extreme values" or "outliers" Do not allow for negative skew or "anomalies"	
SC	2 nd dB1 dependent on mentioning skew for choosing median Allow B0B1 for "Choose median since the data has negative skew"	o.e.

www.yesterdaysmathsexam.com

www.yesterdaysmathsexam.com