www • yesterdaysmathsexam. com

Question	Scheme	Marks	AOs
5(a)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=20 x^{3}-72 x^{2}+84 x-32$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & \hline 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
(ii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=60 x^{2}-144 x+84$	A1ft	1.1b
		(3)	
(b)(i)	$x=1 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=20-72+84-32$	M1	1.1b
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ so there is a stationary point at $x=1$	A1	2.1
	Alternative for (b)(i)		
	$20 x^{3}-72 x^{2}+84 x-32=4(x-1)^{2}(5 x-8)=0 \Rightarrow x=\ldots$	M1	1.1b
	When $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ so there is a stationary point	A1	2.1
(b)(ii)	Note that in (b)(ii) there are no marks for just evaluating $\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{x=1}$		
	E.g. $\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{x=0.8}=\ldots\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{x=1.2}=\ldots$	M1	2.1
	$\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{x=0.8}>0, \quad\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right)_{x=1.2}<0$ Hence point of inflection	A1	2.2a
		(4)	
	Alternative 1 for (b)(ii)		
	$\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{x=1}=60 x^{2}-144 x+84=0$ (is inconclusive) $\left(\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}\right)=120 x-144 \Rightarrow\left(\frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}\right)_{x=1}=\ldots$	M1	2.1
	$\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{x=1}=0 \quad$ and $\quad\left(\frac{\mathrm{d}^{3} y}{\mathrm{~d}^{3}}\right)_{x=1} \neq 0$ Hence point of inflection	A1	2.2a
	Alternative 2 for (b)(ii)		
	E.g. $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{x=0.8}=\ldots\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{x=1.2}=\ldots$	M1	2.1
	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{x=0.8}<0, \quad\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)_{x=1.2}<0$ Hence point of inflection	A1	2.2a
(7 marks)			
Notes			
(a)(i) M1: $x^{n} \rightarrow$ A1: $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ (a)(ii)	for at least one power of x $0 x^{3}-72 x^{2}+84 x-32$		

Question	Scheme	Marks	AOs
$\mathbf{1 4}$	$y=\frac{x-4}{2+\sqrt{x}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2+\sqrt{x}-(x-4) \frac{1}{2} x^{-\frac{1}{2}}}{(2+\sqrt{x})^{2}}$	M 1	2.1
	$=\frac{2+\sqrt{x}-(x-4) \frac{1}{2} x^{-\frac{1}{2}}}{(2+\sqrt{x})^{2}}=\frac{2+\sqrt{x}-\frac{1}{2} \sqrt{x}+2 x^{-\frac{1}{2}}}{(2+\sqrt{x})^{2}}=\frac{2 \sqrt{x}+\frac{1}{2} x+2}{\sqrt{x}(2+\sqrt{x})^{2}}$	M1	1.1 b
	$=\frac{x+4 \sqrt{x}+4}{2 \sqrt{x}(2+\sqrt{x})^{2}}=\frac{(2+\sqrt{x})^{2}}{2 \sqrt{x}(2+\sqrt{x})^{2}}=\frac{1}{2 \sqrt{x}}$	A1	2.1
	Notes	(4)	

M1: Attempts to use a correct rule e.g. quotient or product (\& chain) rule to achieve the following forms Quotient : $\frac{\alpha(2+\sqrt{x})-\beta(x-4) x^{-\frac{1}{2}}}{(2+\sqrt{x})^{2}}$ but be tolerant of attempts where the $(2+\sqrt{x})^{2}$ has been incorrectly expanded

$$
\text { Product: } \alpha(2+\sqrt{x})^{-1}+\beta x^{-\frac{1}{2}}(x-4)(2+\sqrt{x})^{-2}
$$

Alternatively with $t=\sqrt{x}, \quad y=\frac{t^{2}-4}{2+t} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \times \frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{2 t(2+t)-\left(t^{2}-4\right)}{(2+t)^{2}} \times \frac{1}{2} x^{-\frac{1}{2}}$ with same rules
A1: Correct derivative in any form. Must be in terms of a single variable (which could be t)
M1: Following a correct attempt at differentiation, it is scored for multiplying both numerator and denominator by \sqrt{x} and collecting terms to form a single fraction. It can also be scored from $\frac{u v^{\prime}-v u^{\prime}}{v^{2}}$ For the $t=\sqrt{x}$, look for an attempt to simplify $\frac{t^{2}+4 t+4}{(2+t)^{2}} \times \frac{1}{2 t}$
A1: Correct expression showing all key steps with no errors or omissions. $\frac{\mathrm{d} y}{\mathrm{~d} x}$ must be seen at least once

Question	Scheme	Marks	AOs
$\mathbf{1 4}$	$y=\frac{x-4}{2+\sqrt{x}} \Rightarrow y=\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{2+\sqrt{x}}=\sqrt{x}-2$	M 1	2.1
	$\frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2 \sqrt{x}}$	A 1	1.1 b
		M 1	1.1 b
		A 1	2.1
	Notes	$\mathbf{(4)}$	

M1: Attempts to use difference of two squares. Can also be scored using
$t=\sqrt{x} \Rightarrow y=\frac{t^{2}-4}{t+2} \Rightarrow y=\frac{(t+2)(t-2)}{t+2}$
A1: $y=\sqrt{x}-2$ or $y=t-2$
M1: Attempts to differentiate an expression of the form $y=\sqrt{x}+b$
A1: Correct expression showing all key steps with no errors or omissions. $\frac{\mathrm{d} y}{\mathrm{~d} x}$ must be seen at least once

Question	Scheme	Marks	AOs
2(a)	(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-2-12 x^{-\frac{1}{2}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=2+6 x^{-\frac{3}{2}}$	B1ft	1.1b
		(3)	
(b)	Substitutes $x=4$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \times 4-2-12 \times 4^{-\frac{1}{2}}=\ldots$	M1	1.1b
	Shows $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and states "hence there is a stationary point" oe	A1	2.1
		(2)	
(c)	Substitutes $x=4$ into their $\frac{\mathrm{d}^{2} y}{\mathrm{dx} x^{2}}=2+6 \times 4^{-\frac{3}{2}}=(2.75)$	M1	1.1b
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2.75>0$ and states "hence minimum"	A1 ft	2.2a
		(2)	
(7 marks)			

(a)(i)

M1: Differentiates to $\frac{\mathrm{d} y}{\mathrm{~d} x}=A x+B+C x^{-\frac{1}{2}} \quad \mathbf{A 1}: \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-2-12 x^{-\frac{1}{2}} \quad$ (Coefficients may be unsimplified) (a)(ii)

B1ft: Achieves a correct $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ for their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (Their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ must have a negative or fractional index)
(b)

M1: Substitutes $x=4$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and attempts to evaluate. There must be evidence $\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=4}=\ldots$ Alternatively substitutes $x=4$ into an equation resulting from $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ Eg. $\frac{36}{x}=(x-1)^{2}$ and equates
A1: There must be a reason and a minimal conclusion. Allow \checkmark, QED for a minimal conclusion Shows $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and states "hence there is a stationary point" oe
Alt Shows that $x=4$ is a root of the resulting equation and states "hence there is a stationary point"
All aspects of the proof must be correct including a conclusion
(c)

M1: Substitutes $x=4$ into their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and calculates its value, or implies its sign by a statement such as when $x=4 \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}>0$. This must be seen in (c) and not labelled (b). Alternatively calculates the gradient of C either side of $x=4$ or calculates the value of y either side of $x=4$.
A1ft: For a correct calculation, a valid reason and a correct conclusion. Ignore additional work where candidate finds $\frac{\mathrm{d}^{2} y}{\mathrm{dx} x^{2}}$ left and right of $x=4$. Follow through on an incorrect $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ but it is dependent upon having a negative or fractional index. Ignore any references to the word convex. The nature of the turning point is "minimum".
Using the gradient look for correct calculations, a valid reason.... goes from negative to positive, and a correct conclusion ...minimum.

Question	Scheme	Marks	AOs
5	$\frac{\mathrm{d} y}{\mathrm{~d} \theta}=\frac{(2 \sin \theta+2 \cos \theta) 3 \cos \theta-3 \sin \theta(2 \cos \theta-2 \sin \theta)}{(2 \sin \theta+2 \cos \theta)^{2}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Expands and uses $\sin ^{2} \theta+\cos ^{2} \theta=1$ at least once in the numerator or the denominator or uses $2 \sin \theta \cos \theta=\sin 2 \theta$ in $\quad \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} \theta}=\frac{\ldots}{\ldots \ldots . . . C \sin \theta \cos \theta}$	M1	3.1a
	Expands and uses $\sin ^{2} \theta+\cos ^{2} \theta=1$ the numerator and the denominator AND uses $2 \sin \theta \cos \theta=\sin 2 \theta$ in $\quad \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} \theta}=\frac{P}{Q+R \sin 2 \theta}$	M1	2.1
	$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} \theta}=\frac{3}{2+2 \sin 2 \theta}=\frac{3 / 2}{1+\sin 2 \theta}$	A1	1.1b

(5 marks)

Notes:

M1: For choosing either the quotient, product rule or implicit differentiation and applying it to the given function. Look for the correct form of $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ (condone it being stated as $\frac{\mathrm{d} y}{\mathrm{~d} x}$) but tolerate slips on the coefficients and also condone $\frac{\mathrm{d}(\sin \theta)}{\mathrm{d} \theta}= \pm \cos \theta$ and $\frac{\mathrm{d}(\cos \theta)}{\mathrm{d} \theta}= \pm \sin \theta$
For quotient rule look for $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=\frac{(2 \sin \theta+2 \cos \theta) \times \pm \ldots \cos \theta-3 \sin \theta(\pm \ldots \cos \theta \pm \ldots \sin \theta)}{(2 \sin \theta+2 \cos \theta)^{2}}$
For product rule look for
$\frac{\mathrm{d} y}{\mathrm{~d} \theta}=(2 \sin \theta+2 \cos \theta)^{-1} \times \pm \ldots \cos \theta \pm 3 \sin \theta \times(2 \sin \theta+2 \cos \theta)^{-2} \times(\pm \ldots \cos \theta \pm \ldots \sin \theta)$
Implicit differentiation look for $(\ldots \cos \theta \pm \ldots \sin \theta) y+(2 \sin \theta+2 \cos \theta) \frac{\mathrm{d} y}{\mathrm{~d} \theta}=\ldots \cos \theta$
A1: A correct expression involving $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ condoning it appearing as $\frac{\mathrm{d} y}{\mathrm{~d} x}$
M1: Expands and uses $\sin ^{2} \theta+\cos ^{2} \theta=1$ at least once in the numerator or the denominator OR uses $2 \sin \theta \cos \theta=\sin 2 \theta$ in $\quad \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} \theta}=$ \qquad
M1: Expands and uses $\sin ^{2} \theta+\cos ^{2} \theta=1$ in the numerator and the denominator AND uses
$2 \sin \theta \cos \theta=\sin 2 \theta$ in the denominator to reach an expression of the form $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=\frac{P}{Q+R \sin 2 \theta}$.
A1: Fully correct proof with $A=\frac{3}{2}$ stated but allow for example $\frac{3 / 2}{1+\sin 2 \theta}$
Allow recovery from missing brackets. Condone notation slips. This is not a given answer

Question	Scheme	Marks	AOs
11	$\frac{1+11 x-6 x^{2}}{(x-3)(1-2 x)} \equiv A+\frac{B}{(x-3)}+\frac{C}{(1-2 x)}$		
(a) Way 1	$1+11 x-6 x^{2} \equiv A(1-2 x)(x-3)+B(1-2 x)+C(x-3) \Rightarrow B=\ldots, C=\ldots$	M1	2.1
	$A=3$	B1	1.1 b
	Uses substitution or compares terms to find either $B=\ldots$ or $C=\ldots$	M1	1.1b
	$B=4$ and $C=-2$ which have been found using a correct identity	A1	1.1b
		(4)	
(a) Way 2	$\left\{\right.$ long division gives\} $\frac{1+11 x-6 x^{2}}{(x-3)(1-2 x)} \equiv 3+\frac{-10 x+10}{(x-3)(1-2 x)}$		
	$-10 x+10 \equiv B(1-2 x)+C(x-3) \Rightarrow B=\ldots, C=\ldots$	M1	2.1
	$A=3$	B1	1.1b
	Uses substitution or compares terms to find either $B=\ldots$ or $C=\ldots$	M1	1.1b
	$\begin{gathered} B=4 \text { and } C=-2 \text { which have been found using } \\ -10 x+10 \equiv B(1-2 x)+C(x-3) \end{gathered}$	A1	1.1b
		(4)	
(b)	$\mathrm{f}(x)=3+\frac{4}{(x-3)}-\frac{2}{(1-2 x)}\left\{=3+4(x-3)^{-1}-2(1-2 x)^{-1}\right\} ; x>3$		
	$\mathrm{f}^{\prime}(x)=-4(x-3)^{-2}-4(1-2 x)^{-2}\left\{=-\frac{4}{(x-3)^{-}}-\frac{4}{(1-2 x)^{2}}\right\}$	M1	2.1
	(${ }^{\text {a }}$ (${ }^{(x-3)^{2}}\left(\begin{array}{ll}(1-2 x)^{2}\end{array}\right\}$	A1ft	1.1b
	Correct $\mathrm{f}^{\prime}(x)$ and as $(x-3)^{2}>0$ and $(1-2 x)^{2}>0$, then $\mathrm{f}^{\prime}(x)=-(+\mathrm{ve})-(+\mathrm{ve})<0$, so $\mathrm{f}(x)$ is a decreasing function	A1	2.4
		(3)	
(7 marks)			
Notes for Question 11			
(a)			
M1: $\quad 1$(a) c \mathbf{W} 1	Way 1: Uses a correct identity $1+11 x-6 x^{2} \equiv A(1-2 x)(x-3)+B(1-2 x)+C(x-3)$ in a complete method to find values for B and C. Note: Allow one slip in copying $1+11 x-6 x^{2}$ Way 2: Uses a correct identity $-10 x+10 \equiv B(1-2 x)+C(x-3)$ (which has been found from long division) in a complete method to find values for B and C		
B1:	$A=3$		
M1: \quadA T a	Attempts to find the value of either B or C from their identity This can be achieved by either substituting values into their identity or by comparing coefficients and solving the resulting equations simultaneously		
A1: S	See scheme		
Note: ${ }^{\text {W }}$	Way 1: Comparing terms: $x^{2}:-6=-2 A ; \quad x: 11=7 A-2 B+C$; constant: $1=-3 A+B-3 C$ Way 1: Substituting: $x=3:-20=-5 B \Rightarrow B=4 ; x=\frac{1}{2}: 5=-\frac{5}{2} C \Rightarrow C=-2$		
Note:	Way 2: Comparing terms: $x:-10=-2 B+C$; constant: $10=B-3 C$ Way 2: Substituting: $x=3:-20=-5 B \Rightarrow B=4 ; x=\frac{1}{2}: 5=-\frac{5}{2} C \Rightarrow C=-2$		

Question	Scheme	Marks	AOs
3 (a)	Correct method used in attempting to differentiate $y=\frac{5 x^{2}+10 x}{(x+1)^{2}}$	M1	3.1 a
		$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x+1)^{2} \times(10 x+10)-\left(5 x^{2}+10 x\right) \times 2(x+1)}{(x+1)^{4}}$	oe
	Factorises/Cancels term in $(x+1)$ and attempts to simplify $\mathrm{d} x$	$\frac{(x+1) \times(10 x+10)-\left(5 x^{2}+10 x\right) \times 2}{(x+1)^{3}}=\frac{A}{(x+1)^{3}}$	A1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{10}{(x+1)^{3}}$	M1	2.1 b
(b)	For $x<-1$	A1	1.1 b
	Follow through on their $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{A}{(x+1)^{n}}, n=1,3$	(4)	

(a)

M1: Attempts to use a correct rule to differentiate Eg: Use of quotient (\& chain) rules on $y=\frac{5 x^{2}+10 x}{(x+1)^{2}}$ Alternatively uses the product (and chain) rules on $y=\left(5 x^{2}+10 x\right)(x+1)^{-2}$
Condone slips but expect $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=\frac{(x+1)^{2} \times(A x+B)-\left(5 x^{2}+10 x\right) \times(C x+D)}{(x+1)^{4}} \quad(A, B, C, D>0)$ or $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=\frac{(x+1)^{2} \times(A x+B)-\left(5 x^{2}+10 x\right) \times(C x+D)}{\left((x+1)^{2}\right)^{2}}(A, B, C, D>0)$ using the quotient rule or $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=(x+1)^{-2} \times(A x+B)+\left(5 x^{2}+10 x\right) \times C(x+1)^{-3} \quad(A, B, C \neq 0)$ using the product rule.

Condone missing brackets and slips for the M mark. For instance if they quote $u=5 x^{2}+10, v=(x+1)^{2}$ and don't make the differentiation easier, they can be awarded this mark for applying the correct rule. Also allow where they quote the correct formula, give values of u and v, but only have v rather than v^{2} the denominator.

Question	Scheme	Marks	AOs
12 (a)	$\mathrm{f}(x)=10 \mathrm{e}^{-0.25 x} \sin x$		
	$\Rightarrow \mathrm{f}^{\prime}(x)=-2.5 \mathrm{e}^{-0.25 x} \sin x+10 \mathrm{e}^{-0.25 x} \cos x$ oe	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\mathrm{f}^{\prime}(x)=0 \Rightarrow-2.5 \mathrm{e}^{-025 x} \sin x+10 \mathrm{e}^{-025 x} \cos x=0$	M1	2.1
	$\frac{\sin x}{\cos x}=\frac{10}{2.5} \Rightarrow \tan x=4 *$	A1*	1.1b
		(4)	
(b)		M1 A1	$1.1 \mathrm{~b}$ $1.1 \mathrm{~b}$
		(2)	
(c)	Solves $\tan x=4$ and substitutes answer into $H(t)$	M1	3.1a
	$H(4.47)=\left\|10 \mathrm{e}^{-0.25 \times 4.47} \sin 4.47\right\|$	M1	1.1b
	awrt 3.18 (metres)	A1	3.2a
		(3)	
(d)	The times between each bounce should not stay the same when the heights of each bounce is getting smaller	B1	3.5b
		(1)	
(10 marks)			

(a)

M1: For attempting to differentiate using the product rule condoning slips, for example the power of e .
So for example score expressions of the form $\pm \ldots \mathrm{e}^{-0.25 x} \sin x \pm \ldots \mathrm{e}^{-0.25 x} \cos x$ M1
Sight of $v d u-u d v$ however is M0
A1: $\mathrm{f}^{\prime}(x)=-2.5 \mathrm{e}^{-0.25 x} \sin x+10 \mathrm{e}^{-0.25 x} \cos x$ which may be unsimplified
M1: For clear reasoning in setting their $\mathrm{f}^{\prime}(x)=0$, factorising/ cancelling out the $\mathrm{e}^{-0.25 x}$ term leading to a trigonometric equation in only $\sin x$ and $\cos x$
Do not allow candidates to substitute $x=\arctan 4$ into $\mathrm{f}^{\prime}(x)$ to score this mark.
A1*: Shows the steps $\frac{\sin x}{\cos x}=\frac{10}{2.5}$ or equivalent leading to $\Rightarrow \tan x=4^{*} . \frac{\sin x}{\cos x}$ must be seen.
(b)

M1: Draws at least two "loops". The height of the second loop should be lower than the first loop.
Condone the sight of rounding where there should be cusps
A1: At least 4 loops with decreasing heights and no rounding at the cusps.
The intention should be that the graph should 'sit' on the x-axis but be tolerant.
It is possible to overwrite Figure 3, but all loops must be clearly seen.

Question	Scheme	Marks	AOs
9(a)	$\mathrm{f}(x)=4\left(x^{2}-2\right) \mathrm{e}^{-2 x}$		
	Differentiates to $\quad \mathrm{e}^{-2 x} \times 8 x+4\left(x^{2}-2\right) \times-2 \mathrm{e}^{-2 x}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\mathrm{f}^{\prime}(x)=8 \mathrm{e}^{-2 x}\left\{x-\left(x^{2}-2\right)\right\}=8\left(2+x-x^{2}\right) \mathrm{e}^{-2 x} \quad *$	A1*	2.1
		(3)	
(b)	States roots of $\mathrm{f}^{\prime}(x)=0 \quad x=-1,2$	B1	1.1b
	Substitutes one x value to find a y value	M1	1.1b
	Stationary points are ($\left.-1,-4 \mathrm{e}^{2}\right)$ and $\left(2,8 \mathrm{e}^{-4}\right)$	A1	1.1b
		(3)	
(c)	(i) Range $\left[-8 \mathrm{e}^{2}, \infty\right)$ o.e. such as $\mathrm{g}(x) \geqslant-8 \mathrm{e}^{2}$	B1ft	2.5
	(ii) For - Either attempting to find $2 f(0)-3=2 \times-8-3=(-19)$ and identifying this as the lower bound - Or attempting to find $2 \times$ " $8 \mathrm{e}^{-4}$ " -3 and identifying this as the upper bound	M1	3.1a
	Range $\left[-19,16 \mathrm{e}^{-4}-3\right]$	A1	1.1b
		(3)	
(9 marks)			
Notes:			

(a)

M1: Attempts the product rule and uses $\mathrm{e}^{-2 x} \rightarrow k \mathrm{e}^{-2 x}, \quad k \neq 0$
If candidate states $u=4\left(x^{2}-2\right), v=\mathrm{e}^{-2 x}$ with $u^{\prime}=\ldots, v^{\prime}=\ldots \mathrm{e}^{-2 x}$ it can be implied by their $v u^{\prime}+u v^{\prime}$
If they just write down an answer without working award for $\mathrm{f}^{\prime}(x)=p x \mathrm{e}^{-2 x} \pm q\left(x^{2}-2\right) \mathrm{e}^{-2 x}$
They may multiply out first $\mathrm{f}(x)=4 x^{2} \mathrm{e}^{-2 x}-8 \mathrm{e}^{-2 x}$. Apply in the same way condoning slips
Alternatively attempts the quotient rule on $\mathrm{f}(x)=\frac{u}{v}=\frac{4\left(x^{2}-2\right)}{\mathrm{e}^{2 x}}$ with $v^{\prime}=k \mathrm{e}^{2 x}$ and $\mathrm{f}^{\prime}(x)=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$
A1: A correct $\mathrm{f}^{\prime}(x)$ which may be unsimplified.
Via the quotient rule you can award for $\mathrm{f}^{\prime}(x)=\frac{8 x \mathrm{e}^{2 x}-8\left(x^{2}-2\right) \mathrm{e}^{2 x}}{\mathrm{e}^{4 x}}$ o.e.
A1*: Proceeds correctly to given answer showing all necessary steps.
The $\mathrm{f}^{\prime}(x)$ or $\frac{\mathrm{d} y}{\mathrm{~d} x}$ must be present at some point in the solution
This is a "show that" question and there must not be any errors. All bracketing must be correct.
Allow a candidate to move from the simplified unfactorised answer of $\mathrm{f}^{\prime}(x)=8 x \mathrm{e}^{-2 x}-8\left(x^{2}-2\right) \mathrm{e}^{-2 x}$

Question	Scheme	Marks	AOs
13(a)	$k=\mathrm{e}^{2} \quad$ or $\quad x \neq \mathrm{e}^{2}$	B1	2.2a
		(1)	
(b)	$\begin{gathered} \mathrm{g}^{\prime}(x)=\frac{(\ln x-2) \times \frac{3}{x}-(3 \ln x-7) \times \frac{1}{x}}{(\ln x-2)^{2}}=\frac{1}{x(\ln x-2)^{2}} \\ \mathrm{~g}^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(3-(\ln (x)-2)^{-1}\right)=(\ln x-2)^{-2} \times \frac{1}{x}=\frac{1}{x(\ln x-2)^{2}} \\ \mathrm{~g}^{\prime}(x)=(\ln x-2)^{-1} \times \frac{3}{x}-(3 \ln x-7)(\ln x-2)^{-2} \times \frac{1}{x}=\frac{1}{x(\ln x-2)^{2}} \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} 1.1 \mathrm{~b} \\ 2.1 \end{gathered}$
	As $x>0$ (or $1 / x>0)$ AND $\ln x-2$ is squared so $\mathrm{g}^{\prime}(x)>0$	Alcso	2.4
		(3)	
(c)	Attempts to solve either $3 \ln x-7 \ldots 0$ or $\ln x-2 \ldots 0$ or $3 \ln a-7 \ldots 0$ or $\ln a-2 \ldots 0$ where \ldots is " $=$ " or " $>$ " to reach a value for x or a but may be seen as an inequality $\text { e.g. } x>\ldots \text { or } a>\ldots$	M1	3.1a
	$0<a<\mathrm{e}^{2}, \quad a>\mathrm{e}^{\frac{7}{3}}$	Al	2.2a
		(2)	
(6 marks)			

Question Number	Scheme	Marks
1.	$\mathrm{f}(x)=\frac{2 x}{x^{2}+3} \Rightarrow \mathrm{f}^{\prime}(x)=\frac{\left(x^{2}+3\right) 2-2 x \times 2 x}{\left(x^{2}+3\right)^{2}}=\left(\frac{6-2 x^{2}}{\left(x^{2}+3\right)^{2}}\right)$	M1A1
	$\mathrm{f}^{\prime}(x)>0 \Rightarrow \frac{6-2 x^{2}}{\left(x^{2}+3\right)^{2}}>0$	M1A1
	Critical values $6-2 x^{2}=0 \Rightarrow x= \pm \sqrt{3}$	
Inside region chosen $-\sqrt{3}<x<\sqrt{3}$	dM1A1	
		$(6$ marks)

Notes

M1 Applies the Quotient rule, a form of which appears in the formula book, to $\frac{2 x}{x^{2}+3}$
If the formula is quoted it must be correct. There must have been some attempt to
differentiate both terms.
If the rule is not quoted nor implied by their working, meaning that terms are written out
$u=2 x, v=x^{2}+3, u^{\prime}=\ldots, v^{\prime}=\ldots$ followed by their $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$, then only accept answers of the form
$\frac{\left(x^{2}+3\right) A-2 x \times B x}{\left(x^{2}+3\right)^{2}} \quad A, B>0$. Condone invisible brackets for the M .
Alternatively applies the product rule with $u=2 x, v=\left(x^{2}+3\right)^{-1}$
If the formula is quoted it must be correct. There must have been some attempt to differentiate both terms. If the rule is not quoted nor implied by their working, meaning that terms are written out
$u=2 x, v=\left(x^{2}+3\right)^{-1}, u^{\prime}=\ldots, v^{\prime}=\ldots$ followed by their $v u^{\prime}+u v^{\prime}$, then only accept answers of the form
$\left(x^{2}+3\right)^{-1} \times A \pm 2 x \times\left(x^{2}+3\right)^{-2} \times B x$.
Condone invisible brackets for the M .
A1 Any fully correct (unsimplified) form of $\mathrm{f}^{\prime}(x)$
Accept versions of $\mathrm{f}^{\prime}(x)=\frac{\left(x^{2}+3\right) 2-2 x \times 2 x}{\left(x^{2}+3\right)^{2}}$ for the quotient rule or
Versions of $\mathrm{f}^{\prime}(x)=\left(x^{2}+3\right)^{-1} \times 2-2 x \times\left(x^{2}+3\right)^{-2} \times 2 x$ for use of the product rule.
M1 Setting their numerator of $\mathrm{f}^{\prime}(x)=0$ or >0, and proceeding to find two critical values.
A1 Both critical values $\pm \sqrt{3}$ are found. Accept for this mark expressions like $x> \pm \sqrt{3}$ and ± 1.73
dM1 For choosing the inside region of their critical values.
The inequality (if seen) must have been of the correct form. Either $A x^{2} \ldots-B<0, C \ldots \ldots-D x^{2}>0$ or $x^{2}<C$. It is dependent upon having set the numerator >0 or $=0$.
A1 Correct solution only. $-\sqrt{3}<x<\sqrt{3}$. Accept $(-\sqrt{3}, \sqrt{3}) x<\sqrt{3}$ and $x>-\sqrt{3}$
Do not accept $x<\sqrt{3}$ or $x>-\sqrt{3}$ or $-1.73<x<1.73$.
Do not accept a correct answer coming from an incorrect inequality. This would be dM0A0.
Condone a solution $x^{2}<3 \Rightarrow x< \pm \sqrt{3} \Rightarrow-\sqrt{3}<x<\sqrt{3}$
Do not accept a solution without seeing a correct $\mathrm{f}^{\prime}(x)$ first. Note that this is a demand of the question.

Notes

M1: Applies the Quotient rule, a form of which appears in the formula book, to $\frac{\cos 2 \theta}{1+\sin 2 \theta}$
If the formula is quoted it must be correct. There must have been some attempt to differentiate both terms.
If the rule is not quoted nor implied by their working, meaning that terms are written out
$u=\cos 2 \theta, v=1+\sin 2 \theta, u^{\prime}=. ., v^{\prime}=\ldots$ followed by their $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$, then only accept answers of the form
$\underline{(1+\sin 2 \theta) A \sin 2 \theta-\cos 2 \theta \times(B \cos 2 \theta)}$
where A and B are constant (could be 1) Condone "invisible"
brackets for the M mark. If double angle formulae are used give marks for correct work.
Alternatively applies the product rule with $u=\cos 2 \theta, v=(1+\sin 2 \theta)^{-1}$
If the formula is quoted it must be correct. There must have been some attempt to differentiate both terms.
If the rule is not quoted nor implied by their working, meaning that terms are written out
$u=\cos 2 \theta, v=(1+\sin 2 \theta)^{-1}, u^{\prime}=. ., v^{\prime}=\ldots$ followed by their $v u^{\prime}+u v^{\prime}$,
then only accept answers of the form $(1+\sin 2 \theta)^{-1} \times A \sin 2 \theta \pm \cos 2 \theta \times(1+\sin 2 \theta)^{-2} \times B \cos 2 \theta$.
Condone "invisible brackets" for the M. If double angle formulae are used give marks for correct work.
A1: Any fully correct (unsimplified) form of $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ If double angle formulae are used give marks for correct work.
Accept versions of $\frac{\mathrm{d} y}{\mathrm{~d} \theta}=\frac{-2 \sin 2 \theta(1+\sin 2 \theta)-2 \cos ^{2} 2 \theta}{(1+\sin 2 \theta)^{2}}$ for use of the quotient rule or versions of
$\frac{\mathrm{d} y}{\mathrm{~d} \theta}=(1+\sin 2 \theta)^{-1} \times-2 \sin 2 \theta+\cos 2 \theta \times(-1) \times(1+\sin 2 \theta)^{-2} \times 2 \cos 2 \theta$ for use of the product rule.
M1: Applies $\sin ^{2} 2 \theta+\cos ^{2} 2 \theta \equiv 1$ or $-2 \sin ^{2} 2 \theta-2 \cos ^{2} 2 \theta \rightarrow-2$ correctly to eliminate squared trig.
terms from the numerator to obtain an expression of the form $k \sin 2 \theta+\lambda$ where k and λ are constants (including 1) If double angle formulae have been used give marks only if correct work leads to answer in correct form. (If in doubt, send to review)
A1: Need to see factorisation of numerator then answer, which is cso
so $\frac{-2}{1+\sin 2 \theta}$ or $\frac{a}{1+\sin 2 \theta}$ and $a=-2$, with no previous errors

B1: $\quad \frac{\mathrm{d} V}{\mathrm{~d} r}=4 \pi r^{2}$. This may be stated or used and need not be simplified
Applies $12000=\frac{4}{3} \pi r^{3}$ and rearranges to find r using division then cube root with accurate algebra
May state $\quad r=\sqrt[3]{\frac{3 V}{4 \pi}}$ then substitute $V=12000$ later which is equivalent. r does not need to be evaluated.
M1: Uses chain rule correctly so $\frac{1}{\left(\text { their } \frac{\mathrm{d} V}{\mathrm{~d} r}\right)} \times 250$
dM1: Substitutes their r correctly into their equation for $\frac{\mathrm{d} r}{\mathrm{~d} t}$ This depends on the previous method mark
A1: awrt 0.099 (Units may be ignored) If this answer is seen, then award A1 and isw.
Premature approximation usually results in all marks being earned prior to this one.

Question Number	Scheme	Marks
10. (a)	$\begin{align*} & A=B \Rightarrow \sin 2 A=\underline{\underline{\sin (A+A)}}=\underline{\sin A \cos A+\cos A \sin A} \text { or } \underline{\sin A \cos A+\sin A \cos A} \\ & \text { Hence, } \sin 2 A=2 \sin A \cos A \tag{2} \end{align*} \text { (as required) * } \quad \text {. }$	$\begin{aligned} & \text { M1 } \\ & \text { A1 * } \end{aligned}$
(b)	$\begin{aligned} & \text { Way 1A: } \\ & \left\{y=\ln \left[\tan \left(\frac{1}{2} x\right)\right] \Rightarrow\right\} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{1}{2} \sec ^{2}\left(\frac{1}{2} x\right)}{\tan \left(\frac{1}{2} x\right)} \quad \text { Way 1B } \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{1}{2} \sec ^{2}\left(\frac{1}{2} x\right)}{\tan \left(\frac{1}{2} x\right)} \end{aligned}$	M1 A1
	$\begin{array}{l\|l} =\frac{1}{2 \tan \left(\frac{1}{2} x\right) \cos ^{2}\left(\frac{1}{2} x\right)}=\frac{1}{\frac{2 \sin \left(\frac{1}{2} x\right)}{\cos \left(\frac{1}{2} x\right)} \cdot \frac{\cos ^{2}\left(\frac{1}{2} x\right)}{1}} & =\frac{1+\tan ^{2}\left(\frac{1}{2} x\right)}{2 \tan \left(\frac{1}{2} x\right)}==\frac{\cos ^{2}\left(\frac{1}{2} x\right)+\sin ^{2}\left(\frac{1}{2} x\right)}{2 \sin \left(\frac{1}{2} x\right) \cos \left(\frac{1}{2} x\right)} \\ =\frac{1}{2 \sin \left(\frac{1}{2} x\right) \cos \left(\frac{1}{2} x\right)}=\frac{1}{\sin x}=\operatorname{cosec} x * & =\frac{1}{2 \sin \left(\frac{1}{2} x\right) \cos \left(\frac{1}{2} x\right)}=\frac{1}{\sin x}=\operatorname{cosec} x * \end{array}$	dM1 A1 * [4]
	Way 2: $\left\{y=\ln \left[\sin \left(\frac{1}{2} x\right)\right]-\ln \left[\cos \left(\frac{1}{2} x\right)\right] \Rightarrow\right\} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{1}{2} \cos \left(\frac{1}{2} x\right)}{\sin \left(\frac{1}{2} x\right)}-\frac{-\frac{1}{2} \sin \left(\frac{1}{2} x\right)}{\cos \left(\frac{1}{2} x\right)}$ $=\frac{\cos ^{2}\left(\frac{1}{2} x\right)+\sin ^{2}\left(\frac{1}{2} x\right)}{2 \sin \left(\frac{1}{2} x\right) \cos \left(\frac{1}{2} x\right)} ;=\frac{1}{\sin x}=\operatorname{cosec} x$	M1 A1 M1;A1 [4]
	Way3: quotes $\int \operatorname{cosec} x \mathrm{~d} x=\ln \left(\tan \left(\frac{1}{2} x\right)\right)$	M1 A1
	(As differentiation is reverse of integration) $\quad \frac{\mathrm{d}}{\mathrm{d} x}\left[\tan \left(\frac{1}{2} x\right)\right]=\operatorname{cosec} x$	M1 A1 ${ }_{\text {[4] }}$
(c)	$\left\{y=\ln \left[\tan \left(\frac{1}{2} x\right)\right]-3 \sin x \Rightarrow\right\} \frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{cosec} x-3 \cos x$	B1
	$\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow\right\} \operatorname{cosec} x-3 \cos x=0 \Rightarrow \frac{1}{\sin x}-3 \cos x=0$	M1
	$\Rightarrow 1=3 \sin x \cos x \Rightarrow 1=\frac{3}{2}(2 \sin x \cos x)$ so $\sin 2 x=k$, where $-1<k<1$ and $k \neq 0$	M1
	So $\sin 2 x=\frac{2}{3}$	A1
	$\{2 x=\{0.729727 \ldots, 2.411864 \ldots\}\}$ So $x=\{0.364863 \ldots, 1.205932 \ldots\}$	$\mathrm{Al} \mathrm{A1}^{\text {[6] }}$
$\begin{aligned} & \text { Way2 } \\ & 10 \text { (c) } \end{aligned}$	Method (Squaring Method) $\left\{y=\ln \left[\tan \left(\frac{1}{2} x\right)\right]-3 \sin x \Rightarrow\right\} \frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{cosec} x-3 \cos x$ $\begin{aligned} & \left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow\right\} \operatorname{cosec} x-3 \cos x=0 \Rightarrow \frac{1}{\sin x}-3 \cos x=0 \\ & \Rightarrow \frac{1}{1-\cos ^{2} x}=9 \cos ^{2} x \text { so } 9 \cos ^{4} x-9 \cos ^{2} x+1=0 \text { or } 9 \sin ^{4} x-9 \sin ^{2} x+1=0 \end{aligned}$ So $\cos ^{2} x=0.873$ or 0.127 or $\sin ^{2} x=0.873$ or 0.127 So $x=\{0.364863 \ldots, 1.205932 \ldots\}$	B1
		M1
		M1
		A1 A1 A1
		${ }^{\text {A1 A1 }}$ [6]

```
\begin{tabular}{l|l} 
Way 3 \\
\(10 \mathrm{c})\)
\end{tabular}\(\quad\) "t" method \(\left\{y=\ln \left[\tan \left(\frac{1}{2} x\right)\right]-3 \sin x \Rightarrow\right\} \frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{cosec} x-3 \cos x\)
\(\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow\right\} \operatorname{cosec} x-3 \cos x=0 \Rightarrow \frac{1}{\sin x}-3 \cos x=0\)
\(\Rightarrow \frac{1+t^{2}}{2 t}-3 \frac{1-t^{2}}{1+t^{2}}=0\) so \(t^{4}+6 t^{3}+2 t^{2}-6 t+1=0\)
    \(t=0.1845\) or 0.6885
So \(x=\{0.364863 \ldots, 1.205932 \ldots\}\)
```


Notes

(a) M1: This mark is for the underlined equation in either form

$$
\underline{\sin A \cos A+\cos A \sin A \text { or } \quad \sin A \cos A+\sin A \cos A}
$$

A1: For this mark need to see :
$\sin 2 A$ at the start of the proof, or as part of a conclusion
$\sin (A+A)=$ at the start
$=\frac{\sin A \cos A+\cos A \sin A}{=2 \sin A \cos A \text { at the end }}+\frac{\sin A \cos A+\sin A \cos A}{}$
(b)M1: For expression of the form $\frac{ \pm k \sec ^{2}\left(\frac{1}{2} x\right)}{\tan \left(\frac{1}{2} x\right)}$, where k is constant (could even be 1)
A1: Correct differentiation so $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{1}{2} \sec ^{2}\left(\frac{1}{2} x\right)}{\tan \left(\frac{1}{2} x\right)}$

Way 1A:

dM1: Use both $\tan \left(\frac{1}{2} x\right)=\frac{\sin \left(\frac{1}{2} x\right)}{\cos \left(\frac{1}{2} x\right)}$ and $\sec ^{2}\left(\frac{1}{2} x\right)=\frac{1}{\cos ^{2}\left(\frac{1}{2} x\right)}$ in their differentiated expression. This may be implied.
This depends on the previous Method mark.
$\mathbf{A 1 *}$: Simplify the fraction, use double angle formula, see $\frac{1}{\sin x}$ and obtain correct answer with completely correct work and no errors seen (NB Answer is given)
Way 1B
dM1: Use both $\sec ^{2}\left(\frac{1}{2} x\right)=1+\tan ^{2}\left(\frac{1}{2} x\right)$ and $\tan \left(\frac{1}{2} x\right)=\frac{\sin \left(\frac{1}{2} x\right)}{\cos \left(\frac{1}{2} x\right)}$
A1*: Simplify the fraction, use double angle formula, see $\frac{1}{\sin x}$ and obtain correct answer with completely correct work and no errors seen (NB Answer is given)
Way 2:
M1:Split into $\left\{y=\ln \left[\sin \left(\frac{1}{2} x\right)\right]-\ln \left[\cos \left(\frac{1}{2} x\right)\right] \Rightarrow\right\}$ then differentiate to give $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{k \cos \left(\frac{1}{2} x\right)}{\sin \left(\frac{1}{2} x\right)}-\frac{c \sin \left(\frac{1}{2} x\right)}{\cos \left(\frac{1}{2} x\right)}$
A1: Correct answer $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{1}{2} \cos \left(\frac{1}{2} x\right)}{\sin \left(\frac{1}{2} x\right)}-\frac{-\frac{1}{2} \sin \left(\frac{1}{2} x\right)}{\cos \left(\frac{1}{2} x\right)}$
M1: Obtain $=\frac{\cos ^{2}\left(\frac{1}{2} x\right)+\sin ^{2}\left(\frac{1}{2} x\right)}{2 \sin \left(\frac{1}{2} x\right) \cos \left(\frac{1}{2} x\right)} \quad$ A1*: As before
Way 3:
Alternative method: This is rare, but is acceptable. Must be completely correct.
Quotes $\int \operatorname{cosec} x \mathrm{~d} x=\ln \left(\tan \left(\frac{1}{2} x\right)\right)$ and follows this by $\frac{\mathrm{d}}{\mathrm{d} x}\left[\tan \left(\frac{1}{2} x\right)\right]=\operatorname{cosec} x$ gets $4 / 4$

Question Number	Scheme	Marks
$\mathbf{1}$	$y=\frac{3 x-2}{(x-2)^{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{(x-2)^{2} \times 3-(3 x-2) \times 2(x-2)}{(x-2)^{4}}$	B1
	$\operatorname{Sub} x=3$ into $\frac{\mathrm{d} y}{\mathrm{~d} x}=(-11)$	M1A1
	$\frac{1}{11}=\frac{y-7}{x-3} \Rightarrow x-11 y+74=0$	M1
	cso	M1A1 cso
	(6 marks)	

B1 For seeing $y=7$ when $x=3$. This may be awarded if embedded within an equation.
M1 Application of Quotient rule. If the rule is quoted it must be correct.
It may be implied by their $u=3 x-2, u^{\prime}=. ., v=(x-2)^{2}, v^{\prime}=.$. followed by their $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$
If the rule is neither stated nor implied only accept expressions of the form
$\frac{(x-2)^{2} \times A-(3 x-2) \times B(x-2)}{\left((x-2)^{2}\right)^{2}} A, B>0$ condoning missing brackets
Alternatively applies the Product rule to $(3 x-2)(x-2)^{-2}$ If the rule is quoted it must be correct.
It may be implied by their u or $v=3 x-2, u^{\prime}, v$ or $u=(x-2)^{-2}, v^{\prime}$ followed by their $v u^{\prime}+u v^{\prime}$
If the rule is neither stated nor implied only accept expressions of the form $A(x-2)^{-2} \pm B(3 x-2)(x-2)^{-3}$
If they use partial fractions expect to see ${ }_{y=\frac{3 x-2}{(x-2)^{2}} \Rightarrow y=\frac{P}{(x-2)}+\frac{Q}{(x-2)^{2}}(P=3, Q=4) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}= \pm \frac{R}{(x-2)^{2}} \pm \frac{S}{(x-2)^{3}}, ~}^{\text {and }}$
You may also see implicit differentiation etc where the scheme is easily applied.
A1 A correct (unsimplified) form of the derivative.
Accept from the quotient rule versions equivalent to $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(x-2)^{2} \times 3-(3 x-2) \times 2(x-2)}{\left((x-2)^{2}\right)^{2}}$
Accept from the product rule versions equivalent to $\frac{\mathrm{d} y}{\mathrm{~d} x}=3(x-2)^{-2}-2(3 x-2)(x-2)^{-3}$
Accept from partial fractions $\frac{\mathrm{d} y}{\mathrm{~d} x}=-3(x-2)^{-2}-8(x-2)^{-3}$
or $(x-2)^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \times 2(x-2)=3$ from implicit differentiation
FYI: Correct simplified expressions are $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-3 x^{2}+4 x+4}{(x-2)^{4}}$ or $\frac{-3 x-2}{(x-2)^{3}}$
M1 $\operatorname{Sub} x=3$ into what they believe is their derivative to find a numerical value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
M1 Uses $x=3$ and their numerical value of y with their numerical $-\frac{\mathrm{d} x}{\mathrm{~d} y}$ at $x=3$ to form an equation of a normal. If the form $y=m x+c$ is used then it must be a full method reaching a value for c.
A1 Correct solution only Accept $\pm A(x-11 y+74)=0$ where $A \in \mathrm{~N}$. from correct working.
Watch for correct answers coming from incorrect versions of $\frac{d y}{d x}$ with eg. $(x-2)^{2}$ on the denominator

Question Number	Scheme	Marks
(ii)	$\begin{aligned} & x=\tan ^{2} 4 y \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} y}=8 \tan 4 y \sec ^{2} 4 y \quad \text { oe } \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{8 \tan 4 y \sec ^{2} 4 y},=\frac{1}{8 \tan 4 y\left(1+\tan ^{2} 4 y\right)}=\frac{1}{8 \sqrt{x}(1+x)}=\frac{1}{8\left(x^{0.5}+x^{1.5}\right)} \end{aligned}$	M1A1 M1,M1A1 (5)
	$\frac{\mathrm{d} V}{\mathrm{~d} t}=2, \quad V=x^{3} \Rightarrow \frac{\mathrm{~d} V}{\mathrm{~d} x}=3 x^{2}$	B1,B1
	Uses $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}$	M1
	$\left.\frac{\mathrm{d} x}{\mathrm{~d} t}\right\|_{x=4}=\frac{2}{3 x^{2}}=\frac{1}{24}\left(\mathrm{~cm} \mathrm{~s}^{-1}\right)$	M1A1
		(10 marks)

(i)

M1 Differentiates $\tan ^{2} 4 y$ to get an expression equivalent to the form $C \tan 4 y \sec ^{2} 4 y$
You may see $\tan 4 y \times A \sec ^{2} 4 y+\tan 4 y \times B \sec ^{2} 4 y$ from the product rule or versions appearing from $\sqrt{x}=\tan 4 y \Rightarrow A x^{-0.5} \times \ldots=B \sec ^{2} 4 y$ or
$A x^{-0.5}=B \sec ^{2} 4 y \times \ldots x=\frac{\sin ^{2} 4 y}{\cos ^{2} 4 y} \Rightarrow \frac{\mathrm{~d} x}{\mathrm{~d} y}=\frac{\cos ^{2} 4 y \times A \sin 4 y \cos 4 y-\sin ^{2} 4 y \times B \cos 4 y \sin 4 y}{\left(\cos ^{2} 4 y\right)^{2}}$
from the quotient rule
A1 Any fully correct answer, or equivalent, including the left hand side. $\frac{\mathrm{d} x}{\mathrm{~d} y}=2 \tan 4 y \times 4 \sec ^{2} 4 y$
Also accept the equivalent by implicit differentiation $1=8 \tan 4 y \sec ^{2} 4 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
M1 Uses $\frac{\mathrm{d} y}{\mathrm{~d} x}=1 / \frac{\mathrm{d} x}{\mathrm{~d} y}$ Follow through on their $\frac{\mathrm{d} x}{\mathrm{~d} y}$.
Condone issues with reciprocating the ' 8 ' but not the trigonometrical terms.
If implicit differentiation is used it is scored for writing $\frac{\mathrm{d} y}{\mathrm{~d} x}$ as the subject.
M1 Uses $\sec ^{2} 4 y=1+\tan ^{2} 4 y$ where $x=\tan ^{2} 4 y$ to get their expression for $\frac{d y}{d x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} y}$ in terms of just x. If they use other functions it is for using $\sin ^{2} 4 y=\frac{x}{1+x}$ and $\cos ^{2} 4 y=\frac{1}{1+x}$ where $x=\tan ^{2} 4 y$ to get their expression for $\frac{d y}{d x}$ or $\frac{d x}{d y}$ in terms of just x.
A1 Correct answer and solution. Accept $\frac{1}{8\left(x^{0.5}+x^{1.5}\right)}, \frac{1}{8\left(x^{\frac{1}{2}}+x^{\frac{3}{2}}\right)}$ or $A=8, p=0.5$ and $q=1.5$
Candidates do not have to explicitly state the values of A, p and q. Remember to isw after the sight of an acceptable answer.

Question Number	Scheme	Marks
8 (a)	$1000<V \leq 23000$	B1,B1
(b)	$\frac{\mathrm{d} V}{\mathrm{~d} t}=18000 \times-0.2 \mathrm{e}^{-0.2 t}+4000 \times-0.1 \mathrm{e}^{-0.1 t}$	M1
	$\left.\frac{\mathrm{d} V}{\mathrm{~d} t}\right\|_{t=10}=18000 \times-0.2 \mathrm{e}^{-2}+4000 \times-0.1 \mathrm{e}^{-1}=\operatorname{awrt}(-) 634$	M1A1
(c)	$\begin{aligned} & 15000=18000 \mathrm{e}^{-0.2 t}+4000 \mathrm{e}^{-0.1 t}+1000 \\ & 0=9 \mathrm{e}^{-0.2 t}+2 \mathrm{e}^{-0.1 t}-7 \end{aligned}$	(3)
	$0=\left(9 \mathrm{e}^{-0.1 t}-7\right)\left(\mathrm{e}^{-0.1 t}+1\right)$	M1A1
	$9 \mathrm{e}^{-0.1 t}=7 \Rightarrow t=10 \ln \left(\frac{9}{7}\right) \mathrm{oe}$	dM1A1
		$\begin{array}{r} (4) \\ (9 \text { marks }) \end{array}$

(a)

B1 Accept either boundary: $V<23000$ or $V \leq 23000$ or $V_{\max } 23000$ for the upper boundary and $V>1000$ or $V \geq 1000$ or $V_{\min } 1000$ for the lower boundary. Answers like $V \geq 23000$ are B 0
B1 Completely correct solution.
Accept $1000<V \leq 23000,1000<$ Range or $y \leq 23000,(1000,23000], V>1000$ and $V \leq 23000$
(b)

M1 Score for $\mathrm{a} \frac{\mathrm{d} V}{\mathrm{~d} t}=A \mathrm{e}^{-0.2 t}+B \mathrm{e}^{-0.1 t}$, where $A \neq 18000, B \neq 4000$
M1 Sub $t=10$ into a $\frac{\mathrm{d} V}{\mathrm{~d} t}$ of the form $A \mathrm{e}^{-0.2 t}+B \mathrm{e}^{-0.1 t}$ where $A \neq 18000, B \neq 4000$
Condone substitution of $t=10$ into a $\frac{\mathrm{d} V}{\mathrm{~d} t}$ of the form $A \mathrm{e}^{-0.2 t}+B \mathrm{e}^{-0.1 t}+1000 \quad A \neq 18000, B \neq 4000$
A1 Correct solution and answer only. Accept ± 634 following correct $\frac{\mathrm{d} V}{\mathrm{~d} t}=-3600 \mathrm{e}^{-0.2 t}-400 \mathrm{e}^{-0.1 t}$
Watch for students who sub $t=10$ into their V first and then differentiate. This is $0,0,0$.
Watch for students who achieve +634 following $\frac{\mathrm{d} V}{\mathrm{~d} t}=3600 \mathrm{e}^{-0.2 t}+400 \mathrm{e}^{-0.1 t}$. This is $1,1,0$
A correct answer with no working can score all marks.
(c)

M1 Setting up 3TQ in $\mathrm{e}^{ \pm 0.1 t}$ AND correct attempt to factorise or solve by the formula.
For this to be scored the $\mathrm{e}^{ \pm 0.2 t}$ term must be the x^{2} term.
A1 Correct factors $\left(9 \mathrm{e}^{-0.1 t}-7\right)\left(\mathrm{e}^{-0.1 t}+1\right)$ or $\left(7 \mathrm{e}^{0.1 t}-9\right)\left(\mathrm{e}^{0.1 t}+1\right)$ or a root $\mathrm{e}^{-0.1 t}=\frac{7}{9}$
dM1 Dependent upon the previous M1.
This is scored for setting the $a \mathrm{e}^{ \pm 0.1 t}-b=0$ and proceeding using correct \ln work to $t=\ldots$
A1 $\quad t=10 \ln \left(\frac{9}{7}\right)$. Accept alternatives such as $t=\frac{1}{0.1} \ln \left(\frac{9}{7}\right), \frac{1}{-0.1} \ln \left(\frac{7}{9}\right),-10 \ln \left(\frac{7}{9}\right)$
If any extra solutions are given withhold this mark.

Question Number	Scheme	Marks
3 (a)	$\mathrm{f}^{\prime}(x)=\mathrm{e}^{x} \times 2+(2 x-5) \mathrm{e}^{x}$ $\mathrm{f}^{\prime}(x)=0 \Rightarrow(2 x-3) \mathrm{e}^{x}=0 \Rightarrow x=\frac{3}{2}$ $\left\{\right.$ Coordinates of $\left.A=\left(\frac{3}{2},-2 \mathrm{e}^{\frac{3}{2}}\right)\right\} \quad$ obtains $y=-2 \mathrm{e}^{\frac{3}{2}}$ $\mathrm{f}^{\prime}(x)=0 \Rightarrow(2 x-3) \mathrm{e}^{x}=0 \Rightarrow x=\frac{3}{2}$	M1A1 M1A1 A1ft (5)
(b)	$-2 \mathrm{e}^{\frac{3}{2}}<k<0$	M1A1 (2)
(c)	 Shape including cusp	B1
	($\left.\frac{5}{2}, 0\right)$ only	B1
	$(0,5)$ only	B1 (3)
		(10 marks)

Question Number	Scheme Notes	Marks
4 (a)	$\begin{array}{r} x ^ { 2 } + x - 1 2 \longdiv { x ^ { 4 } + x ^ { 3 } - 7 x ^ { 2 } + 8 x - 4 8 } \\ \frac{x^{4}+x^{3}-12 x^{2}}{5 x^{2}+8 x-48} \\ \frac{5 x^{2}+5 x-60}{3 x+12} \end{array}$ M1: Divides $x^{4}+x^{3}-7 x^{2}+8 x-48$ by $x^{2}+x-12$ to get a quadratic quotient and a remainder of the form $\alpha x+\beta$ where α and β are not both zero A1: Correct quotient and remainder	M1A1
	$\begin{gathered} \frac{x^{4}+x^{3}-7 x^{2}+8 x-48}{x^{2}+x-12} \equiv x^{2}+5+\frac{3(x+4) \text { or } 3 x+12}{(x+4)(x-3)} \\ \text { Writes their answer as } \\ \frac{x^{4}+x^{3}-7 x^{2}+8 x-48}{x^{2}+x-12} \equiv \text { Their Quotient }+\frac{\text { Their Remainder }}{(x+4)(x-3)} \end{gathered}$	M1
	$\equiv x^{2}+5+\frac{3}{(x-3)}$ or states $A=5, B=3$	A1
		(4)

Qu	Scheme	Marks
6.(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=5 x^{2} \times \frac{3}{3 x}+\ln (3 x) \times 10 x$	M1 A1 (2)
(ii)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(\sin x+\cos x) 1-x(\cos x-\sin x)}{(\sin x+\cos x)^{2}} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{(\sin x+\cos x) 1-x(\cos x-\sin x)}{\left(\sin ^{2} x+\cos ^{2} x\right)+(2 \sin x \cos x)}=\frac{(\sin x+\cos x) 1-x(\cos x-\sin x)}{1+\sin 2 x} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{(1+x) \sin x+(1-x) \cos x}{1+\sin 2 x} * \end{aligned}$	M1 $\mathrm{B} 1, \mathrm{~B} 1$ A1 * (4)
		(6 marks)

(i)

M1: Applies the Product rule to $y=5 x^{2} \ln 3 x$
Expect $\frac{\mathrm{d} y}{\mathrm{~d} x}=A x+B x \ln (3 x)$ for this mark (A, B positive constant)
A1: cao- need not be simplified
(ii)

M1: Applies the Quotient rule, a form of which appears in the formula book, to $y=\frac{x}{\sin x+\cos x}$
Expect $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(\sin x+\cos x) 1-x(\pm \cos x \pm \sin x)}{(\sin x+\cos x)^{2}}$ for M1
Condone invisible brackets for the M and an attempted incorrect 'squared' term on the denominator
$\mathrm{Eg} \sin ^{2} x+\cos ^{2} x$
B1: Denominator should be expanded to $\sin ^{2} x+\cos ^{2} x+\ldots$ and $\left(\sin ^{2} x+\cos ^{2} x\right) \rightarrow 1$
B1: Denominator should be expanded to $\ldots+k \sin x \cos x$ and $(k \sin x \cos x) \rightarrow \frac{k}{2} \sin 2 x$.
For example sight of $(\sin x+\cos x)^{2}=1+2 \sin x \cos x=1+\sin 2 x$ without the intermediate line on the Denominator is B0 B1
A1: cso - answer is given. This mark is withheld if there is poor notation $\cos x \leftrightarrow \cos \sin ^{2} x \leftrightarrow \sin x^{2}$ If the only error is the omission of $\left(\sin ^{2} x+\cos ^{2} x\right) \rightarrow 1$ then this final $\mathrm{A} 1^{*}$ can be awarded.

Use of product rule or implicit differentiation needs to be applied correctly with possible sign errors differentiating functions for M1, then other marks as before. If quoted the product rule must be correct
Product rule $\frac{\mathrm{d} y}{\mathrm{~d} x}=(\sin x+\cos x)^{-1} \times 1 \pm x \times(\sin x+\cos x)^{-2}(\pm \cos x \pm \sin x)$
Implicit differentiation $(\sin x+\cos x) y=x \Rightarrow(\sin x+\cos x) \frac{\mathrm{d} y}{\mathrm{~d} x}+y(\pm \cos x \pm \sin x)=1$
To score the B's under this method there must have been an attempt to write $\frac{\mathrm{d} y}{\mathrm{~d} x}$ as a single fraction

