

Question Number	Scheme	Marks
14(a)	Area of triangle $={ }^{\prime} \frac{1}{2} a b \sin C^{\prime}=\frac{1}{2} \times 2 x \times 2 x \times \sin 60=\sqrt{3} x^{2}$	M1
(b)	$S=2 \times \sqrt{3} x^{2}+3 \times 2 x l=2 x^{2} \sqrt{3}+6 x l$	dM1A1* (3)
	$960=2 x^{2} \sqrt{3}+6 x l \Rightarrow l=\frac{960-2 x^{2} \sqrt{3}}{6 x}$	M1A1
	$V=x^{2} \sqrt{3} l$	B1
(c)	Substitute $l=\frac{960-2 x^{2} \sqrt{3}}{6 x}$ into $V=x^{2} \sqrt{3} l$ $\Rightarrow V=x^{2} \sqrt{3} \times\left(\frac{960-2 x^{2} \sqrt{3}}{6 x}\right)=160 x \sqrt{3}-x^{3}$	dM1A1*
	$\frac{\mathrm{d} V}{\mathrm{~d} x}=160 \sqrt{3}-3 x^{2}=0$	(5) M1A1
	$\begin{aligned} & \Rightarrow x=\operatorname{awrt} 9.6 \\ & \Rightarrow V=160 \times 9.611 \times \sqrt{3}-9.611^{3}=1776 \end{aligned}$	A1 dM1 A1
(d)	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}=-6 x<0 \Rightarrow \text { Maximum }$	(5) M1A1
		(2) $\text { (} 15 \text { marks) }$

Question Number	Scheme		Marks
16. (a) (b)	$\begin{aligned} & \pi R^{2} H+\frac{2}{3} \pi R^{3}=800 \pi \text { so } H=\frac{800}{R^{2}}-\frac{2}{3} R^{*} \\ & A=\pi R^{2}+2 \pi R H+2 \pi R^{2} \\ & A=3 \pi R^{2}+2 \pi R\left(\frac{800}{R^{2}}-\frac{2}{3} R\right) \quad \text { so } A=\frac{5 \pi R^{2}}{3}+\frac{1600 \pi}{R} \end{aligned}$		M1 A1*
			B1
			M1 A1 *
(c)			[5]
	Find $\frac{\mathrm{d} A}{\mathrm{~d} R}=\frac{10}{3} \pi R-\frac{1600 \pi}{R^{2}}$ Put derivative equal to zero and obtain $R^{3}=480$ So $R=7.83$		M1 A1
			dM1 A1
			A1
(d)			[5]
	Consider $\frac{\mathrm{d}^{2} A}{\mathrm{~d} R^{2}}=\frac{10 \pi}{3}+3200 \pi R^{-3}>0$ so minimum $H=$ awrt 7.83		M1A1 [2]
(e)			B1
			[1]
			13 marks

(a)

M1 Sets up volume equation with $800 \pi=\pi R^{2} H+\frac{2}{3} \pi R^{3}$ and attempts to make H the subject. Condone 800 instead of 800π. Accept for this mark lower case letters $800 \pi=\pi r^{2} H+\frac{2}{3} \pi r^{3}$ and a lack of consistency in lettering.
A1* This is a show that question and there must be an intermediate line showing (or implying) a division of $\pi r^{2} / \pi R^{2}$. Lettering must be correct and consistent from the point where you see $800 \pi=\ldots$ \qquad .

Examples of an intermediate line are;
$800 \pi=\pi R^{2} H+\frac{2}{3} \pi R^{3} \Rightarrow H=\frac{800 \pi-\frac{2}{3} \pi R^{3}}{\pi R^{2}} \Rightarrow H=\frac{800}{R^{2}}-\frac{2}{3} R$
$800 \pi=\pi R^{2} H+\frac{2}{3} \pi R^{3} \Rightarrow \frac{800}{R^{2}}=H+\frac{2}{3} R \Rightarrow H=\frac{800}{R^{2}}-\frac{2}{3} R$
(b)

B1 A correct expression for the surface area containing three separate correct elements
Allow either $A=\pi R^{2}+2 \pi R H+2 \pi R^{2}$ or $A=\pi R^{2}+2 \pi R H+\frac{4 \pi R^{2}}{2}$
Allow lower case lettering for this mark
M1 Score for replacing $H=\frac{800}{R^{2}}-\frac{2}{3} R$ in their expression for A which must be of the form,
$A=B \pi R^{2}+C \pi R H, \quad B, C \in \mathbb{N}$, condoning missing brackets.
A1* This is a show that question and all aspects must be correct. Lettering in (b) must be consistent and correct from the point at which $\frac{800}{R^{2}}-\frac{2}{3} R$ is substituted. Do not, however, withhold a second mark for using lower case letters if it has been withheld in part (a) for mixed lettering.
Accept $A=2 \pi R^{2}+\pi R^{2}+2 \pi R\left(\frac{800}{R^{2}}-\frac{2}{3} R\right) \Rightarrow A=\frac{5 \pi R^{2}}{3}+\frac{1600 \pi}{R}$ with little or no evidence

Question Number	Scheme	Marks
15(a)	$\text { Uses Volume }=60000 \quad 60000=\pi r^{2} h \Rightarrow h=\frac{60000}{\pi r^{2}}$	M1
	Subs in $\begin{aligned} S=\pi r^{2}+2 \pi r h & \Rightarrow S=\pi r^{2}+2 \pi r \times \frac{60000}{\pi r^{2}} \\ & \Rightarrow S=\pi r^{2}+\frac{120000}{r} \end{aligned}$	M1 $\mathrm{A} 1^{*}$
		(3)
(b)	$\frac{\mathrm{d} S}{\mathrm{~d} r}=2 \pi r-\frac{120000}{r^{2}}$	M1A1
	$\Rightarrow \frac{\mathrm{d} S}{\mathrm{~d} r}=0 \Rightarrow r^{3}=\frac{120000}{2 \pi} \Rightarrow r=a w r t 27(\mathrm{~cm})$	dM1A1
	$\Rightarrow S=\pi \times 26.7^{"^{2}}+\frac{120000}{" 26.7 "}=\operatorname{awrt} 6730\left(\mathrm{~cm}^{2}\right)$	dM1 A1
(c)	$\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=2 \pi+\left.\frac{240000}{r^{3}}\right\|_{r=26.7}=a w r t 19>0 \Rightarrow \text { Minimum }$	(6) M1A1
		${ }^{(11 \text { marks) }}$

(a)

M1 Uses $60000=\pi r^{2} h \Rightarrow h=$.. Alternatively uses $60000=\pi r^{2} h \Rightarrow \pi r h=.$.
Condone errors on the number of zeros but the formula must be correct
M1 Score for the attempt to substitute any $h=$.. or $\pi r h=$.. from a dimensionally correct formula for V (Eg. $\left.60000=\frac{1}{3} \pi r^{2} h \Rightarrow h=..\right)$ into $S=k \pi r^{2}+2 \pi r h$ where $k=1$ or 2 to get S in terms of r
Allow if S is called something else such as A.
A1* Completes proof with no errors (or omissions) $S=\pi r^{2}+\frac{120000}{r}$.
Allow from $S=\pi r^{2}+\frac{2 V}{r}$ if quoted. $S=$ must be somewhere in the proof

Question	Scheme	Marks
15 (a)	$200=\pi r^{2}+\pi r h+2 r h$	M1 A1
	$(h=) \frac{200-\pi r^{2}}{\pi r+2 r} \quad \text { or }(r h=) \frac{200-\pi r^{2}}{\pi+2}$	dM1
	$V=\frac{1}{2} \pi r^{2} h=$	M1
	$\Rightarrow V=\frac{\pi r^{2}\left(200-\pi r^{2}\right)}{2(2 r+\pi r)}=\frac{\pi r\left(200-\pi r^{2}\right)}{4+2 \pi}$	A1 cso * [5]
(b)	$\frac{\mathrm{d} V}{\mathrm{~d} r}=\frac{200 \pi-3 \pi^{2} r^{2}}{4+2 \pi} \quad \text { Accept awrt } \frac{\mathrm{d} V}{\mathrm{~d} r}=61.1-2.9 r^{2}$	M1 A1
	$\frac{20 \pi}{4+2 \pi}=0$ or $200 \pi-3 \pi^{2} r^{2}=0$ leading to $r^{2}=$	dM1
	$r=\sqrt{\frac{200}{3 \pi}}$ or answers which round to 4.6	dM1 A1
	$V=188$	B1
(c)	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} r^{2}}=\frac{-6 \pi^{2} r}{4+2 \pi}$, and sign considered \quad Accept $\frac{\mathrm{d}^{2} V}{\mathrm{~d} r^{2}}=$ awrt $-5.8 r$	M1
	$\mathrm{d}^{2} V$	A1
		[2]
		13 marks

Question Number	Scheme	Marks
9. (a)	$\operatorname{Area}(F E A)=\frac{1}{2} x^{2}\left(\frac{2 \pi}{3}\right) ;=\frac{\pi x^{2}}{3} \quad \frac{1}{2} x^{2} \times\left(\frac{2 \pi}{3}\right) \text { or } \frac{120}{360} \times \pi x^{2} \text { simplified or un- }$	M1
	$\frac{\pi x^{2}}{3}$	A1
		[2]
	Parts (b) and (c) may be marked together	
(b)	$\{A=\} \frac{1}{2} x^{2} \sin 60^{\circ}+\frac{1}{3} \pi x^{2}+2 x y \quad$ Attempt to sum 3 areas (at least one correct)	M1
	$\{A=\}-x^{2} \sin 60+\frac{3}{3} \pi x+2 x y \quad$ Correct expression for at least two terms of A	A1
	$\begin{aligned} & 1000=\frac{\sqrt{3} x^{2}}{4}+\frac{\pi x^{2}}{3}+2 x y \Rightarrow y=\frac{500}{x}-\frac{\sqrt{3} x}{8}-\frac{\pi x}{6} \\ & \Rightarrow y=\frac{500}{x}-\frac{x}{24}(4 \pi+3 \sqrt{3}) \end{aligned}$ Correct proof.	A1*
		[3]
(c)	$\{P=\} x+x \theta+y+2 x+y\left\{=3 x+\frac{2 \pi x}{3}+2 y\right\} \quad \begin{array}{r}\text { Correct expression in } x \text { and } y \text { for } \\ \text { their } \theta \text { measured in rads }\end{array}$	B1ft
	$\ldots 2 y=+2\left(\frac{500}{x}-\frac{x}{24}(4 \pi+3 \sqrt{3})\right) \quad$ Substitutes expression from (b) into	M1
	$P=3 x+\frac{2 \pi x}{3}+\frac{1000}{x}-\frac{\pi x}{3}-\frac{\sqrt{3}}{4} x \Rightarrow P=\frac{1000}{x}+3 x+\frac{\pi x}{3}-\frac{\sqrt{3}}{4} x$	
	$\Rightarrow P=\frac{1000}{x}+\frac{x}{12}(4 \pi+36-3 \sqrt{3}) *$ Correct proof.	A1 *
		[3]
	Parts (d) and (e) should be marked together	
(d)	$\frac{1000}{x} \rightarrow \frac{ \pm \lambda}{x^{2}}$	M1
	$\overline{\mathrm{d} x}=-1000 x^{-2}+\frac{12}{} ;=0 \quad \quad$Correct differentiation (need not be simplified).	A1;
	Their $P^{\prime}=0$	M1
	$\Rightarrow x=\sqrt{\frac{1000(12)}{4 \pi+36-3 \sqrt{3}}}(=16.63392808 \ldots) \quad \sqrt{\frac{1000(12)}{4 \pi+36-3 \sqrt{3}}}$ or awrt 17 (may be implied)	A1
		A1
		[5]
(e)	Finds $P^{\prime \prime}$ and considers sign.	M1
	$\frac{\mathrm{d}^{2} P}{\mathrm{~d} x^{2}}=\frac{2000}{x^{3}}>0 \Rightarrow \text { Minimum } \quad \frac{2000}{x^{3}} \text { (need not be simplified) and }>0 \text { and conclusion. }$	A1ft
		[2]
		15

Question Number	Scheme	Marks
9. (a)	Either: (Cost of polishing top and bottom (two circles) is) $3 \times 2 \pi r^{2}$ or (Cost of polishing curved surface area is) $2 \times 2 \pi r h$ or both - just need to see at least one of these products Uses volume to give $(h=) \frac{75 \pi}{\pi r^{2}}$ or $(h=) \frac{75}{r^{2}}$ (simplified) (if V is misread - see below)	B1 B1ft
	$\begin{aligned} &(C)=6 \pi r^{2}+4 \pi r\left(\frac{75}{r^{2}}\right) \text { Substitutes expression for } h \text { into area or } \\ & C=6 \pi r^{2}+\frac{300 \pi}{r} \\ &\left\{\frac{\mathrm{~d} C}{\mathrm{~d} r}=\right\} 12 \pi r-\frac{300 \pi}{r^{2}} \text { or } 12 \pi r-300 \pi r^{-2} \text { (then isw) } \end{aligned}$	M1 A1* (4) M1 A1 ft
	$12 \pi r-\frac{300 \pi}{r^{2}}=0$ so $r^{k}=$ value where $k= \pm 2, \pm 3, \pm 4$ Use cube root to obtain $r=\left(\text { their } \frac{300}{12}\right)^{\frac{1}{3}}(=2.92)$ - allow $r=3$, and thus $C=$	dM1 ddM1
	Then $C=$ awrt 483 or 484	A1cao (5)
(c)	$\left\{\frac{\mathrm{d}^{2} C}{\mathrm{~d} r^{2}}=\right\} 12 \pi+\frac{600 \pi}{r^{3}}>0$ so minimum	B1ft (1) [10]

Notes

(a) B1: States $3 \times 2 \pi r^{2}$ or states $2 \times 2 \pi r h$

B1ft: Obtains a correct expression for h in terms of r (ft only follows misread of V)
M1: Substitutes their expression for h into area or cost expression of form $A r^{2}+B r h$
A1*: Had correct expression for C and achieves given answer in part (a) including " $C=$ " or "Cost=" and no errors seen such as $C=$ area expression without multiples of $(£) 3$ and $(£) 2$ at any point. Cost and area must be perfectly distinguished at all stages for this A mark.
N.B. Candidates using Curved Surface $\mathrm{Area}=\frac{2 V}{r}$ - please send to review
(b) M1: Attempts to differentiate as evidenced by at least one term differentiated correctly

A1ft: Correct derivative - allow $12 \pi r-300 \pi r^{-2}$ then isw if the power is misinterpreted (ft only for misread)
dM1: Sets their $\frac{\mathrm{d} C}{\mathrm{~d} r}$ to 0 , and obtains $r^{k}=$ value where $k=2,3$ or 4 (needs correct collection of powers of r from their original derivative expression - allow errors dividing by 12π)
ddM1: Uses cube root to find r or see $r=$ awrt 3 as evidence of cube root and substitutes into correct expression for C to obtain value for C
A1: Accept awrt 483 or 484
(c) B1ft: Finds correct expression for $\frac{\mathrm{d}^{2} C}{\mathrm{~d} r^{2}}$ and deduces value of $\frac{\mathrm{d}^{2} C}{\mathrm{~d} r^{2}}>0$ so minimum (r may have been wrong) OR checks gradient to left and right of 2.92 and shows gradient goes from negative to zero to positive so minimum
OR checks value of C to left and right of 2.92 and shows that $C>483$ so deduces minimum (i.e. uses shape of graph) Only ft on misread of V for each ft mark (see below)
N..B. Some candidates have misread the volume as 75 instead of 75π. PTO for marking instruction.

Question Number	Scheme		Marks
10. (a)	$\begin{gathered} \frac{1}{2}(9 x+6 x) 4 x \\ \text { or } \\ \text { or }\left(\frac{1}{2} 4 x \times(9 x-6 x)+6 x \times 4 x\right) \\ \text { or } \quad 6 x^{2}+24 x^{2} \\ \text { or }\left(9 x \times 4 x-\frac{1}{2} 4 x \times(9 x-6 x)\right) \\ \text { or } \quad 36 x^{2}-6 x^{2} \\ \Rightarrow 30 x^{2} y=9600 \Rightarrow y=\frac{9600}{30 x^{2}} \Rightarrow y=\frac{320}{x^{2}} * \end{gathered}$	M1: Correct attempt at the area of a trapezium. Note that $30 x^{2}$ on its own or $30 x^{2}$ from incorrect work e.g. $5 x \times 6 x$ is M0. If there is a clear intention to find the area of the trapezium correctly allow the M1 but the A1 can be withheld if there are any slips. A1: Correct proof with at least one intermediate step and no errors seen. " $y=$ " is required.	M1A1cso
			[2]
(b)	$(S=) \frac{1}{2}(9 x+6 x) 4 x+\frac{1}{2}(9 x+6 x) 4 x+6 x y+9 x y+5 x y+4 x y$		M1A1
	M1: An attempt to find the area of six faces of the prism. The 2 trapezia may be combined as $(9 x+6 x) 4 x$ or $60 x^{2}$ and the 4 other faces may be combined as $24 x y$ but all six faces must be included. There must be attempt at the areas of two trapezia that are dimensionally correct. A1: Correct expression in any form. Allow just $(S=) 60 x^{2}+24 x y$ for M1A1		
	$y=\frac{320}{x^{2}} \Rightarrow(S=) 30 x^{2}+30 x^{2}+24 x\left(\frac{320}{x^{2}}\right)$		M1
	Substitutes $y=\frac{320}{x^{2}}$ into their expression for S (may be done earlier). S should have at least one x^{2} term and one $x y$ term but there may be other terms which may be dimensionally incorrect.		
	So, $(S=) 60 x^{2}+\frac{7680}{x}$ *	Correct solution only. " $S=$ " is not required here.	A1* cso
			[4]

10(c)	$\frac{\mathrm{d} S}{\mathrm{~d} x}=120 x-7680 x^{-2}\left\{=120 x-\frac{7680}{x^{2}}\right\}$	M1: Either $60 x^{2} \rightarrow 120 x$ or $\frac{7680}{x} \rightarrow \frac{ \pm \lambda}{x^{2}}$	M1
		A1: Correct differentiation (need not be simplified).	A1 aef
	$\begin{aligned} & 120 x-\frac{7680}{x^{2}}=0 \\ \Rightarrow & x^{3}=\frac{7680}{120} ;=64 \Rightarrow x=4 \end{aligned}$	M1: $S^{\prime}=0$ and "their $x^{3}= \pm$ value" or "their $x^{-3}= \pm$ value" Setting their $\frac{\mathrm{d} S}{\mathrm{~d} x}=0$ and "candidate's ft correct power of $x=\mathrm{a}$ value". The power of \boldsymbol{x} must be consistent with their differentiation. If inequalities are used this mark cannot be gained until candidate states value of x or S from their x without inequalities. $S^{\prime}=0$ can be implied by $120 x=\frac{7680}{x^{2}} . \text { Some may spot that } x=4 \text { gives }$ $S^{\prime}=0$ and provided they clearly show $S^{\prime}(4)=0$ allow this mark as long as S^{\prime} is correct. (If S^{\prime} is incorrect this method is allowed if their derivative is clearly zero for their value of x) $\mathrm{A} 1: x=4$ only $\left(x^{3}=64 \Rightarrow x= \pm 4\right.$ scores A 0$)$ Note that the value of x is not explicitly required so the use of $x=\sqrt[3]{64}$ to give $S=2880$ would imply this mark.	M1A1cso
	Note some candidates stop here and do not go on to find S - maximum mark is 4/6		
	$S=60(4)^{2}+\frac{7680}{4}=2880\left(\mathrm{~cm}^{2}\right)$	Substitute candidate's value of $x(\neq 0)$ into a formula for S. Dependent on both previous M marks.	ddM1
		2880 cso (Must come from correct work)	A1 cao and cso
			[6]

10(d)	$\begin{aligned} \frac{\mathrm{d}^{2} S}{\mathrm{~d} x^{2}} & =120+\frac{15360}{x^{3}}>0 \\ & \Rightarrow \text { Minimum } \end{aligned}$	M1: Attempt $S^{\prime \prime}\left(x^{n} \rightarrow x^{n-1}\right)$ and considers sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any substitution. An attempt to solve $S^{\prime \prime}=0$ is M0 A1: $120+\frac{15360}{x^{3}}$ and >0 and conclusion. Requires a correct second derivative of $120+\frac{15360}{x^{3}}$ (need not be simplified) and a valid reason (e.g. >0), and conclusion. Only follow through a correct second derivative i.e. x may be incorrect but must be positive and/or $S^{\prime \prime}$ may have been evaluated incorrectly.	M1A1ft
	$\begin{gathered} \hline \text { A correct } S^{\prime \prime} \text { followed by } S^{\prime \prime}(" 4 ")=" 360 " \text { therefore minimum would score no marks in (d) } \\ \text { A correct } S^{\prime \prime} \text { followed by } S^{\prime \prime}(" 4 ")=" 360 " \text { which is positive therefore minimum would score } \\ \text { both marks } \\ \hline \end{gathered}$		
			[2]
	Note parts (c) and (d) can be marked together.		
			Total 14

\#
advancing learning, changing lives

