

Mark Scheme (Results)

October 2016

Pearson Edexcel IAL in Core Mathematics 12 (WMA01/01)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

October 2016 Publications Code WMA01_01_1610_MS All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question	Scheme	Marks			
1.	$f(x) = 3x^{2} + x - 4x^{-\frac{1}{2}} + 6x^{-3}$				
	$f(x) = 3x^{2} + x - 4x^{-\frac{1}{2}} + 6x^{-3}$ $\int \left(3x^{2} + x - 4x^{-\frac{1}{2}} + 6x^{-3}\right) dx = \frac{3x^{3}}{3} + \frac{x^{2}}{2} - \frac{4x^{\frac{1}{2}}}{\frac{1}{2}} + \frac{6x^{-2}}{-2}(+c)$	M1 A1A1A1			
	$= x^{3} + \frac{x^{2}}{2} - 8x^{\frac{1}{2}} - 3x^{-2} + c$	A1			
		[5]			
		5 marks			
	Notes				
A1: Two	 M1: Attempt to integrate original f(x)- one power increased xⁿ → xⁿ⁺¹ A1: Two of the four terms in x correct un simplified or simplified- (ignore no constant here). They may be listed. 				
$3x^2$	$\rightarrow 3\frac{x^3}{3}$ is acceptable for an un simplified term BUT $3x^2 \rightarrow 3\frac{x^{2+1}}{2+1}$ isn't				
A1: Thr	1 : Three terms correct (may be) unsimplified. They may be listed separately				
A1: All t	A1: All four terms correct (may be) unsimplified on a single line.				
A1 cao	cao: All four terms correct simplified with constant of integration on a single line				

A1 cao: All four terms correct simplified with constant of integration on a single line. You may isw after sight of correct answer.

Question	Scheme	Marks
2.	(a) $2x \log 7 = \log 14$ or $x \log 49 = \log 14$ or $2x = \log_7 14$	M1
	$x = \frac{\log 14}{2\log 7} = \text{awrt } 0.678$	M1A1 (3)
	(b) $3x+1=5^{-2}$ So $x = -\frac{8}{25}$ or -0.32	M1 A1 (2)
		5 marks
	Notes	
M1: Make	logs and brings down <i>x</i> correctly as <i>x</i> the subject correctly. This must follow a method that did involve taking logs pt awrt 0.678 (N.B. Correct answer with no working implies two previous marks)	
	powers correctly to undo log. Accept $3x+1=5^{-2}$ or equivalent such as $3x+1=0.04$ ect answer (Correct answer implies method mark). Accept – 0.320	

www.	yesterday	ysmaths	exam.	com

Question	Scheme	Marks
3 (i)	$\sqrt{45} - \frac{20}{\sqrt{5}} + \sqrt{6}\sqrt{30}$	
	$= \sqrt{9}\sqrt{5} - \frac{20\sqrt{5}}{\sqrt{5}\sqrt{5}} + \sqrt{6}\sqrt{6}\sqrt{5} = 3\sqrt{5} - 4\sqrt{5} + 6\sqrt{5}$ $= 5\sqrt{5}$	M1 A1*
		[2]
(ii)	LHS = $\frac{17\sqrt{2}(\sqrt{2}-6)}{(\sqrt{2}+6)(\sqrt{2}-6)}$	M1
	$=\frac{17 \times 2 - 17 \times 6\sqrt{2}}{2 - 36} \text{oe}$	A1
	$=\frac{34-102\sqrt{2}}{-34} = 3\sqrt{2}-1^*$	A1* [3]
		5 marks
	Notes	
(i)		

M1: Shows at least one term on LHS as multiple of $\sqrt{5}$ with a correct intermediate step Look for $\sqrt{45} = \sqrt{9} \times \sqrt{5}$ or $\sqrt{3 \times 3 \times 5} = 3\sqrt{5}$, or even $45 = 3 \times 3 \times 5$ or 9×5 followed by $\sqrt{45} = 3\sqrt{5}$

$$\frac{20}{\sqrt{5}} = \frac{20\sqrt{5}}{\sqrt{5}\sqrt{5}} \text{ or } \frac{20\sqrt{5}}{5} = 4\sqrt{5} \text{ or } \frac{4\times5}{\sqrt{5}} = 4\sqrt{5}$$
$$\sqrt{6}\sqrt{30} = \sqrt{6}\sqrt{6}\sqrt{5} \text{ or } \sqrt{6}\sqrt{30} = \sqrt{180} = \sqrt{36\times5} = 6\sqrt{5}$$

or even
$$180 = 2 \times 2 \times 3 \times 3 \times 5$$
 followed by $\sqrt{180} = 6\sqrt{5}$

A1*: All three terms must have the intermediate step with $3\sqrt{5} - 4\sqrt{5} + 6\sqrt{5}$ followed by $5\sqrt{5}$

Special Case: Score M1 A0 for $\sqrt{45} - \frac{20}{\sqrt{5}} + \sqrt{6}\sqrt{30} = 3\sqrt{5} - 4\sqrt{5} + 6\sqrt{5} = 5\sqrt{5}$ without the intermediate steps

Alternative method:

M1: Multiplies all terms by $\sqrt{5}$ to achieve $\sqrt{45} \times \sqrt{5} - 20 + \sqrt{5}\sqrt{6}\sqrt{30} = 5\sqrt{5}\sqrt{5}$ and simplifies any one of the above terms to 15, -20, 30 or 25 showing the intermediate step

A1: All terms simplified showing the intermediate step (see main scheme on how to apply) followed by 15 - 20 + 30 = 25, and minimal conclusion eg. hence true

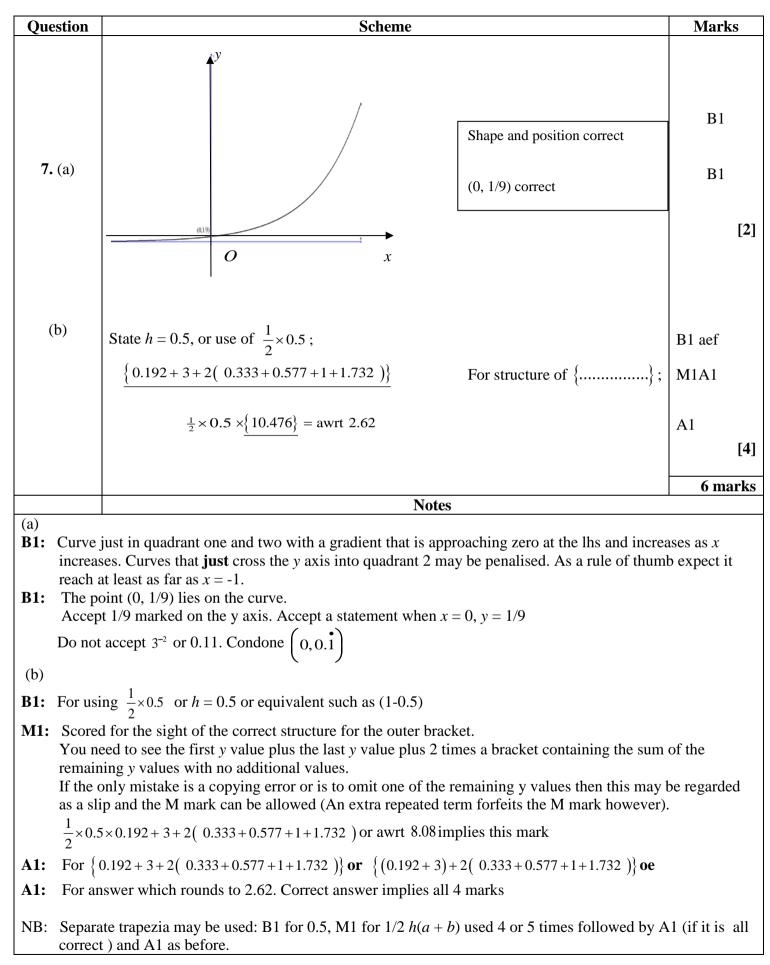
(ii)

- **M1:** Multiply numerator and denominator by $\sqrt{2} 6$ or $6 \sqrt{2}$
- A1: Multiplies out to a correct (unsimplified) answer. For example allow = $\frac{17 \times 2 17 \times 6\sqrt{2}}{2 36}$
- A1: The denominator must be simplified so $\frac{34-17\times 6\sqrt{2}}{-34}$ or similar such as $\frac{17\times 2-102\sqrt{2}}{-34}$ is seen before

you see the given answer $3\sqrt{2}-1$. There is no need to 'split' into two separate fractions.

Alternative method:

M1: Alternatively multiplies the rhs by $(\sqrt{2}+6)(3\sqrt{2}-1)$


A1: Correct unsimplified rhs Accept $3 \times 2 - 6 + 18\sqrt{2} - \sqrt{2}$

A1*: Simplifies rhs to $17\sqrt{2}$ and gives a minimal conclusion e.g. hence true or hence $\frac{17\sqrt{2}}{(\sqrt{2}+6)} = 3\sqrt{2}-1$

	www.yesterdaysmathsexam.com				
Question	Scheme	Marks			
4.	$f(x) = 6x^3 - 7x^2 - 43x + 30$				
(a)(i)	Attempts $f(\pm \frac{1}{2})$ Or Use long division as far as remainder	M1			
()(-)	Remainder = 49	A1			
(a)(ii)	Attempts $f(\pm 3)$ Or Use long division as far as remainder	M1			
(u)(11)	Remainder = 0	A1			
	Kemander – 0	[4]			
(b)	$6x^3 - 7x^2 - 43x + 30 = (x - 3)(6x^2 + 11x - 10)$	M1 A1			
	$(6x^2 + 11x - 10) = (ax + b)(cx + d)$ where $ac = "6"$ and $bd = "-10"$	M1			
	= (x-3)(2x+5)(3x-2)	A1			
	-(x-3)(2x+3)(3x-2)				
		[4]			
		8 marks			
	Notes				
M1: Attem	pts $f(\pm \frac{1}{2})$ or attempts long division $2x+1)6x^3-7x^2-43x+30$ and achieves a m	umerical R			
A1: cao A	Accept $f\left(-\frac{1}{2}\right) = 49$ or even just 49 for both marks				
	candidate has attempted long division they must be stating the remainder = 49 or $R = 49$				
(a)(ii) M1: Atten	ants f(+3)				
	empts long division. See above for application of this mark. This time quotient must start	ϵx^2			
	scept $f(3) = 0$ or even just 0 for both marks	0.1			
	candidate has attempted long division they must be stating the remainder = 0 or $R = 0$				
(b)	candidate has attempted long division they must be starting the remainder $= 0$ or $K = 0$				
. ,	nises $(x - 3)$ is factor and obtains quadratic factor with two correct terms by any correct me	ethod.			
If divid	sion is used look for a minimum of the first two terms $ \frac{x-3)6x^2 \pm 11x}{6x^2 - 7x^2 - 43x + 30} $				
II UIVIS	sion is used look for a minimum of the first two terms $\frac{6x^2 - 18x}{6x^2 - 18x}$				
If facto	risation is used look for correct first and last terms $6x^3 - 7x^2 - 43x + 30 = (x - 3)(6x^2 \dots x \pm 3)(6x^2)$:10)			
A1: Correc	t quadratic				
	pt to factorise their quadratic				
	need all three factors together. Do not penalise candidates who go on to state the roots.				
Allow	$6(x-3)\left(x+\frac{5}{2}\right)\left(x-\frac{2}{3}\right)$ following $(x-3)(6x^2+11x-10)$				
need to be c	Note: There may be candidates who just write down the factors from their GC. The question did state hence so we need to be careful here and see some correct work.				
6	$6x^3 - 7x^2 - 43x + 30 = (x - 3)\left(x - \frac{2}{3}\right)\left(x + \frac{5}{2}\right)$ presumably from the roots is M0A0M0A0				
6	$x^{3} - 7x^{2} - 43x + 30 = 6(x - 3)\left(x - \frac{2}{3}\right)\left(x + \frac{5}{2}\right)$ with no working can score M1A0M1A0				

Question	Scheme	Marks			
5.	(a) $\left(3 - \frac{ax}{2}\right)^5 = 3^5 + {5 \choose 1} 3^4 \cdot \left(-\frac{ax}{2}\right) + {5 \choose 2} 3^3 \cdot \left(-\frac{ax}{2}\right)^2 + {5 \choose 3} 3^2 \cdot \left(-\frac{ax}{2}\right)^3 \dots$ = 243, $-\frac{405}{2} ax + \frac{135}{2} a^2 x^2 - \frac{45}{4} a^3 x^3 \dots$	M1 B1, A1, A1			
	(b) $\frac{405}{2}a = \frac{45}{4}a^3$	[4] M1			
	$a^2 = \frac{810}{45} = 18$ or equivalent	A1			
	$a = 3\sqrt{2}$	A1 [3] 7 marks			
	Notes				
or 5, 1 The ma B1: For the	You need to see the correct binomial coefficient combined with correct power of <i>x</i> . e.g. $\binom{5}{2}x^2$ Condone bracket errors. Accept any notation for 5C_1 , 5C_2 and 5C_3 , e.g. $\binom{5}{1}$, $\binom{5}{2}$ and $\binom{5}{3}$ or 5, 10 and 10 from Pascal's triangle. The mark can be applied in the same way if 3^5 is taken out as a factor. B1: For the first term of 243. (writing just 3^5 is B0). A1: is cao and is for two correct and simplified terms from $-\frac{405}{2}ax$, $+\frac{135}{2}a^2x^2$ and $-\frac{45}{4}a^3x^3$				
Allow Allow	Allow two correct from $-\frac{405}{2}(ax)$, $+\frac{135}{2}(ax)^2$ and $-\frac{45}{4}(ax)^3$ with the brackets. Allow decimals. Allow lists				
Allow	A1: is c.a.o and is for all of the terms correct and simplified. Allow $+\frac{135}{2}(ax)^2$ and $-\frac{45}{4}(ax)^3$ (ignore x^4 terms)				
(b)M1: Puts the A1: This isA1: This is We with the We with the A1: This is the A1: T	decimal equivalents $-202.5 ax + 67.5 a^2 x^2 - 11.25 a^3 x^3$ Allow listing. heir coefficient of x equal to their coefficient of x^3 (There should be no x terms) cao for obtaining a^2 or a correctly (may be unsimplified) cao for $a = 3\sqrt{2}$ Condone $a = \pm 3\sqrt{2}$ ll condone all 3 marks to be scored in (b) from a solution in (a) where all signs are +ve $243 + \frac{405}{2}ax + \frac{135}{2}a^2x^2 + \frac{45}{4}a^3x^3$				

	www.yesterdaysmathsexam.com	1			
Question	Scheme	Marks			
6.	22				
(a)	$u_2 = 24, \ u_3 = 16 \text{ and } u_4 = \frac{32}{3}$	M1, A1 [2]			
(b)	$r = \frac{2}{3}$	B1 [1]			
(c)	$u_{11} = ar^{10} = 36 \times (r)^{10} \qquad .$	M1			
	$u_{11} = ar^{10} = 36 \times \left(\frac{2}{3}\right)^{10} = \left(\frac{4096}{6561}\right)$				
	= 0.6243	A1 [2]			
(d)	$\sum_{i=1}^{6} u_i = \frac{36(1-\left(\frac{2}{3}\right)^6)}{1-\frac{2}{3}} \text{ or } \sum_{i=1}^{6} u_i = 36+24+16+\frac{32}{3}+u_5+u_6$	M1			
	$=98\frac{14}{27}$ $\sum_{i=1}^{\infty} u_i = \frac{36}{1-\frac{2}{3}} = 108$	A1cao [2]			
(e)	$\sum_{i=1}^{\infty} u_i = \frac{36}{1 - \frac{2}{3}} = 108$	M1 A1 [2]			
		9 marks			
	Notes				
(a) M1: Atter	npt to use formula correctly at least twice. It may be seen for example in u_3 and u_4				
A1: All th	hree correct exact simplified answers. Allow 10.6				
(b)					
B1: Acce	B1: Accept $\frac{2}{3}$ or equivalent such as $\frac{24}{36}$ Allow awrt 0.667				
(c)					
	$u_{11} = ar^{10} = 36 \times (r)^{10}$ with their r				
	4096				
(d)					
FYI Sterm	M1: Uses correct sum formula with a = 36 and their r or alternatively for adding their first six terms.FYI Sight of 36, 24, 16, 10.7, 7.1, 4.7 followed by 98.5 implies this mark. (You may only see the first 4 terms in part a)				
	A1: Obtains = $98\frac{14}{27}$ (must be exact). For information $\frac{2660}{27} = 98\frac{14}{27}$ Allow 98.518 (e)				
	2				
A1: Obta	A1: Obtains 108 (must be exact)				

	Scheme	Marks				
8. (a)	$\frac{\sin D}{\sin D} = \frac{\sin 1.1}{\sin 1}$	M1				
0. (u)	5 6					
	$\sin D = 0.74267$ so $D = 0.84$	M1, A1				
	$B = \pi - (1.1 + 0.84) = 1.20 *$	A1*				
		[4]				
(b)	Uses angle $DBC = \pi - 1.2 = \text{awrt } 1.94$	B1				
	Area of sector is $\frac{1}{2}r^2\theta = \frac{1}{2} \times 6^2 \times 1.94'$ or Area of triangle ABD $= \frac{1}{2} \times 5 \times 6 \times \sin 1.2$	M1				
	(=34.9) $(=14.0)$					
	Total area is $\frac{1}{2} \times 6^2 \times 1.94' + \frac{1}{2} \times 5 \times 6 \times \sin 1.2$	dM1				
	$= 48.9 \text{cm}^2$	A1				
	- 10.7011	[4]				
		8 marks				
	Notes					
(a)	· · · · · ·	1				
. ,	sine rule – the sides and angles must be in the correct positions					
	es sin D the subject and uses inverse sine (in degrees or radians)					
	ept awrt 0.84 or in degrees accept answers truncating 47.9° or rounding to 48.0°					
	wer is printed so should see either $\pi - (1.1 + a \text{ wrt } 0.84)$ or $\pi - 1.1 - a \text{ wrt } 0.84$ before you see	1.20				
If th	e question was changed to degrees look for accuracy to one decimal places throughout the	question				
		-				
lor u	he final A1 mark. So 1.1 rads = awrt 63.0° and $(180 - awrt 63.0 - awrt 48.0) = awrt 69.0 \times \frac{\pi}{18}$	= 1.20				
	many ways to attempt this question: For example	There are many ways to attempt this question: For example				
M1: Uses cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x. For						
		r				
		r				
informatio	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x. For $x \approx 6.29$	r				
informatio	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x. For	r				
informatio	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For n $x \approx 6.29$ s cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their}' 6.29'^2}{2 \times 6 \times 5}$	r				
informatio M1: Use	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For $n \ x \approx 6.29$ is cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their}' 6.29'^2}{2 \times 6 \times 5}$ $6^2 + 5^2 - (awrt 6.29)^2$	r				
informatio M1: Use A1: Ach	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For $n \ x \approx 6.29$ is cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their}' 6.29'^2}{2 \times 6 \times 5}$ ieves $\cos B = \frac{6^2 + 5^2 - (\text{awrt } 6.29)^2}{2 \times 6 \times 5}$	r				
informatioM1: UseA1: AchA1: 1.20	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For $n \ x \approx 6.29$ is cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their}' 6.29'^2}{2 \times 6 \times 5}$ ieves $\cos B = \frac{6^2 + 5^2 - (\text{awrt } 6.29)^2}{2 \times 6 \times 5}$	r				
informatioM1: UserA1: AchA1: 1.20(b)	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For $n \ x \approx 6.29$ s cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their}' 6.29'^2}{2 \times 6 \times 5}$ ieves $\cos B = \frac{6^2 + 5^2 - (\text{awrt } 6.29)^2}{2 \times 6 \times 5}$	r				
 informatio M1: Uses A1: Ach A1: 1.20 (b) B1: Uses 	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For $n \ x \approx 6.29$ is cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their}' 6.29'^2}{2 \times 6 \times 5}$ ieves $\cos B = \frac{6^2 + 5^2 - (\text{awrt } 6.29)^2}{2 \times 6 \times 5}$ is angles on a straight line formula. Score for $\pi - 1.2$ or allow awrt 1.94 as evidence.	r				
 information M1: Uses A1: Ach A1: 1.20 (b) B1: Uses If co 	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For n $x \approx 6.29$ is cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their}' 6.29'^2}{2 \times 6 \times 5}$ ieves $\cos B = \frac{6^2 + 5^2 - (\text{awrt } 6.29)^2}{2 \times 6 \times 5}$ angles on a straight line formula. Score for $\pi - 1.2$ or allow awrt 1.94 as evidence. nverted to degrees accept awrt 111.2° as evidence	r				
 informatio M1: Uses A1: Ach A1: 1.20 (b) B1: Uses If co M1: Uses 	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For n $x \approx 6.29$ s cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their}' 6.29'^2}{2 \times 6 \times 5}$ ieves $\cos B = \frac{6^2 + 5^2 - (\text{awrt} 6.29)^2}{2 \times 6 \times 5}$ angles on a straight line formula. Score for $\pi - 1.2$ or allow awrt 1.94 as evidence. nverted to degrees accept awrt 111.2° as evidence a correct area formula for the sector or a correct area formula for the triangle.	r				
information M1: User A1: Ach A1: 1.20 (b) B1: Uses If co M1: Uses You	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For $n \ x \approx 6.29$ is cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their} \cdot 6.29^{\prime 2}}{2 \times 6 \times 5}$ ieves $\cos B = \frac{6^2 + 5^2 - (\text{awrt } 6.29)^2}{2 \times 6 \times 5}$ angles on a straight line formula. Score for $\pi - 1.2$ or allow awrt 1.94 as evidence. nverted to degrees accept awrt 111.2° as evidence a correct area formula for the sector or a correct area formula for the triangle. may follow through on an incorrectly found angle <i>DBC</i>	r				
information M1: Uses A1: Ach A1: 1.20 (b) B1: Uses If co M1: Uses You For e	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For $n \ x \approx 6.29$ is cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their} (6.29)^2}{2 \times 6 \times 5}$ ieves $\cos B = \frac{6^2 + 5^2 - (\text{awrt } 6.29)^2}{2 \times 6 \times 5}$ angles on a straight line formula. Score for $\pi - 1.2$ or allow awrt 1.94 as evidence. nverted to degrees accept awrt 111.2° as evidence a correct area formula for the sector or a correct area formula for the triangle. may follow through on an incorrectly found angle <i>DBC</i> example $2\pi - 1.2$ is acceptable but $180^\circ - 1.2$ is not as it is using mixed units.	r				
information M1: User A1: Ach A1: 1.20 (b) B1: Uses If co M1: Uses You For e If th	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For $n \ x \approx 6.29$ is cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their}' 6.29'^2}{2 \times 6 \times 5}$ ieves $\cos B = \frac{6^2 + 5^2 - (\text{awrt } 6.29)^2}{2 \times 6 \times 5}$ angles on a straight line formula. Score for $\pi - 1.2$ or allow awrt 1.94 as evidence. nverted to degrees accept awrt 111.2° as evidence a correct area formula for the sector or a correct area formula for the triangle. may follow through on an incorrectly found angle <i>DBC</i> example $2\pi - 1.2$ is acceptable but $180^\circ - 1.2$ is not as it is using mixed units. e angle was found in degrees, the correct formula must be used.	r				
informatio M1: Uses A1: Ach A1: 1.20 (b) B1: Uses If co M1: Uses You For e If th For	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For n $x \approx 6.29$ s cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their} (6.29)^2}{2 \times 6 \times 5}$ ieves $\cos B = \frac{6^2 + 5^2 - (\text{awrt } 6.29)^2}{2 \times 6 \times 5}$ ** angles on a straight line formula. Score for $\pi - 1.2$ or allow awrt 1.94 as evidence. nverted to degrees accept awrt 111.2° as evidence a correct area formula for the sector or a correct area formula for the triangle. may follow through on an incorrectly found angle <i>DBC</i> example $2\pi - 1.2$ is acceptable but $180^\circ - 1.2$ is not as it is using mixed units. e angle was found in degrees, the correct formula must be used. the triangle the correct combinations of sides and angle should be attempted.					
information M1: User A1: Ach A1: 1.20 (b) B1: Uses If co M1: Uses You For e If th For e.g.	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For n $x \approx 6.29$ s cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their} \cdot (6.29)^2}{2 \times 6 \times 5}$ ieves $\cos B = \frac{6^2 + 5^2 - (\text{awrt } 6.29)^2}{2 \times 6 \times 5}$ angles on a straight line formula. Score for $\pi - 1.2$ or allow awrt 1.94 as evidence. nverted to degrees accept awrt 111.2° as evidence a correct area formula for the sector or a correct area formula for the triangle. may follow through on an incorrectly found angle <i>DBC</i> example $2\pi - 1.2$ is acceptable but $180^\circ - 1.2$ is not as it is using mixed units. e angle was found in degrees, the correct formula must be used. the triangle the correct combinations of sides and angle should be attempted. You may see the area of triangle $ABD = \frac{1}{2}5 \times (\text{their} 6.29) \times \sin 1.1$ or $\frac{1}{2}6 \times (\text{their} 6.29) \times \sin (\text{their} 6.29) $					
information M1: User A1: Ach A1: 1.20 (b) B1: Uses If co M1: Uses You For e If th For e.g. dM1: Add	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For n $x \approx 6.29$ is cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their} \cdot 6.29^{12}}{2 \times 6 \times 5}$ ieves $\cos B = \frac{6^2 + 5^2 - (\text{awrt } 6.29)^2}{2 \times 6 \times 5}$ angles on a straight line formula. Score for $\pi - 1.2$ or allow awrt 1.94 as evidence. nverted to degrees accept awrt 111.2° as evidence a correct area formula for the sector or a correct area formula for the triangle. may follow through on an incorrectly found angle <i>DBC</i> example $2\pi - 1.2$ is acceptable but $180^\circ - 1.2$ is not as it is using mixed units. e angle was found in degrees, the correct formula must be used. the triangle the correct combinations of sides and angle should be attempted. You may see the area of triangle $ABD = \frac{1}{2}5 \times (\text{their} 6.29) \times \sin 1.1$ or $\frac{1}{2}6 \times (\text{their} 6.29) \times \sin (\text{the}$ is together a correct area formula for the sector and a correct area formula for the triangle.					
information M1: User A1: Ach A1: 1.20 (b) B1: Users If co M1: Users You For e If th For e.g. dM1: Add You	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For n $x \approx 6.29$ s cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their}' 6.29^{12}}{2 \times 6 \times 5}$ ieves $\cos B = \frac{6^2 + 5^2 - (\text{awrt } 6.29)^2}{2 \times 6 \times 5}$ angles on a straight line formula. Score for $\pi - 1.2$ or allow awrt 1.94 as evidence. nverted to degrees accept awrt 111.2° as evidence a correct area formula for the sector or a correct area formula for the triangle. may follow through on an incorrectly found angle <i>DBC</i> example $2\pi - 1.2$ is acceptable but $180^\circ - 1.2$ is not as it is using mixed units. e angle was found in degrees, the correct formula must be used. the triangle the correct combinations of sides and angle should be attempted. You may see the area of triangle $ABD = \frac{1}{2}5 \times (\text{their} 6.29) \times \sin 1.1$ or $\frac{1}{2}6 \times (\text{their} 6.29) \times \sin (\text{the})$ Is together a correct area formula for the sector and a correct area formula for the triangle.					
information M1: User A1: Ach A1: 1.20 (b) B1: Uses If co M1: Uses You For e If th For e.g. dM1: Add You	cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x . For n $x \approx 6.29$ is cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their} \cdot 6.29^{12}}{2 \times 6 \times 5}$ ieves $\cos B = \frac{6^2 + 5^2 - (\text{awrt } 6.29)^2}{2 \times 6 \times 5}$ angles on a straight line formula. Score for $\pi - 1.2$ or allow awrt 1.94 as evidence. nverted to degrees accept awrt 111.2° as evidence a correct area formula for the sector or a correct area formula for the triangle. may follow through on an incorrectly found angle <i>DBC</i> example $2\pi - 1.2$ is acceptable but $180^\circ - 1.2$ is not as it is using mixed units. e angle was found in degrees, the correct formula must be used. the triangle the correct combinations of sides and angle should be attempted. You may see the area of triangle $ABD = \frac{1}{2}5 \times (\text{their} 6.29) \times \sin 1.1$ or $\frac{1}{2}6 \times (\text{their} 6.29) \times \sin (\text{the}$ is together a correct area formula for the sector and a correct area formula for the triangle.					

Question	Scheme	Marks			
9. (a)	Uses $\frac{n}{2}(2 \times a + (n-1)d)$ with $n = 10$ to give $10a + 45d = 395$ *	B1* [1]			
(b)	Uses $\frac{n}{2}(2 \times a + (n-1)d)$ with $n = 18$ and $S = 927$	M1			
	Obtain $18a + 153d = 927$ or $2a + 17d = 103$	A1 [2]			
(c)	Solves simultaneous equations to find either <i>a</i> or <i>d</i> a = 26 and $d = 3$	M1 A1, A1 [3]			
(d)	Uses $a + (n-1)d$ with $n = 20$	M1			
	= 83	A1 [2]			
	Nistas	8 marks			
Mark the w	Notes vhole question as one.				
It is a Could It is ((b)	the correct formula for the sum of an AP with $n = 10$, $S = 395$ AND proceeds to the given an acceptable for the 395 to appear just at the answer stage. d use formula with $n = 10$, $S = 395$ and $l = a+9d$ DK to list but minimum would be $a + a + d + a + 2d$ $+ a + 9d = 395$				
M1: Obtai	n a correct second equation e.g. $927 = \frac{18}{2}(2 \times a + (18 - 1)d)$ or equivalent. Condone a slip on t	he 927.			
due to they m A1: A sim	that if the candidate reads 927 as 972 they will only have access to M marks in this question the fact that with this number, the values of a and d would be fractional and this could not nust be integers applified equation so accept either $18a + 153d = 927$ or $2a + 17d = 103$				
(c)	of one of these scores both marks.				
M1: Solve Do n to eit	M1: Solves simultaneous equations to find either a or d.Do not concern yourself with the process as calculators are allowed on this paper so score if they proceed to either a and/or d				
	ins correct a or d (just one) ins correct a and d (both)				
· ,	correct formula for <i>n</i> th term using their <i>a</i> and <i>d</i> but with $n = 20$. Look for $a'+19'd'$ ect answer				

10. (a) Use $\frac{\sin x}{\cos x} = \tan x$ to give $8\sin x = -3\cos^2 x$ M1 Use $\cos^2 x = 1 - \sin^2 x$ i.e. $8\sin x = -3(1 - \sin^2 x)$ M1 So $8\sin x = -3 + 3\sin^2 x$ and $3\sin^2 x - 8\sin x - 3 = 0^*$ [3 (b) Solves the three term quadratic " $3\sin^2 x - 8\sin x - 3 = 0^*$ M1 $8^{O}(\sin x) = -\frac{1}{3}$ (or 3) $(2\theta) = -19.47 \text{ or } 199.47 \text{ or } 340.53$ M1 A1, A1 $(2\theta) = -19.47 \text{ or } 199.47 \text{ or } 340.53$ [5 8 marks (a) Notes 1 M1: Use $\frac{\sin x}{\cos x} = \tan x$ to give $8\sin x = -3\cos^2 x$ or equivalent M1: Use $\frac{\sin x}{\cos x} = \tan x$ to give $8\sin x = -3(1 - \sin^2 x)$ May also be seen $8\tan x = -3\cos x \Rightarrow 8\tan x = -3(1 - \sin^2 x)$ May also be seen $8\tan x = -3\cos x \Rightarrow 8\tan x = -3(1 - \sin^2 x)$ M2 M3 M3 be given answer with no errors. (This is a given answer so do not tolerate bracketing or notation errors such as $\cos^2 x$ written as $\cos x^3$ or $\sin x$ appearing as $\sin 1$ (b) M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators. A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as $awrt = -0.333$ Condone errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x . The only stipulation is that invish $k_1 k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for $2\theta \cdot g$. $awrt = -9.5$ or 199.5 or 340.5 . It may also be implied by a correct answer for $\theta \cdot e_{\infty} awrt = -9.7$ or 350.3	Que	stion	Scheme	Marks
(b) Use $\cos^2 x = 1 - \sin^2 x$ i.e. $8 \sin x = -3(1 - \sin^2 x)$ So $8 \sin x = -3 + 3 \sin^2 x$ and $3 \sin^2 x - 8 \sin x - 3 = 0^*$ Solves the three term quadratic " $3 \sin^2 x - 8 \sin x - 3 = 0^*$ Solves the three term quadratic " $3 \sin^2 x - 8 \sin x - 3 = 0^*$ Solves the three term quadratic " $3 \sin^2 x - 8 \sin x - 3 = 0^*$ Solves the three term quadratic " $3 \sin^2 x - 8 \sin x - 3 = 0^*$ Solves the three term quadratic " $3 \sin^2 x - 8 \sin x - 3 = 0^*$ Solves the three term quadratic " $3 \sin^2 x - 8 \sin x - 3 = 0^*$ M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A	10.	(a)	Use $\frac{\sin x}{\cos x} = \tan x$ to give $8\sin x = -3\cos^2 x$	M1
(b) Solves the three term quadratic " $3\sin^2 x - 8\sin x - 3 = 0$ " Solves the three term quadratic " $3\sin^2 x - 8\sin x - 3 = 0$ " Solves the three term quadratic " $3\sin^2 x - 8\sin x - 3 = 0$ " Solves the three term quadratic " $3\sin^2 x - 8\sin x - 3 = 0$ " Solves the three term quadratic " $3\sin^2 x - 8\sin x - 3 = 0$ " Solves the three term quadratic " $3\sin^2 x - 8\sin x - 3 = 0$ " Solves the three term quadratic " $3\sin^2 x - 8\sin x - 3 = 0$ " Solves the three term quadratic " $3\sin^2 x - 8\sin x - 3 = 0$ " M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A				M1
Solves the three term quadrate $-5 \sin x - 8 \sin x - 3 = 0$ So (sin x) = $-\frac{1}{3}$ (or 3) (2 θ) = -19.47 or 199.47 or 340.53 θ = 99.7, 170.3, 279.7 or 350.3 (a) M1: Use $\frac{\sin x}{\cos x} = \tan x$ to give $8 \sin x = -3 \cos^2 x$ or equivalent M1: Use $\cos^2 x = 1 - \sin^2 x$ i.e. $8 \sin x = -3(1 - \sin^2 x)$ May also be seen $8 \tan x = -3 \cos x \Rightarrow 8 \tan x = -3\sqrt{1 - \sin^2 x}$ A1: Proceeds to given answer with no errors. (This is a given answer so do not tolerate bracketing or notation errors such as $\cos^2 x$ written as $\cos x^2$ or sin x appearing as \sin) (b) M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators. A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as $\operatorname{awrt} -0.333$ Condone errors on the lhs so accept for this mark $\frac{x/a}{\theta} = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x . The only stipulation is that invish $k, k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. awrt -19.5 or 199.5 or 340.5. It may also be implied by a correct answer for θ e.g. awrt -9.7 or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7, 170.3, 279.7$ or 350.3				A1 * [3]
(2 θ) = -19.47 or 199.47 or 340.53 θ = 99.7, 170.3, 279.7 or 350.3 (a) M1: Use $\frac{\sin x}{\cos x} = \tan x$ to give $8\sin x = -3\cos^2 x$ or equivalent M1: Use $\cos^2 x = 1 - \sin^2 x$ i.e. $8\sin x = -3(1 - \sin^2 x)$ May also be seen $8\tan x = -3\cos x \Rightarrow 8\tan x = -3\sqrt{1 - \sin^2 x}$ A1: Proceeds to given answer with no errors. (This is a given answer with no errors. (This is a given answer so do not tolerate bracketing or notation errors such as $\cos^2 x$ written as $\cos x^2$ or $\sin x$ appearing as $\sin 1$ (b) M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators. A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as $awrt -0.333$ Condone errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x. The only stipulation is that invsin k, $ k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. $awrt -9.7$ or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7, 170.3, 279.7$ or 350.3		(b)	Solves the three term quadratic " $3\sin^2 x - 8\sin x - 3 = 0$ "	M1
$(2\theta) = -19.47 \text{ or } 199.47 \text{ or } 340.53$ $\theta = 99.7, 170.3, 279.7 \text{ or } 350.3$ $(M1 \text{ A1, A1} \text{ [5]})$ $(a) M1: Use \frac{\sin x}{\cos x} = \tan x to give 8\sin x = -3\cos^2 x or equivalentM1: Use \cos^2 x = 1 - \sin^2 x i.e. 8\sin x = -3(1 - \sin^2 x)May also be seen 8\tan x = -3\cos x \Rightarrow 8\tan x = -3\sqrt{1 - \sin^2 x}A1: Proceeds to given answer with no errors.(This is a given answer with no errors.(This is a given answer so do not tolerate bracketing or notation errors such as \cos^2 x writtenas \cos x^2 or \sin x appearing as \sin 1)(b)M1: Solving quadratic by usual methods (see notes).If the formula is quoted it must be correct but allow solutions from calculators.A1: You only need to see -\frac{1}{3}.This is an intermediate answer so condone -\frac{1}{3} appearing as \operatorname{awrt} -0.333Condone errors on the lhs so accept for this mark \frac{x}{a} + \theta = -\frac{1}{3}, \sin x = -\frac{1}{3}, \sin 2x = -\frac{1}{3}dM1: Uses inverse sine to obtain an answer for 2\theta.This may appear as answers for x. The only stipulation is that invsin k, k < 1It is dependent upon seeing a correct method of solving their quadraticAccept answers rounding to 1 dp for 2\theta e.g. awrt -9.7 or 99.7 or 170.2A1: Two correct, awrt one dp \theta = 99.7, 170.3, 279.7 or 350.3$			So $(\sin x) = -\frac{1}{3}$ (or 3)	A1
(a) M1: Use $\frac{\sin x}{\cos x} = \tan x$ to give $8\sin x = -3\cos^2 x$ or equivalent M1: Use $\cos^2 x = 1 - \sin^2 x$ i.e. $8\sin x = -3(1 - \sin^2 x)$ May also be seen $8\tan x = -3\cos x \Rightarrow 8\tan x = -3\sqrt{1 - \sin^2 x}$ A1: Proceeds to given answer with no errors. (This is a given answer so do not tolerate bracketing or notation errors such as $\cos^2 x$ written as $\cos x^2$ or $\sin x$ appearing as $\sin 1$ (b) M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators. A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as $\operatorname{awrt} -0.333$ Condone errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x. The only stipulation is that invisin $k, k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. awrt -9.7 or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7, 170.3, 279.7$ or 350.3			5	
Notes8 marksNotes(a)Mil: Use $\frac{\sin x}{\cos x} = \tan x$ to give $8\sin x = -3\cos^2 x$ or equivalentMI: Use $\cos^2 x = 1 - \sin^2 x$ i.e. $8\sin x = -3(1 - \sin^2 x)$ May also be seen $8\tan x = -3\cos x \Rightarrow 8\tan x = -3\sqrt{1 - \sin^2 x}$ A1: Proceeds to given answer with no errors. (This is a given answer so do not tolerate bracketing or notation errors such as $\cos^2 x$ written as $\cos x^2$ or $\sin x$ appearing as $\sin $)(b)MI: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators.A1: You only need to $\sec - \frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as $awrt - 0.333$ Condone errors on the lhs so accept for this mark $\frac{x}{a}/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dMI: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x. The only stipulation is that invsin $k, k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. $awrt - 9.7$ or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7, 170.3, 279.7$ or 350.3				
Notes(a)M1: Use $\frac{\sin x}{\cos x} = \tan x$ to give $8\sin x = -3\cos^2 x$ or equivalentM1: Use $\cos^2 x = 1 - \sin^2 x$ i.e. $8\sin x = -3(1 - \sin^2 x)$ May also be seen $8\tan x = -3\cos x \Rightarrow 8\tan x = -3\sqrt{1 - \sin^2 x}$ A1: Proceeds to given answer with no errors. (This is a given answer so do not tolerate bracketing or notation errors such as $\cos^2 x$ written as $\cos x^2$ or $\sin x$ appearing as $\sin 1$ (b)M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators.A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as $awrt -0.333$ Condone errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x. The only stipulation is that invsin $k, k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. $awrt -19.5$ or 199.5 or 340.5 . It may also be implied by a correct answer for θ e.g. $awrt -9.7$ or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7, 170.3, 279.7$ or 350.3				[5]
(a) M1: Use $\frac{\sin x}{\cos x} = \tan x$ to give $8\sin x = -3\cos^2 x$ or equivalent M1: Use $\cos^2 x = 1 - \sin^2 x$ i.e. $8\sin x = -3(1 - \sin^2 x)$ May also be seen $8\tan x = -3\cos x \Rightarrow 8\tan x = -3\sqrt{1 - \sin^2 x}$ A1: Proceeds to given answer with no errors. (This is a given answer so do not tolerate bracketing or notation errors such as $\cos^2 x$ written as $\cos x^2$ or $\sin x$ appearing as $\sin 1$ (b) M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators. A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as $awrt-0.333$ Condone errors on the lhs so accept for this mark $\frac{x}{a} = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x. The only stipulation is that invsin k , $ k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. $awrt -19.5$ or 199.5 or 340.5. It may also be implied by a correct answer for θ e.g. $awrt -9.7$ or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7$, 170.3, 279.7 or 350.3				8 marks
M1: Use $\frac{\sin x}{\cos x} = \tan x$ to give $8\sin x = -3\cos^2 x$ or equivalent M1: Use $\cos^2 x = 1 - \sin^2 x$ i.e. $8\sin x = -3(1 - \sin^2 x)$ May also be seen $8\tan x = -3\cos x \Rightarrow 8\tan x = -3\sqrt{1 - \sin^2 x}$ A1: Proceeds to given answer with no errors. (This is a given answer so do not tolerate bracketing or notation errors such as $\cos^2 x$ written as $\cos x^2$ or $\sin x$ appearing as $\sin n$ (b) M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators. A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as $awrt - 0.333$ Condone errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x. The only stipulation is that invsin k, $ k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. $awrt - 9.7$ or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7$, 170.3 , 279.7 or 350.3			Notes	
M1: Use $\cos x$ is $x = 1 - \sin^2 x$ i.e. $8 \sin x = -3(1 - \sin^2 x)$ May also be seen $8 \tan x = -3 \cos x \Rightarrow 8 \tan x = -3\sqrt{1 - \sin^2 x}$ A1: Proceeds to given answer with no errors. (This is a given answer so do not tolerate bracketing or notation errors such as $\cos^2 x$ written as $\cos x^2$ or $\sin x$ appearing as $\sin x$) (b) M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators. A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as $awrt - 0.333$ Condone errors on the lhs so accept for this mark $\frac{x}{a} = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x. The only stipulation is that invsin k , $ k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. $awrt - 19.5$ or 199.5 or 340.5 . It may also be implied by a correct answer for θ e.g. $awrt - 9.7$ or 99.7 or 170.2 A1: Two correct, $awrt$ one dp $\theta = 99.7$, 170.3 , 279.7 or 350.3	(a)			
May also be seen 8 tan $x = -3\cos x \Rightarrow 8$ tan $x = -3\sqrt{1-\sin^2 x}$ A1: Proceeds to given answer with no errors. (This is a given answer so do not tolerate bracketing or notation errors such as $\cos^2 x$ written as $\cos x^2$ or sin x appearing as sin) (b) M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators. A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as awrt-0.333 Condone errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x. The only stipulation is that invsin k , $ k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. $awrt -19.5$ or 199.5 or 340.5. It may also be implied by a correct answer for θ e.g. $awrt -9.7$ or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7$, 170.3, 279.7 or 350.3	M1:	Use $\frac{s}{c}$	$\frac{\ln x}{\cos x} = \tan x$ to give $8\sin x = -3\cos^2 x$ or equivalent	
A1: Proceeds to given answer with no errors. (This is a given answer so do not tolerate bracketing or notation errors such as $\cos^2 x$ written as $\cos x^2$ or $\sin x$ appearing as $\sin x$) (b) M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators. A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as $awrt -0.333$ Condone errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x. The only stipulation is that invsin k , $ k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. $awrt -19.5$ or 199.5 or 340.5 . It may also be implied by a correct answer for θ e.g. $awrt -9.7$ or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7$, 170.3 , 279.7 or 350.3	M1:	Use c	$\cos^2 x = 1 - \sin^2 x$ i.e. $8 \sin x = -3(1 - \sin^2 x)$	
(This is a given answer so do not tolerate bracketing or notation errors such as $\cos^2 x$ written as $\cos x^2$ or $\sin x$ appearing as $\sin x$) (b) M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators. A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as awrt-0.333 Condone errors on the lhs so accept for this mark $\frac{x}{a} = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x. The only stipulation is that invsin k , $ k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. awrt-19.5 or 199.5 or 340.5. It may also be implied by a correct answer for θ e.g. awrt-9.7 or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7$, 170.3, 279.7 or 350.3				
as $\cos x^2$ or $\sin x$ appearing as $\sin x$ (b) M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators. A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as awrt-0.333 Condone errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x. The only stipulation is that invsin k , $ k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. $awrt -19.5$ or 199.5 or 340.5 . It may also be implied by a correct answer for θ e.g. $awrt -9.7$ or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7$, 170.3 , 279.7 or 350.3	A1:		-	
(b) M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators. A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as awrt-0.333 Condone errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x. The only stipulation is that invsin k , $ k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. awrt-19.5 or 199.5 or 340.5. It may also be implied by a correct answer for θ e.g. awrt-9.7 or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7$, 170.3, 279.7 or 350.3				
M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators. A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as awrt-0.333 Condone errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for <i>x</i> . The only stipulation is that invsin <i>k</i> , $ k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. awrt -19.5 or 199.5 or 340.5. It may also be implied by a correct answer for θ e.g. awrt -9.7 or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7$, 170.3, 279.7 or 350.3	(b)	as cos	x of sin x appearing as sin)	
A1: You only need to see $-\frac{1}{3}$. This is an intermediate answer so condone $-\frac{1}{3}$ appearing as awrt-0.333 Condone errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x. The only stipulation is that invsin k , $ k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. awrt -19.5 or 199.5 or 340.5. It may also be implied by a correct answer for θ e.g. awrt -9.7 or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7$, 170.3, 279.7 or 350.3		Solvin	g quadratic by usual methods (see notes).	
This is an intermediate answer so condone $-\frac{1}{3}$ appearing as awrt-0.333 Condone errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for x. The only stipulation is that invsin k, $ k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. awrt -19.5 or 199.5 or 340.5. It may also be implied by a correct answer for θ e.g. awrt -9.7 or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7$, 170.3, 279.7 or 350.3				
Condone errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ . This may appear as answers for <i>x</i> . The only stipulation is that invsin <i>k</i> , $ k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. awrt -19.5 or 199.5 or 340.5. It may also be implied by a correct answer for θ e.g. awrt -9.7 or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7$, 170.3, 279.7 or 350.3	A1:	You o	only need to see $-\frac{1}{3}$.	
 dM1: Uses inverse sine to obtain an answer for 2θ. This may appear as answers for x. The only stipulation is that invsin k, k < 1 It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. awrt -19.5 or 199.5 or 340.5. It may also be implied by a correct answer for θ e.g. awrt -9.7 or 99.7 or 170.2 A1: Two correct, awrt one dp θ = 99.7, 170.3, 279.7 or 350.3 		This is	an intermediate answer so condone $-\frac{1}{3}$ appearing as awrt -0.333	
This may appear as answers for x. The only stipulation is that invsin k , $ k < 1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. awrt –19.5 or 199.5 or 340.5. It may also be implied by a correct answer for θ e.g. awrt –9.7 or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7$, 170.3, 279.7 or 350.3		Condo	one errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$	
It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. awrt –19.5 or 199.5 or 340.5. It may also be implied by a correct answer for θ e.g. awrt –9.7 or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7$, 170.3, 279.7 or 350.3	dM1	: Uses	inverse sine to obtain an answer for 2θ .	
Accept answers rounding to 1 dp for 2θ e.g. awrt -19.5 or 199.5 or 340.5. It may also be implied by a correct answer for θ e.g. awrt -9.7 or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta = 99.7, 170.3, 279.7$ or 350.3		This r	nay appear as answers for x. The only stipulation is that invsin $k, k < 1$	
A1: Two correct, awrt one dp $\theta = 99.7, 170.3, 279.7$ or 350.3		Accep	bt answers rounding to 1 dp for 2θ e.g. awrt –19.5 or 199.5 or 340.5.	
-	A1:	-		
	A1:		-	

Question	Scheme	Marks		
11				
11. (a)	$(13k-5)x^2 - 12kx - 6 = 0$ or $(5-13k)x^2 + 12kx + 6 = 0$	B1		
(a)	Uses $b^2 - 4ac$ with $a = \pm 13k \pm 5$, $b = \pm 12k$ and $c = \pm 6$	M1		
	And states $b^2 - 4ac > 0$ with $a = \pm (13k-5), b = \pm 12k$ and $c = \pm 6$	Alft		
	Proceeds correctly with no errors to $6k^2 + 13k - 5 > 0$ *	A1*		
		[4]		
(b)	Attempts to solve $6k^2 + 13k - 5 = 0$ to give $k =$	M1		
	\Rightarrow Critical values, $k = \frac{1}{3}, \frac{-5}{2}$	A1		
	$6k^2 + 13k - 5 > 0$ gives $k > \frac{1}{3}$ (or) $k < \frac{-5}{2}$	M1 A1		
		[4] 8 marks		
	Notes	o marks		
(a)	Totes	<u> </u>		
M1: Atten or us or us A1: Uses A1*: Proce Cond Watc (b) M1: Uses or fi A1: Obta	M1: Uses factorisation, formula, or completion of square method to find two values for k , or finds two correct answers with no obvious method for their three term quadratic			
M1: Cho inequ Awar Cond	Also condone $x = \frac{1}{3}$, $\frac{-5}{2}$ for this mark. I1: Chooses outside region ($k <$ Their Lower Limit $k >$ Their Upper Limit) for appropriate 3 term quadratic inequality. Do not award simply for diagram or table. Award if final answer is $k \ge \frac{1}{3}$ (or) $k \le \frac{-5}{2}$ or $\frac{1}{3} < k < \frac{-5}{2}$ Condone <i>x</i> appearing instead of <i>k</i> 1: $k > \frac{1}{3}$ (or) $k < \frac{-5}{2}$ $\left(k \ne \frac{5}{13}\right)$ must be exact and must be <i>k</i> .			
Mus	Must be two separate inequalities and not be $k > \frac{1}{3}$ and $k < \frac{-5}{2}$			

Question	Scheme	Marks			
12 (a)	$f(x) = \frac{x^3 - 9x^2 - 81x}{27} = 0 \Rightarrow x(x^2 - 9x - 81) = 0$	M1			
	$x = \frac{9 \pm \sqrt{81 + 324}}{2}$	dM1			
	$x = \frac{9 \pm \sqrt{405}}{2}$ or $x = \frac{9 \pm 9\sqrt{5}}{2}$	A1 A1 [4]			
(b)	Differentiates (usual rules), correctly and sets = 0 $f'(x) = 3x^2 - 18x - 81 = 0$	M1, A1			
	Solves $f'(x) = 0$ (or multiple) $\Rightarrow x = 9$ and -3	dM1 A1			
	Substitutes one of their values for x into $f(x)$	ddM1			
	x = 9 y = -27 and $x = -3 y = 5$	A1			
		[6]			
(c)	a = 9	B1			
		[1]			
		11 marks			
	Notes				
(a) M1· Atte	mpts to solve $f(x) = 0$, by taking out a factor of (/cancelling by) x and obtaining a quadratic	factor			
	w on $x\left(\frac{x^2}{27} - \frac{9x}{27} - \frac{81}{27}\right) = 0$ or just the numerator $x(x^2 - 9x - 81) = 0$				
	is implied by sight of $x^2 - 9x - 81 = 0$				
dM1: Use	es formula or completion of square method to find at least one value for x , for their three to	erm			
	Factorisation is M0. Note that their 3 term quadratic equation may be $\frac{1}{27}x^2 - \frac{1}{3}x - 3 = 0$				
	correct solution – need not be fully simplified. So allow $x = \frac{9 + \sqrt{405}}{2}$ but not $x = \frac{9 + \sqrt{81 + 32}}{2}$	<u>4</u>			
Special ca answers to	correct solutions – need not be simplified or attributed correctly to A or B . ase: If a candidate takes out a common factor of x and uses a calculator to write down the e the quadratic they have used (a limited) amount of algebra. Decimals would not be award	ed for this			
SC. We w	ill therefore score this SC M1 M1 A0 A0 for 2 out of 4. $x(x^2 - 9x - 81) = 0 \Rightarrow x = \frac{9 \pm 9\sqrt{5}}{2}$ Ju	st writing			
down the answers with no working scores 0 marks					
(b)					
	erentiates $f(x)$ to a 3 term quadratic may see confusion over the 27 but score for $f'(x)$ being a 3 term quadratic				
	erentiates correctly and sets correct derivative $= 0$				
	$3x^2 - 18x - 81 = 0$ or any multiple thereof. For example it may be common to see $\frac{3x^2}{27} - \frac{18x}{27} - \frac{81}{27} = 0$				
dM1: Solv Allo	dM1: Solves quadratic to give two solutions. It is dependent upon the previous M. Allow any appropriate method including the use of a calculator.				
Con	adone $\frac{x^2}{9} - \frac{2x}{3} - 3 = 0 \Rightarrow (x-9)(x+3) = 0$				
9 3 A1: Gives both 9 and -3					
ddM1: Substitute at least one of their values of x (obtained from a solution of $f'(x) = 0$) into $f(x)$ to give $y = .$					
A1: Gives both -27 and 5 (arising from x values of 9 and -3) (Do not require coordinates).					
	Again they do not need to be attributed correctly to C or D				
(c) B1: For <i>a</i>	(c) B1: For $a = 9$ only (no ft)				

Question		Scheme	Marks
13 (a)	See $(x\pm 1)^2 + (y\pm 3)^2 = r^2$	Or see $x^2 + y^2 \pm 2x \pm 6y + c = 0$	M1
	Attempt $\sqrt{(8-1)^2 + (-2-(-3))^2}$ or $(8-1)^2 + (-2-(-3))^2$	Substitute $(8, -2)$ into equation	M1
	$(x-1)^2 + (y+3)^2 = 50$	$x^2 + y^2 - 2x + 6y - 40 = 0$	A1, A1
(b)	Gradient of $AP = \frac{1}{7}$		B1
	So gradient of tangent is -7		M1 dM1
	Equation of tangent is $(y + 2) = -7(x - 8)$		
	y = -7x + 54 or $m = -7$, $c = 54$		A1 [4
	Way 1	Way 2	
(c)	y = x + 6 meets circle when $(x - 1)^2 + (x + 9)^2 = 50$ or when $(y - 7)^2 + (y + 3)^2 = 50$	As tangent has gradient 1 AQ has gradient -1 and $\frac{y - (-3)}{x - 1} = -1$	M1
	i.e. $2x^2 + 16x + 32 = 0$ or when $2y^2 - 8y + 8 = 0$	y + x = -2	A1
	Solve to give x or $y =$	Solve $y + x = -2$ with $y = x + 6$ or alternatively solve $y + x = -2$ with the equation of the circle to give x or $y =$	M1
	Substitute to give y	y = (or x =)	dM1
	(-4,2	2) only	A1 [5
			13 marks
(a)		Notes	
M1: Scored It need If the 1		or the radius ² (see scheme).	
		$= 50 \text{ or } x^2 + y^2 - 2x + 6y - 40 = 0 o$	
(b) B1 : Obtair	n 1/7 . Implied by use of – 7 in their t negative reciprocal		
M1: Uses dM1: Linea A1: cao	ar equation through point (8, -2) with	r then negative recipiocal gradient	
M1: Uses dM1: Linea A1: cao (c) M1: Elimir A1: Correc M1: Solves	nates x or y from two relevant equation of quadratic in x or in y is (with usual rules) to give first varial		oth previous

Question	Scheme	Marks
14.	$y = -x^2 + 6x - 8$	
(a)	$\frac{dy}{dx} = -2x + 6$ and substitutes $x = 5$ to give gradient $= m = -4$	M1 A1
	Normal has gradient $\frac{-1}{m} = \left(\frac{1}{4}\right)$	M1
	Equation of normal is $(y+3) = "\frac{1}{4}"(x-5)$ so $x-4y-17 = 0$	dM1 A1 [5]
(b)	$\int -x^2 + 6x - 8 \mathrm{d}x = -\frac{x^3}{3} + 6\frac{x^2}{2} - 8x$	M1
	The Line meets the x-axis at 17	B1
	The Curve meets the x-axis at 4 Uses correct limits correctly for their integral	B1
	i.e. $\left[-\frac{x^3}{3} + 6\frac{x^2}{2} - 8x\right]_4^5 = -\frac{5^3}{3} + 6\frac{5^2}{2} - 8 \times 5 - (-\frac{4^3}{3} + 6\frac{4^2}{2} - 8 \times 4)$	M1
	Finds area above line, using area of triangle or integration $=\frac{1}{2} \times 3 \times ("17"-5)$	M1
	Area of $R = 18 + 1\frac{1}{3} = 19\frac{1}{3}$	A1
		[6]
		11 marks

Notes (a) **M1:** Differentiates to give $\frac{dy}{dx} = \pm 2x \pm 6$ and substitutes x = 5A1: Obtains answer -4. M1: Uses negative reciprocal of their numerical $\frac{dy}{dx}$ (follow through). M1 must have been awarded **dM1:** Linear equation through point (5, -3) with their **changed** gradient. Dependent upon the first M, so you would allow for (y+3) = 4(x-5) following an answer of -4 A1: cao accept k(x-4y-17) = 0 where k is a positive or negative integer Candidates who work with a gradient of ± 2 from their $\frac{dy}{dx} = \pm 2x \pm 6$ will score 0 marks in this part of the question. (b) M1: Integrates a quadratic expression correctly. If they integrate (line -curve) follow through on their new quadratic The terms including the coefficients must be correct for their quadratic **B1:** Obtains 17 for the point where the line meets the *x* - axis **B1:** Finds that the curve meets the x axis at 4. You may score this for $y = 0 \Rightarrow x = 2, 4$ ignoring even an incorrect 2 Also allow for a limit in the integral. You may even score this if 4 appears (in the correct place) on the diagram M1: Uses the limits 4 and 5 in their integrated function If a candidate writes down $\int \pm (-x^2 + 6x - 8) dx = \pm \frac{4}{3}$ (from a GC) we will allow them to score this mark. M1: Finds appropriate area above the line for their attempted integral, so if they integrate just curve look for area of triangle $=\frac{1}{2} \times 3 \times "their 17-5"$ or $\int \left\| \left(\frac{1}{4}x - \frac{17}{4}\right)^{n} dx \right\|_{5}^{1/2} dx = \left[\frac{1}{8}x^{2} - \frac{17}{4}x\right]_{5}^{1/2}$ if they integrate (line - curve) from 4 to 5, then the triangle would be $=\frac{1}{2} \times their \frac{13}{4} \times their 17-4$ " A1: correct work leading to $19\frac{1}{2}$ A candidate who does the integration on a GC can potentially score M0 B1 B1 M1 M1 A0

www.yesterdaysmathsexam.com	n
-----------------------------	---

<u> </u>	www.yesterdaysmathsexam.com		
Question	Scheme	Marks	
15 (a)	$200 = \pi r^2 + \pi rh + 2 rh$	M1 A1	
	$(h=)\frac{200-\pi r^2}{\pi r+2r}$ or $(rh=)\frac{200-\pi r^2}{\pi+2}$	dM1	
	$V = \frac{1}{2}\pi r^2 h =$	M1	
	$\Rightarrow V = \frac{\pi r^2 (200 - \pi r^2)}{2(2r + \pi r)} = \frac{\pi r (200 - \pi r^2)}{4 + 2\pi} \qquad *$	A1 cso *	[5]
(b)	$\frac{dV}{dr} = \frac{200\pi - 3\pi^2 r^2}{4 + 2\pi}$ Accept awrt $\frac{dV}{dr} = 61.1 - 2.9r^2$	M1 A1	[-]
	$\frac{200\pi - 3\pi^2 r^2}{4 + 2\pi} = 0 \text{or} \ 200\pi - 3\pi^2 r^2 = 0 \text{leading to} r^2 =$	dM1	
	$r = \sqrt{\frac{200}{3\pi}}$ or answers which round to 4.6	dM1 A1	
	V = 188	B1	[6]
(c)	$\frac{d^2 V}{dr^2} = \frac{-6\pi^2 r}{4+2\pi}, \text{ and sign considered} \qquad \text{Accept } \frac{d^2 V}{dr^2} = \text{awrt} - 5.8r$	M1	
	$\frac{d^2 V}{dr^2} = -27 < 0$ and therefore maximum	A1	
	$dr^{2} _{r=.}$		[2]
		13 marks	

www.yesterdaysmathsexam.com
Notes
 (a) M1: Sets total surface area equal to 200 with at least two correct terms. Note that 200 = 2πr² + πrh or even 200 = πr² + πrh + πr² does not mean that two terms are correct. A1: Completely correct 200 = πr² + πrh + 2rh dM1: Makes h or rh the subject of their formula which must have had two terms in h This is dependent upon the previous M1
M1 : Gives formula for volume. This may be implied by sight of $V = \frac{1}{2}\pi r^2 \times \text{their } h$
A1*: cso – substitutes for <i>r</i> or for <i>rh</i> correctly and proceeds correctly to $V = \frac{\pi r (200 - \pi r^2)}{4 + 2\pi}$
(b) Parts b and c can be scored together
M1: Attempts to differentiate V or numerator of V Accept $\frac{dV}{dr} = A \pm Br^2$
You may see $(4+2\pi)\frac{dV}{dr} = A \pm Br^2$ if candidates multiply by $(4+2\pi)$ first
A1: Accept any equivalent correct answer or correct numerator if only this was considered. Also accept decimals.
dM1: Setting $\frac{dV}{dr} = 0$ and finding a value for r^2 using correct mathematics (May be implied by answer).
Note that you may not see r^2 . It is acceptable to go straight to r. Allow $\frac{dy}{dr} = 0$
 dM1: Using square root to find <i>r</i>. Dependent upon all previous M's. An answer of 5 for <i>r</i> following a correct derivative may imply this mark as some candidates find r to the nearest cm rather than V to the nearest cm³. If you don't see incorrect work you may award this mark.
A1: For any equivalent correct answer. Accept $r = \sqrt{\frac{200}{3\pi}}$ or awrt 4.6
Correct answer implies previous two M marks B1 : Obtain <i>V</i> = 188 Exact answer only. Do not accept, for example, 187.8 (c)
M1: Score for either a second derivative of $\frac{d^2V}{dr^2} = \pm Cr$ and considers the sign.
It can be implied by $\frac{\pi r(200 - \pi r^2)}{4 + 2\pi} \rightarrow A \pm Br^2 \rightarrow \pm Cr$ and a consideration of the sign
Or a second derivative of $\frac{d^2V}{dr^2} = \pm Cr$ and substitutes in their value of 'r' from (b)
Or a completely correct second derivative $\frac{d^2V}{dr^2} = \frac{-6\pi^2 r}{4+2\pi} \operatorname{accept} \frac{d^2V}{dr^2} = \operatorname{awrt} -5.76r$
A1: Clear statements and conclusion. For both marks
(1) $\frac{d^2V}{dr^2}$ must be correct (see above), not just the numerator.
(2) A statement (which could be implied) that when their r (which does not need to be correct) is
substituted into $\frac{d^2V}{dr^2}$ then $\frac{d^2V}{dr^2}$ is either negative or < 0
(3) and a minimal conclusion such as hence maximum
For example, accept for both marks $\frac{d^2V}{dr^2} = -5.76r$ When $r = 4.5 \Rightarrow \frac{d^2V}{dr^2} < 0$, hence max

www.yesterdaysmathsexam.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R \mbox{ORL}