

Mark Scheme (Results)
June 2014

Pearson Edexcel GCE in Core Mathematics 4R (6666/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038470
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

SOME GENERAL PRINCIPLES FOR CORE MATHS MARKING

(But the particular mark scheme always takes precedence)
Method mark for solving 3 term quadratic:

Question Number	Scheme
3(b)	Factorising/Solving a quadratic equation is tested in Question 3(b). Method mark for solving a 3 term quadratic: 1. Factorisation $\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $\|p q\|=\|c\|$, leading to $x=\ldots$ $\left(a x^{2}+b x+c\right)=(m x \pm p)(n x \pm q)$, where $\|p q\|=\|c\|$ and $\|m n\|=\|a\|$, leading to $x=\ldots$ 2. Formula Attempt to use correct formula (with values for a, b and $c)$. 3. Completing the square Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $x=\ldots$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values (but refer to the mark scheme first... the application of this principle may vary). Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but will be lost if there is any mistake in the working.

Answers without working

The rubric says that these may gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.
These are not common. In clear cases, please deduct the first 2 A (or B) marks which would have been lost by following the scheme. (Note that 2 marks is the maximum misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).
Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.

1. (a) ctd

Note

You cannot recover correct work for part (a) in part (b). i.e. if the correct answer to (a) appears as part of their solution in part (b), it cannot be credited in part (a).
SC If a candidate would otherwise score A0A0 then allow Special Case $\mathbf{1}^{\text {st }}$ A1 for either SC: $\frac{1}{3}\left[1+\frac{5}{9} x ; \ldots\right]$ or SC: $\lambda\left[1+\frac{5}{9} x+\frac{25}{54} x^{2}+\ldots\right]$ or SC: $\left[\lambda+\frac{5 \lambda}{9} x+\frac{25 \lambda}{54} x^{2}+\ldots\right]$ (where λ can be 1 or omitted), with each term in the [.........] is a simplified fraction

Special case for the M1 mark

Award Special Case M1 for a correct simplified or un-simplified $1+n(k x)+\frac{n(n-1)}{2!}(k x)^{2}$ expansion with a value of $n \neq-\frac{1}{2}, n \neq \boldsymbol{p o s i t i v e}$ integer and a consistent $(k x)$. Note that ($k x$) must be consistent (on the RHS, not necessarily the LHS) in a candidate's expansion.
Note that $k \neq 1$.
Note
Candidates who write $\left\{\frac{1}{3}\right\}\left[1+\left(-\frac{1}{2}\right)\left(\frac{10 x}{9}\right)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(\frac{10 x}{9}\right)^{2}+\ldots\right]$
where $k=\frac{10}{9}$ and not $-\frac{10}{9}$ and achieve $\frac{1}{3}-\frac{5}{27} x ;+\frac{25}{162} x^{2}+\ldots$ will get B1B1M1A0A1.
(b)

M1
Note
Note
M1
Note
Writes down $(3+x)$ (their part (a) answer, at least 2 of the 3 terms.)
$(3+x)\left(\frac{1}{4}+\frac{5}{4} x+\ldots\right)$ or $(3+x)\left(\frac{1}{3}+\frac{5}{27} x+\frac{25}{162} x^{2}+\ldots\right)$ are fine for M1.
This mark can also be implied by candidate multiplying out to find two terms (or coefficients) in x. Multiplies out to give exactly one constant term, exactly 2 terms in x and exactly 2 terms in x^{2}. This M1 mark can be implied. You can also ignore x^{3} terms.
$1+\frac{8}{9} x+\frac{35}{54} x^{2}+\ldots$

Alternative Methods for part (a)

Alternative method 1: Candidates can apply an alternative form of the binomial expansion.
$\left\{\frac{1}{\sqrt{(9-10 x)}}=\right\}(9-10 x)^{-\frac{1}{2}}=(9)^{-\frac{1}{2}}+\left(-\frac{1}{2}\right)(9)^{-\frac{3}{2}}(-10 x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(9)^{-\frac{5}{2}}(-10 x)^{2}$
B1 Writes down $(9-10 x)^{-\frac{1}{2}}$ or uses power of $-\frac{1}{2}$.
B1 $9^{-\frac{1}{2}}$ or $\frac{1}{3}$
M1 Any two of three (un-simplified or simplified) terms correct.
A1 $\frac{1}{3}+\frac{5}{27} x$
A1 $\quad \frac{25}{162} x^{2}$
Note The terms in C need to be evaluated, so ${ }^{-\frac{1}{2}} C_{0}(9)^{-\frac{1}{2}}+{ }^{-\frac{1}{2}} C_{1}(9)^{-\frac{3}{2}}(-10 x)+{ }^{-\frac{1}{2}} C_{2}(9)^{-\frac{5}{2}}(-10 x)^{2}$ without further working is B1B0M0A0A0.

1. (a) Alternative Method 2: Maclaurin Expansion

Let $\mathrm{f}(x)=\frac{1}{\sqrt{(9-10 x)}}$
$\{\mathrm{f}(x)=\}(9-10 x)^{-\frac{1}{2}}$

$$
(9-10 x)^{-\frac{1}{2}}
$$

$$
f^{\prime \prime}(x)=75(9-10 x)^{-\frac{5}{2}}
$$

$$
f^{\prime}(x)=\left(-\frac{1}{2}\right)(9-10 x)^{-\frac{3}{2}}(-10)
$$

$$
\pm a(9-10 x)^{-\frac{3}{2}} ; a \neq \pm 1
$$

$\left\{\therefore \mathrm{f}(0)=\frac{1}{3}, \mathrm{f}^{\prime}(0)=\frac{5}{27}\right.$ and $\left.\mathrm{f}^{\prime \prime}(0)=\frac{75}{243}=\frac{25}{81}\right\}$
$\mathrm{f}(x)=\frac{1}{3}+\frac{5}{27} x ;+\frac{25}{162} x^{2}+\ldots$

2. (a) Bracketing mistake: Unless the final answer implies that the calculation has been done correctly.
contd
Award B1M0A0 for $\frac{1}{2} \times 0.5+2+2(4.077+7.389+10.043)+0 \quad$ (nb: answer of 45.268$)$.

Alternative method for part (a): Adding individual trapezia

Area $\approx 0.5 \times\left[\frac{2+4.077}{2}+\frac{4.077+7.389}{2}+\frac{7.389+10.043}{2}+\frac{10.043+0}{2}\right]=11.2545=11.25(2 \mathrm{dp})$ cao

B1	0.5 and a divisor of 2 on all terms inside brackets.

M1 First and last ordinates once and the middle ordinates twice inside brackets ignoring the 2.
A1 11.25 cao
(b)

B0
Give B0 for

- smaller values of x and/or y.
- use more decimal places
(c)

M1
A1 $(2-x) \mathrm{e}^{2 x} \rightarrow \frac{1}{2}(2-x) \mathrm{e}^{2 x}-\int-\frac{1}{2} \mathrm{e}^{2 x}\{\mathrm{~d} x\}$ either un-simplified or simplified. Correct expression, i.e. $\frac{1}{2}(2-x) \mathrm{e}^{2 x}+\frac{1}{4} \mathrm{e}^{2 x}$ or $\frac{5}{4} \mathrm{e}^{2 x}-x \mathrm{e}^{2 x} \quad$ (or equivalent) which is dependent on the $1^{\text {st }} \mathrm{M} 1$ mark being awarded.
Complete method of applying limits of 2 and 0 to all terms and subtracting the correct way round.
Note Evidence of a proper consideration of the limit of 0 is needed for M1. So, just subtracting zero is M0.
A1 $\frac{1}{4} \mathrm{e}^{4}-\frac{5}{4}$ or $\frac{\mathrm{e}^{4}-5}{4}$. Do not allow $\frac{1}{4} \mathrm{e}^{4}-\frac{5}{4} \mathrm{e}^{0}$ unless simplified to give $\frac{1}{4} \mathrm{e}^{4}-\frac{5}{4}$
Note
Note $12.39953751 \ldots$ without seeing $\frac{1}{4} \mathrm{e}^{4}-\frac{5}{4}$ is A0.
12.39953751... from NO working is M0A0A0M0A0.

Question 3 Notes

3. (a)

Differentiates implicitly to include either $\pm 4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $y^{2} \rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ or $2 y \rightarrow 2 \frac{\mathrm{~d} y}{\mathrm{~d} x}$. (Ignore $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right)$).

A1

Note
Note
(b)

If a candidate applies the alternative method then they also need to use their $y=\frac{x+5}{2}$ in order to find at least one value for y in order to gain the final M1. $y=\frac{7}{3}, 5$. cao. (2.33 or 2.3 without reference to $\frac{7}{3}$ or $2 \frac{1}{3}$ is not allowed for this mark.)

Note

 It is possible for a candidate who does not achieve full marks in part (a), (but has a correct numerator for $\frac{\mathrm{d} y}{\mathrm{~d} x}$) to gain all 5 marks in part (b).| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 4. (a) | $\begin{gathered} \frac{25}{x^{2}(2 x+1)} \equiv \frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{(2 x+1)} \\ B=25, C=100 \end{gathered}$
 At least one of " B " or " C " correct. Breaks up their partial fraction correctly into three terms and both" B " $=25$ and " C " $=100$.
 See notes. | B1
 B1 cso |
| | $\begin{aligned} & 25 \equiv A x(2 x+1)+B(2 x+1)+C x^{2} \\ & x=0, \quad 25=B \\ & x=-\frac{1}{2}, \quad 25=\frac{1}{4} C \Rightarrow C=100 \\ & x^{2} \text { terms }: \quad 0=2 A+C \\ & \quad 0=2 A+100 \Rightarrow A=-50 \\ & x^{2}: 0=2 A+C, \quad x: 0=A+2 B, \\ & \text { constant }: 25=B \end{aligned}$
 Writes down a correct identity and attempts to find the value of either one of " A ", " B " or " C ". | M1 |
| | leading to $A=-50$ Correct value for " A " which is found using a
 correct identity and follows from their partial
 fraction decomposition.
 $\left\{\frac{25}{x^{2}(2 x+1)} \equiv-\frac{50}{x}+\frac{25}{x^{2}}+\frac{100}{(2 x+1)}\right\}$ | $\begin{array}{ll}\text { A1 } \\ \\ & \text { [4] }\end{array}$ |
| (b) | $V=\pi \int_{1}^{4}\left(\frac{5}{x \sqrt{(2 x+1)}}\right)^{2} \mathrm{~d} x$
 For $\pi \int\left(\frac{5}{x \sqrt{(2 x+1)}}\right)^{2}$
 Ignore limits and $\mathrm{d} x$. Can be implied.
 For their partial fraction | B1 |
| | $\begin{array}{rr} \left\{\int \frac{25}{x^{2}(2 x+1)} \mathrm{d} x=\int-\frac{50}{x}+\frac{25}{x^{2}}+\frac{100}{(2 x+1)} \mathrm{d} x\right\} \\ =-50 \ln x+\frac{25 x^{-1}}{(-1)}+\frac{100}{2} \ln (2 x+1)\{+c\} \quad & \quad \begin{array}{l} \text { Either } \pm \frac{A}{x} \rightarrow \pm a \ln x \text { or } \pm a \ln k x \text { or } \\ x^{2} \end{array} \quad \pm b x^{-1} \text { or } \frac{C}{(2 x+1)} \rightarrow \pm c \ln (2 x+1) \\ \text { At least two terms correctly integrated } \\ \text { All three terms correctly integrated. } \end{array}$ | |
| | $\begin{aligned} \left\{\int_{1}^{4} \frac{25}{x^{2}(2 x+1)} \mathrm{d} x\right. & \left.=\left[-50 \ln x-\frac{25}{x}+50 \ln (2 x+1)\right]_{1}^{4}\right\} \\ & =\left(-50 \ln 4-\frac{25}{4}+50 \ln 9\right)-(0-25+50 \ln 3) \\ & =50 \ln 9-50 \ln 4-50 \ln 3-\frac{25}{4}+25 \\ & =50 \ln \left(\frac{3}{4}\right)+\frac{75}{4} \end{aligned}$
 Applies limits of 4 and 1 and subtracts the correct way round. |
 A1 oe |
| | | $[6]$
 10 |

4. (b) Alternative method of integration

$V=\pi \int_{1}^{4}\left(\frac{5}{x \sqrt{(2 x+1)}}\right)^{2} \mathrm{~d} x$	B1	For $\pi \int\left(\frac{5}{x \sqrt{(2 x+1)}}\right)^{2}$ Ignore limits and $\mathrm{d} x$. Can be implied.
$\int \frac{25}{x^{2}(2 x+1)} \mathrm{d} x ; u=\frac{1}{x} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=-\frac{1}{x^{2}}$		
$=\int \frac{-25}{\left(\frac{2}{u}+1\right)} \mathrm{d} u=\int \frac{-25}{\left(\frac{2+u}{u}\right)} \mathrm{d} u=\int \frac{-25 u}{(2+u)} \mathrm{d} u$	-25	$\int \frac{2+u-2}{(2+u)} \mathrm{d} u$
$=-25 \int 1-\frac{2}{(2+u)} \mathrm{d} u=-25(u-2 \ln (2+u))$	M1	Achieves $\pm \alpha \pm \frac{\beta}{(k+u)}$ and integrates to give either $\pm \alpha u$ or $\pm \beta \ln (k+u)$
	A1	Dependent on the M mark. Either $-25 u$ or $50 \ln (2+u)$
	A1	-25 (u-2ln(2+u))
$\left\{\int_{1}^{4} \frac{25}{x^{2}(2 x+1)} \mathrm{d} x=[-25 u+50 \ln (2+u)]_{1}^{\frac{1}{4}}\right\}$		
$=\left(-\frac{25}{4}+50 \ln \left(\frac{9}{4}\right)\right)-(-25+50 \ln 3)$	dM1	Applies limits of $\frac{1}{4}$ and 1 in u or 4 and 1 in x in their integrated function and subtracts the correct way round.
So, $V=\frac{75}{4} \pi+50 \pi \ln \left(\frac{3}{4}\right)$	A1	$\frac{75}{4} \pi+50 \pi \ln \left(\frac{3}{4}\right)$ or allow $\pi\left(\frac{75}{4}+50 \ln \left(\frac{3}{4}\right)\right)$

\begin{tabular}{|c|c|c|}
\hline \& \multicolumn{2}{|l|}{Question 6: Alternative Methods for Part (c)} \\
\hline 6. (c) \& \begin{tabular}{l}
Alternative Method 1: Using the direction vectors of Line 1 and Line 2
\[
\mathbf{d}_{1}=\left(\begin{array}{r}
0 \\
2 \\
-1
\end{array}\right), \quad \mathbf{d}_{2}=\left(\begin{array}{r}
3 \\
-5 \\
4
\end{array}\right)
\]
\[
\begin{aligned}
\& \cos \theta=\frac{\mathbf{d}_{1} \cdot \mathbf{d}_{1}}{\left|\mathbf{d}_{1}\right| \cdot\left|\mathbf{d}_{2}\right|}=\frac{\left(\begin{array}{r}
0 \\
2 \\
-1
\end{array}\right) \cdot\left(\begin{array}{r}
3 \\
-5 \\
4
\end{array}\right)}{\sqrt{(0)^{2}+(2)^{2}+(-1)^{2}} \cdot \sqrt{(3)^{2}+(-5)^{2}+(4)^{2}}} \\
\& \left\{\cos \theta=\frac{0-10-4}{\sqrt{5} \cdot \sqrt{50}}=\frac{-7 \sqrt{10}}{25} \Rightarrow\right\} \theta=152.3054385 \ldots
\end{aligned}
\] \\
Applies dot product formula between their \(\mathbf{d}_{1}\) and \(\mathbf{d}_{2}\) \\
Angle \(A C B=180-152.3054385 \ldots=27.69446145 \ldots=27.7(3 \mathrm{sf})\) \\
Anything that rounds to 27.7
\end{tabular} \& M2 \\
\hline \& \begin{tabular}{l}
Alternative Method 2: The Cosine Rule
\[
\overrightarrow{A C}=\left(\begin{array}{r}
1 \\
10 \\
-1
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{r}
0 \\
8 \\
-4
\end{array}\right) \text { and } \overrightarrow{B C}=\left(\begin{array}{c}
1 \\
10 \\
-1
\end{array}\right)-\left(\begin{array}{l}
4 \\
5 \\
3
\end{array}\right)=\left(\begin{array}{r}
-3 \\
5 \\
-4
\end{array}\right)
\] \\
An attempt to find both the vectors \((\overrightarrow{A C}\) or \(\overrightarrow{C A})\) and \((\overrightarrow{B C}\) or \(\overrightarrow{C B})\). \\
Also \(\overrightarrow{A B}=\left(\begin{array}{l}4 \\ 5 \\ 3\end{array}\right)-\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{l}3 \\ 3 \\ 0\end{array}\right)\) \\
Note \(|\overrightarrow{A C}|=\sqrt{80},|\overrightarrow{B C}|=\sqrt{50}\) and \(|\overrightarrow{A B}|=\sqrt{18}\) \\
\((\sqrt{18})^{2}=(\sqrt{80})^{2}+(\sqrt{50})^{2}-2(\sqrt{80})(\sqrt{50}) \cos \theta\) \\
Applies the cosine rule the correct way round.
\[
\left\{\cos \theta=\frac{7 \sqrt{10}}{25}\right\} \Rightarrow \theta=27.69446145 \ldots=27.7(3 \mathrm{sf})
\] \\
Anything that rounds to 27.7
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 oe \\
A1 \\
[3]
\end{tabular} \\
\hline \& \begin{tabular}{l}
Alternative Method 3: Vector Cross Product \\
Only apply this scheme if it is clear that a candidate is applying a vector cross product method.
\[
\begin{aligned}
\& \overrightarrow{A C}=\left(\begin{array}{r}
1 \\
10 \\
-1
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{r}
0 \\
8 \\
-4
\end{array}\right) \text { and } \overrightarrow{B C}=\left(\begin{array}{c}
1 \\
10 \\
-1
\end{array}\right)-\left(\begin{array}{l}
4 \\
5 \\
3
\end{array}\right)=\left(\begin{array}{r}
-3 \\
5 \\
-4
\end{array}\right) \\
\& \overrightarrow{A C} \times \overrightarrow{B C}=\left(\begin{array}{r}
0 \\
8 \\
-4
\end{array}\right) \times\left(\begin{array}{r}
-3 \\
5 \\
-4
\end{array}\right)=\left\{\left.\begin{array}{rrr}
\mathbf{i} \& \mathbf{j} \& \mathbf{k} \\
0 \& 8 \& -4 \\
-3 \& 5 \& -4
\end{array} \right\rvert\,=24 \mathbf{i}+12 \mathbf{j}+24 \mathbf{k}\right\} \\
\& \sin A C B=\frac{\sqrt{(24)^{2}+(12)^{2}+(12)^{2}}}{\sqrt{(0)^{2}+(8)^{2}+(-4)^{2}} \cdot \sqrt{(-3)^{2}+(5)^{2}+(-4)^{2}}} \\
\& \left\{\sin A C B=\frac{\sqrt{864}}{\sqrt{80} \cdot \sqrt{50}}=\frac{3 \sqrt{15}}{25} \Rightarrow\right\} \theta=27.69446145 \ldots=27.7(3 \mathrm{sf})
\end{aligned}
\] \\
An attempt to find both the
\[
\text { vectors }(\overrightarrow{A C} \text { or } \overrightarrow{C A})
\]
\[
\text { and }(\overrightarrow{B C} \text { or } \overrightarrow{C B}) \text {. }
\] \\
Full method for applying the vector cross product formula between \\
their \((\overrightarrow{A C}\) or \(\overrightarrow{C A})\) \\
and their \((\overrightarrow{B C}\) or \(\overrightarrow{C B})\). \\
Anything that rounds to 27.7
\end{tabular} \& M1
M1

A1

[3]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \multicolumn{2}{|r|}{Question 6 Notes} \\
\hline 6. (a) \& B1 \& \(p=5\) (Ignore working.) \\
\hline (b) \& M1
A1
B1
B1 \& \begin{tabular}{l}
Method 1 \\
Writes down an equation involving only one parameter. \\
This equation will usually be \(7+3 \mu=1\) which is found from equating the \(\mathbf{i}\) components of \(l_{1}\) and \(l_{2}\). \\
Finds \(\mu=-2\) \\
Point of intersection of \(\mathbf{i}+10 \mathbf{j}-\mathbf{k}\). Allow \((1,10,-1)\) or \(\left(\begin{array}{r}1 \\ 10 \\ -1\end{array}\right)\). \\
Finds \(\lambda=4\) and either \\
- checks \(\lambda=4\) and \(\mu=-2\) is true for the third component. \\
- substitutes \(\mu=-2\) into \(l_{1}\) to give \(\mathbf{i}+10 \mathbf{j}-\mathbf{k}\) and substitutes \(\lambda=4\) into \(l_{2}\) to give \(\mathbf{i}+10 \mathbf{j}-\mathbf{k}\)
\end{tabular} \\
\hline (b) \& M1
A1
B1

B1 \& | Alternative Method |
| :--- |
| Writes down an equation involving only one parameter. |
| Solving the \mathbf{j} and \mathbf{k} components simultaneously will usually give either $8=14+3 \mu$ or $23+3 \lambda=35$ Finds either $\mu=-2$ or $\lambda=4$ |
| Point of intersection of $\mathbf{i}+10 \mathbf{j}-\mathbf{k}$. Allow $(1,10,-1)$ or $\left(\begin{array}{r}1 \\ 10 \\ -1\end{array}\right)$. |
| Finds $\lambda=4$ and either |
| - checks $\mu=-2$ is true for the \mathbf{i} component. |
| - substitutes $\mu=-2$ into l_{1} to give $\mathbf{i}+10 \mathbf{j}-\mathbf{k}$ |
| and substitutes $\lambda=4$ into l_{2} to give $\mathbf{i}+10 \mathbf{j}-\mathbf{k}$ |

\hline (c)

(d) \& \begin{tabular}{l}
M1

M1

A1

Note

Note

M1

A1

Note

 \&

An attempt to find both the vectors $(\overrightarrow{A C}$ or $\overrightarrow{C A})$ and $(\overrightarrow{B C}$ or $\overrightarrow{C B})$ by subtracting. Applies dot product formula between their $(\overrightarrow{A C}$ or $\overrightarrow{C A})$ and their $(\overrightarrow{B C}$ or $\overrightarrow{C B})$. anything that rounds to 27.7

An answer of $0.48336 \ldots$ in radians without the correct answer in degrees is A0. Some candidates will apply the dot product formula between vectors which are the wrong way round and achieve $152.3054385 . .{ }^{\circ}$. If they give the acute equivalent of awrt 27.7 then award A1.

$\frac{1}{2}$ (their length $A C$)(their length $B C$) \sin (their 27.7° from part (c))

anything that rounds to 14.7. Also allow $6 \sqrt{6}$.

Area $A C B=\frac{1}{2}(\sqrt{80})(\sqrt{50}) \sin \left(152.3054385 . . .{ }^{\circ}\right)=$ awrt 14.7 is M1A1.
\end{tabular}

\hline
\end{tabular}

	Question 8: Alternative Methods for Part (c)	
8. (c)	Alternative Method 1: $\begin{array}{cr} \frac{2 \sin t}{1-4 \cos t}=-\frac{1}{2} & \text { Sets their } \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{2} \\ \text { eg. }\left(\frac{2 \sin t}{1-4 \cos t}\right)^{2}=\frac{1}{4} \quad \text { or }(4 \sin t)^{2}=(4 \cos t-1)^{2} & \begin{array}{r} \text { Squaring to give a correct equation. } \\ \text { This mark can be implied } \\ \text { or }(4 \sin t+1)^{2}=(4 \cos t)^{2} \text { etc. } \end{array} \\ \text { by a "squared" correct equation. } \end{array}$	M1 A1
	Note: You can also give $1^{\text {st }}$ A1 in this method for $4 \sin t-4 \cos t=-1$ as in the main scheme.	
	Squares their equation, applies $\sin ^{2} t+\cos ^{2} t=1$ and achieves a three term quadratic equation of the form $\pm a \cos ^{2} t \pm b \cos t \pm c=0$ or $\pm a \sin ^{2} t \pm b \sin t \pm c=0$ or eg. $\pm a \cos ^{2} t \pm b \cos t= \pm c$ where $a \neq 0, b \neq 0$ and $c \neq 0$. - Either $32 \cos ^{2} t-8 \cos t-15=0$ - or $32 \sin ^{2} t+8 \sin t-15=0$ For a correct three term quadratic equation. - Either $\cos t=\frac{8 \pm \sqrt{1984}}{64}=\frac{1+\sqrt{31}}{8} \Rightarrow t=\cos ^{-1}(\ldots)$ which is dependent on the $2^{\text {nd }}$ M1 mark. Uses correct algebraic - or $\begin{aligned} & \sin t=\frac{-8 \pm \sqrt{1984}}{64}=\frac{-1 \pm \sqrt{31}}{8} \Rightarrow t=\sin ^{-1}(\ldots) \\ & t=0.6076875626 \ldots=0.6077(4 \mathrm{dp}) \end{aligned}$ processes to give $t=$... anything that rounds to 0.6077	$\begin{array}{ll}\text { M1 } \\ \text { A1 } \\ \\ \text { dM1 } \\ \\ & \\ \text { A1 } & \\ & {[6]}\end{array}$
8. (c)	Alternative Method 2: $\frac{2 \sin t}{1-4 \cos t}=-\frac{1}{2}$ $\text { eg. }(4 \sin t-4 \cos t)^{2}=(-1)^{2}$ So $16 \sin ^{2} t-32 \sin t \cos t+16 \cos ^{2} t=1$ leading to $16-16 \sin 2 t=1$ $\begin{aligned} & \left\{\sin 2 t=\frac{15}{16} \Rightarrow\right\} t=\frac{\sin ^{-1}(\ldots .)}{2} \\ & t=0.6076875626 \ldots=0.6077(4 \mathrm{dp}) \end{aligned}$ Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{2}$ Squaring to give a correct equation. This mark can be implied by a correct equation. Note: You can also give $1^{\text {st }}$ A1 in this method for $4 \sin t-4 \cos t=-1$ as in the main scheme. Squares their equation, applies both $\sin ^{2} t+\cos ^{2} t=1$ and $\sin 2 t=2 \sin t \cos t$ and then achieves an equation of the form $\pm a \pm b \sin 2 t= \pm c$ $16-16 \sin 2 t=1$ or equivalent. which is dependent on the $2^{\text {nd }}$ M1 mark. Uses correct algebraic processes to give $t=\ldots$ anything that rounds to 0.6077	M1 A1 M1 A1 dM1 A1 [6]

	Question 8 Notes	
8. (a)	M1	Sets $y=1$ to find t and uses their t to find x.
	Note	M1 can be implied by either x or $k=4-\frac{\pi}{2}$ or 2.429... or $\frac{\pi}{2}-4$ or $-2.429 \ldots$
	A1	$x \text { or } k=4-\frac{\pi}{2} \text { or } \frac{8-\pi}{2}$
	Note	A decimal answer of 2.429... (without a correct exact answer) is A0.
	Note	Allow A1 for a candidate using $t=\frac{\pi}{2}$ to find $x=\frac{\pi}{2}-4$ and then stating that k must be $4-\frac{\pi}{2}$ o.e.
(b)	B1	At least one of $\frac{\mathrm{d} x}{\mathrm{~d} t}$ or $\frac{\mathrm{d} y}{\mathrm{~d} t}$ correct. Note: that this mark can be implied from their working.
	B1	Both $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$ are correct. Note: that this mark can be implied from their working.
	M1	Applies their $\frac{\mathrm{d} y}{\mathrm{~d} t}$ divided by their $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and attempts to substitute their t into their expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	Note	This mark may be implied by their final answer. i.e. $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \sin t}{1-4 \cos t}$ followed by an answer of $-2\left(\right.$ from $t=-\frac{\pi}{2}$) or $2\left(\right.$ from $t=\frac{\pi}{2}$)
	Note	Applying $\frac{\mathrm{d} x}{\mathrm{~d} t}$ divided by their $\frac{\mathrm{d} y}{\mathrm{~d} t}$ is M0, even if they state $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$.
	A1	Using $t=-\frac{\pi}{2}\left(\right.$ and not $\left.t=\frac{3 \pi}{2}\right)$ to find a correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$ of -2 by correct solution only.
(c)	NOTE	If a candidate uses an incorrect $\frac{\mathrm{d} y}{\mathrm{~d} x}$ expression in part (c) then the accuracy marks are not obtainable.
	$\mathbf{1}^{\text {st }}$ M1	Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{2}$
	$\mathbf{1}^{\text {st }}$ A1	Rearranges to give the correct equation with $\sin t$ and $\cos t$ on the same side. eg. $4 \sin t-4 \cos t=-1$ or $4 \cos t-4 \sin t=1$ or $\sin t-\cos t=-\frac{1}{4}$ or $\cos t-\sin t=\frac{1}{4}$ or $4 \sin t-4 \cos t+1=0$ or $4 \cos t-4 \sin t-1=0$ or $\sin t-\cos t+\frac{1}{4}=0$ etc. are fine for A1.
	$2^{\text {nd }}$ M1	Rewrites $\pm \lambda \sin t \pm \mu \cos t$ in the form of either $R \cos (t \pm \alpha)$ or $R \sin (t \pm \alpha)$ where $R \neq 1$ or 0 and $\alpha \neq 0$
	$2^{\text {nd }}$ A1	Correct equation. Eg. $\quad 4 \sqrt{2} \sin \left(t-\frac{\pi}{4}\right)=-1$ or $-4 \sqrt{2} \cos \left(t+\frac{\pi}{4}\right)=-1$ or $\sqrt{2} \sin \left(t-\frac{\pi}{4}\right)=-\frac{1}{4}$ or $\sqrt{2} \cos \left(t+\frac{\pi}{4}\right)=\frac{1}{4}$, etc.
	$\begin{gathered} \text { Note } \\ 3^{\text {rd }} \text { M1 } \\ 4^{\text {th }} \text { A1 } \end{gathered}$	Unless recovered, give A0 for $4 \sqrt{2} \sin \left(t-45^{\circ}\right)=-1$ or $-4 \sqrt{2} \cos \left(t+45^{\circ}\right)=-1$, etc. which is dependent on the $\mathbf{2}^{\text {nd }} \mathbf{M 1}$ mark. Uses correct algebraic processes to give $t=\ldots$ anything that rounds to 0.6077
	Note	Do not give the final A1 mark in (c) if there any extra solutions given in the range $-\frac{2 \pi}{3} \leqslant t \leqslant \frac{2 \pi}{3}$.
	Note	You can give the final A1 mark in (c) if extra solutions are given outside of $-\frac{2 \pi}{3} \leqslant t \leqslant \frac{2 \pi}{3}$.

