Questi	on Scheme	Marks	AOs
13 (a)	3	B1	1.1a
	$\Rightarrow h = \frac{6}{\pi r^2} - \frac{2}{3}r, \ \pi h = \frac{6}{r^2} - \frac{2}{3}\pi r, \ \pi r h = \frac{6}{r} - \frac{2}{3}\pi r^2, \ r h = \frac{6}{\pi r} - \frac{2}{3}r^2$		
	$\frac{\pi r}{A} = \pi r^2 + 2\pi rh + 2\pi r^2 \left\{ \Rightarrow A = 3\pi r^2 + 2\pi rh \right\}$		
		M1	3.1a
	$A = 2\pi r^{2} + 2\pi r \left(\frac{6}{\pi r^{2}} - \frac{2}{3}r\right) + \pi r^{2}$	A1	1.1b
	$A = 3\pi r^{2} + \frac{12}{r} - \frac{4}{3}\pi r^{2} \implies A = \frac{12}{r} + \frac{5}{3}\pi r^{2} *$	A1*	2.1
		(4)	
(b)	$\begin{cases} A = 12r^{-1} + \frac{5}{3}\pi r^2 \implies \begin{cases} \frac{dA}{dr} = -12r^{-2} + \frac{10}{3}\pi r \end{cases}$	M1	3.4
	$\left\{\frac{\mathrm{d}A}{\mathrm{d}r}=0 \Rightarrow\right\} -\frac{12}{r^2} + \frac{10}{3}\pi r = 0 \Rightarrow -36 + 10\pi r^3 = 0 \Rightarrow r^{\pm 3} = \dots \left\{=\frac{18}{5\pi}\right\}$	A1 M1	1.1b 2.1
	$r = 1.046447736 \Rightarrow r = 1.05 \text{ (m)} (3 \text{ sf}) \text{ or awrt } 1.05 \text{ (m)}$	A1	1.1b
	Note: Give final A1 for correct exact values for r	(4)	
(c)	$A_{\min} = \frac{12}{(1.046)} + \frac{5}{3}\pi(1.046)^2$	M1	3.4
	$\{A_{\min} = 17.20 \Rightarrow\} A = 17 (m^2) \text{ or } A = a \text{ wrt } 17 (m^2)$	Alft	1.1b
		(2)	0 marks)
	Notes for Question 13	(1	0 mai ksj
(a)			
B1: M1:	See scheme Complete process of substituting their $h = \dots$ or $\pi h = \dots$ or $\pi rh = \dots$ or $rh = \dots$	where '	f = f(r)
	into an expression for the surface area which is of the form $A = \lambda \pi r^2 + \mu \pi r h$; $\lambda, \mu \neq 0$	
A1:	Obtains correct simplified or un-simplified $\{A=\} 2\pi r^2 + 2\pi r \left(\frac{6}{\pi r^2} - \frac{2}{3}r\right) +$ Proceeds, using rigorous and careful reasoning, to $A = \frac{12}{r} + \frac{5}{3}\pi r^2$	πr^2	
A1*:	Proceeds, using rigorous and careful reasoning, to $A = \frac{12}{r} + \frac{5}{3}\pi r^2$		
Note:	Condone the lack of $A =$ or $S =$ for any one of the A marks or for both o	f the A mar	KS
(b)	2		
M1:	Uses the model (or their model) and differentiates $\frac{\lambda}{r} + \mu r^2$ to give $\alpha r^{-2} + \beta r$; λ,μ,α,	$\beta \neq 0$
A1:	$\left\{\frac{\mathrm{d}A}{\mathrm{d}r}=\right\} -12r^{-2}+\frac{10}{3}\pi r \text{ o.e.}$		
M1:	Sets their $\frac{dA}{dr} = 0$ and rearranges to give $r^{\pm 3} = k$, $k \neq 0$ (Note: k can be positive or negative)		
Note:	This mark can be implied.		
	Give M1 (and A1) for $-36 + 10\pi r^3 = 0 \rightarrow r = \left(\frac{18}{5\pi}\right)^{\frac{1}{3}}$ or $r = \left(\frac{36}{10\pi}\right)^{\frac{1}{3}}$ or $r = \left(\frac{3.6}{\pi}\right)^{\frac{1}{3}}$		
A1:	r = awrt 1.05 (ignoring units) or $r = awrt 105$ cm		
Note:	Give M0 A0 M0 A0 where $r = 1.05$ (m) (3 sf) or awrt 1.05 (m) is found from no working.		
Note:	Give final A1 for correct exact values for r. E.g. $r = \left(\frac{18}{5\pi}\right)^{\frac{1}{3}}$ or $r = \left(\frac{36}{10\pi}\right)^{\frac{1}{3}}$ or $r = \left(\frac{3.6}{\pi}\right)^{\frac{1}{3}}$		

Question Number	Scheme	Marks	
14(a)	Area of triangle = $\frac{1}{2}ab\sin C' = \frac{1}{2} \times 2x \times 2x \times \sin 60 = \sqrt{3}x^2$	M1	
	$S = 2 \times \sqrt{3}x^2 + 3 \times 2xl = 2x^2\sqrt{3} + 6xl$	dM1A1*	(3)
(b)	$960 = 2x^2\sqrt{3} + 6xl \Longrightarrow l = \frac{960 - 2x^2\sqrt{3}}{6x}$	M1A1	(5)
	$V = x^2 \sqrt{3} l$	B1	
	Substitute $l = \frac{960 - 2x^2\sqrt{3}}{6x}$ into $V = x^2\sqrt{3} l$		
	$\Rightarrow V = x^2 \sqrt{3} \times \left(\frac{960 - 2x^2 \sqrt{3}}{6x}\right) = 160x\sqrt{3} - x^3$	dM1A1*	
			(5)
(c)	$\frac{\mathrm{d}V}{\mathrm{d}x} = 160\sqrt{3} - 3x^2 = 0$	M1A1	
	$\Rightarrow x = awrt 9.6$	A1	
	$\Rightarrow V = 160 \times 9.611 \times \sqrt{3} - 9.611^3 = 1776$	dM1 A1	
	$A^2 W$		(5)
(d)	$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = -6x < 0 \Longrightarrow \text{Maximum}$	M1A1	
			(2)
		(15 marks)

Question Number	Scheme	Marks
16. (a)	$\pi R^2 H + \frac{2}{3}\pi R^3 = 800\pi$ so $H = \frac{800}{R^2} - \frac{2}{3}R^*$	M1 A1*
(b)	$A = \pi R^2 + 2\pi RH + 2\pi R^2$	B1
	$A = 3\pi R^{2} + 2\pi R \left(\frac{800}{R^{2}} - \frac{2}{3}R\right) \text{so} A = \frac{5\pi R^{2}}{3} + \frac{1600\pi}{R} $	M1 A1 *
		[5]
(c)	Find $\frac{dA}{dR} = \frac{10}{3}\pi R - \frac{1600\pi}{R^2}$	M1 A1
	Put derivative equal to zero and obtain $R^3 = 480$	dM1 A1
	So $R = 7.83$	A1
(d)	Consider $\frac{d^2 A}{dR^2} = \frac{10\pi}{3} + 3200\pi R^{-3} > 0$ so minimum	[5] M1A1 [2]
(e)	H = awrt 7.83	B1 [1]
		13 marks

(a)

M1 Sets up volume equation with $800\pi = \pi R^2 H + \frac{2}{3}\pi R^3$ and attempts to make *H* the subject. Condone 800 instead of 800 π . Accept for this mark lower case letters $800\pi = \pi r^2 H + \frac{2}{3}\pi r^3$ and a lack of consistency in lettering.

A1* This is a show that question and there must be an intermediate line showing (or implying) a division of $\pi r^2 / \pi R^2$. Lettering must be correct and consistent from the point where you see $800\pi = \dots$. Examples of an intermediate line are;

$$800\pi = \pi R^2 H + \frac{2}{3}\pi R^3 \Longrightarrow H = \frac{800\pi - \frac{2}{3}\pi R^3}{\pi R^2} \Longrightarrow H = \frac{800}{R^2} - \frac{2}{3}R$$

$$800\pi = \pi R^{2}H + \frac{2}{3}\pi R^{3} \Longrightarrow \frac{800}{R^{2}} = H + \frac{2}{3}R \Longrightarrow H = \frac{800}{R^{2}} - \frac{2}{3}R$$

(b)

B1 A correct expression for the surface area containing three separate correct elements

Allow either
$$A = \pi R^2 + 2\pi RH + 2\pi R^2$$
 or $A = \pi R^2 + 2\pi RH + \frac{4\pi R^2}{2}$

Allow lower case lettering for this mark

M1 Score for replacing $H = \frac{800}{R^2} - \frac{2}{3}R$ in their expression for A which must be of the form, $A = B\pi R^2 + C\pi RH$, $B, C \in \mathbb{N}$, condoning missing brackets.

A1* This is a show that question and all aspects must be correct. Lettering in (b) must be consistent and correct from the point at which $\frac{800}{R^2} - \frac{2}{3}R$ is substituted. Do not, however, withhold a second mark for using lower case letters if it has been withheld in part (a) for mixed lettering. Accept $A = 2\pi R^2 + \pi R^2 + 2\pi R \left(\frac{800}{R^2} - \frac{2}{3}R\right) \Rightarrow A = \frac{5\pi R^2}{3} + \frac{1600\pi}{R}$ with little or no evidence

Question Number	Scheme	Marks
15(a)	Uses Volume = 60 000 $60000 = \pi r^2 h \Rightarrow h = \frac{60000}{\pi r^2}$	M1
	Subs in $S = \pi r^2 + 2\pi rh \Longrightarrow S = \pi r^2 + 2\pi r \times \frac{60000}{\pi r^2}$	M1
	$\Rightarrow S = \pi r^2 + \frac{120000}{r}$	A1*
	19 120000	(3)
	$\frac{\mathrm{d}S}{\mathrm{d}r} = 2\pi r - \frac{120000}{r^2}$	M1A1
	$\Rightarrow \frac{\mathrm{d}S}{\mathrm{d}r} = 0 \Rightarrow r^3 = \frac{120000}{2\pi} \Rightarrow r = awrt\ 27(\mathrm{cm})$	dM1A1
	$\Rightarrow S = \pi \times "26.7"^{2} + \frac{120000}{"26.7"} = awrt\ 6730(\text{cm}^{2})$	dM1 A1
		(6)
(c)	$\left. \frac{\mathrm{d}^2 S}{\mathrm{d}r^2} = 2\pi + \frac{240000}{r^3} \right _{r=26.7} = awrt 19 > 0 \Longrightarrow \mathrm{Minimum}$	M1A1
		(2) (11 marks)

(a)

- M1 Uses $60000 = \pi r^2 h \Rightarrow h = ..$ Alternatively uses $60000 = \pi r^2 h \Rightarrow \pi r h = ..$ Condone errors on the number of zeros but the formula must be correct
- Condone errors on the number of zeros but the formula must be correct M1 Score for the attempt to substitute any h = .. or $\pi rh = ..$ from a dimensionally correct formula for V $\left(\text{Eg. } 60000 = \frac{1}{3}\pi r^2 h \Rightarrow h = ..\right)$ into $S = k\pi r^2 + 2\pi rh$ where k = 1 or 2 to get S in terms of r

Allow if *S* is called something else such as *A*.

A1* Completes proof with no errors (or omissions)
$$S = \pi r^2 + \frac{120000}{r}$$
.
Allow from $S = \pi r^2 + \frac{2V}{r}$ if quoted. $S =$ must be somewhere in the proof

Question	Scheme	Marks	
15 (a)	$200 = \pi r^2 + \pi r h + 2 r h$	M1 A1	
	$(h=)rac{200-\pi r^2}{\pi r+2r}$ or $(rh=)rac{200-\pi r^2}{\pi+2}$	dM1	
	$V = \frac{1}{2}\pi r^2 h =$	M1	
	$\Rightarrow V = \frac{\pi r^2 (200 - \pi r^2)}{2(2r + \pi r)} = \frac{\pi r (200 - \pi r^2)}{4 + 2\pi} \qquad *$	A1 cso *	[5]
(b)	$\frac{dV}{dr} = \frac{200\pi - 3\pi^2 r^2}{4 + 2\pi}$ Accept awrt $\frac{dV}{dr} = 61.1 - 2.9r^2$	M1 A1	
	$\frac{200\pi - 3\pi^2 r^2}{4 + 2\pi} = 0 \text{or} \ 200\pi - 3\pi^2 r^2 = 0 \text{leading to} r^2 =$	dM1	
	$r = \sqrt{\frac{200}{3\pi}}$ or answers which round to 4.6	dM1 A1	
	<i>V</i> = 188	B1	[6]
(c)	$\frac{d^2 V}{dr^2} = \frac{-6\pi^2 r}{4+2\pi}$, and sign considered Accept $\frac{d^2 V}{dr^2} = awrt - 5.8r$	M1	1.1
	$\frac{d^2 V}{dr^2}$ = -27 < 0 and therefore maximum	A1	
	r=.	12	[2]
		13 marks	

Question Number	Scheme	Marks
9. (a)	Area(<i>FEA</i>) = $\frac{1}{2}x^2\left(\frac{2\pi}{3}\right)$; = $\frac{\pi x^2}{3}$ $\frac{1}{2}x^2 \times \left(\frac{2\pi}{3}\right)$ or $\frac{120}{360} \times \pi x^2$ simplified or unsimplified	M1
	$\frac{\pi x^2}{3}$	A1
	Parts (b) and (c) may be marked together	[2]
<i>a</i> \		M1
(b)	$\{A = \} \frac{1}{2}x^2 \sin 60^\circ + \frac{1}{3}\pi x^2 + 2xy$ Attempt to sum 3 areas (at least one correct) Correct expression for at least two terms of A	A1
	$1000 = \frac{\sqrt{3}x^2}{4} + \frac{\pi x^2}{3} + 2xy \implies y = \frac{500}{x} - \frac{\sqrt{3}x}{8} - \frac{\pi x}{6}$ $\implies y = \frac{500}{x} - \frac{x}{24}(4\pi + 3\sqrt{3}) *$ Correct proof.	A1 *
(c)	$\{P = \} x + x\theta + y + 2x + y \ \left\{ = 3x + \frac{2\pi x}{3} + 2y \right\}$ Correct expression in x and y for their θ measured in rads	[3] B1ft
	2 $y = +2\left(\frac{500}{x} - \frac{x}{24}\left(4\pi + 3\sqrt{3}\right)\right)$ Substitutes expression from (b) into y term.	M1
	$P = 3x + \frac{2\pi x}{3} + \frac{1000}{x} - \frac{\pi x}{3} - \frac{\sqrt{3}}{4}x \implies P = \frac{1000}{x} + 3x + \frac{\pi x}{3} - \frac{\sqrt{3}}{4}x$	
	$\Rightarrow \underline{P = \frac{1000}{x} + \frac{x}{12} \left(4\pi + 36 - 3\sqrt{3}\right)} * $ Correct proof.	A1 *
	Parts (d) and (e) should be marked together	[3]
	$\frac{dP}{dx} = -1000x^{-2} + \frac{4\pi + 36 - 3\sqrt{3}}{12}; = 0$ Correct differentiation	M1
(d)	(need not be simplified).	A1;
	Their $P' = 0$	M1
	$\Rightarrow x = \sqrt{\frac{1000(12)}{4\pi + 36 - 3\sqrt{3}}} (= 16.63392808) \qquad \sqrt{\frac{1000(12)}{4\pi + 36 - 3\sqrt{3}}} \text{or awrt 17 (may be}$	A1
	$\left\{P = \frac{1000}{(16.63)} + \frac{(16.63)}{12} \left(4\pi + 36 - 3\sqrt{3}\right)\right\} \Rightarrow P = 120.236 \text{ (m)} \qquad \text{awrt } 120$	A1
		[5]
	d^2P 2000 Finds <i>P</i> ["] and considers sign.	M1
(e)	$\frac{d^2 P}{dx^2} = \frac{2000}{x^3} > 0 \Rightarrow \text{Minimum} \qquad \frac{2000}{x^3} \text{ (need not be simplified) and } > 0 \text{ and conclusion.}$ Only follow through on a correct P'' and x in range $10 < x < 25$.	A1ft
		[2]
		15

Question Number	Scheme	Marks
9. (a)	Either: (Cost of polishing top and bottom (two circles) is $3 \times 2\pi r^2$ or (Cost of polishing curved surface area is) $2 \times 2\pi rh$ or both - just need to see at least one of these products	B1
	Uses volume to give $(h =) \frac{75\pi}{\pi r^2}$ or $(h =) \frac{75}{r^2}$ (simplified) (if V is misread – see below)	B1ft
	$(C) = 6\pi r^2 + 4\pi r \left(\frac{75}{r^2}\right)$ Substitutes expression for <i>h</i> into area or cost expression of form $Ar^2 + Brh$	M1
	$C = 6\pi r^2 + \frac{300\pi}{r} \qquad \qquad *$	A1* (4)
(b)	$\left\{\frac{\mathrm{d}C}{\mathrm{d}r}\right\} = \frac{12\pi r - \frac{300\pi}{r^2}}{r^2} \text{or} 12\pi r - 300\pi r^{-2} \text{ (then isw)}$	M1 A1 ft
	$12\pi r - \frac{300\pi}{r^2} = 0$ so r^k = value where $k = \pm 2, \pm 3, \pm 4$	dM1
	Use cube root to obtain $r = \left(their \frac{300}{12} \right)^{\frac{1}{3}} (= 2.92)$ - allow $r = 3$, and thus $C =$	ddM1
	Then $C = awrt 483 \text{ or } 484$	A1cao (5)
(c)	$\left\{\frac{\mathrm{d}^2 C}{\mathrm{d}r^2}\right\} = \frac{12\pi + \frac{600\pi}{r^3} > 0 \text{ so minimum}}{12\pi + \frac{600\pi}{r^3} > 0 \text{ so minimum}}$	B1ft (1)
	Notes	[10]
B1ft: (M1: Su A1*: H e r N.B. Can (b) M1: At A1ft: C	After $3 \times 2\pi r^2$ or states $2 \times 2\pi rh$ Obtains a correct expression for <i>h</i> in terms of <i>r</i> (ft only follows misread of <i>V</i>) abstitutes their expression for <i>h</i> into area or cost expression of form $Ar^2 + Brh$ and correct expression for <i>C</i> and achieves given answer in part (a) including " <i>C</i> =" or "Cost=" errors seen such as <i>C</i> = area expression without multiples of (£)3 and (£)2 at any point. Cost a must be perfectly distinguished at all stages for this A mark. didates using Curved Surface Area = $\frac{2V}{r}$ - please send to review tempts to differentiate as evidenced by at least one term differentiated correctly Correct derivative – allow $12\pi r - 300\pi r^{-2}$ then isw if the power is misinterpreted (ft only for $12\pi r - 300\pi r^{-2}$	and area or misread)
dM1: S	ets their $\frac{dC}{dr}$ to 0, and obtains r^k = value where $k = 2, 3$ or 4 (needs correct collection of powers)	vers of <i>r</i>
from their	original derivative expression – allow errors dividing by 12π) Uses cube root to find <i>r</i> or see <i>r</i> = awrt 3 as evidence of cube root and substitutes into correct expression for <i>C</i> to obtain value for <i>C</i> ccept awrt 483 or 484	
A1: A	•	
	Finds correct expression for $\frac{d^2C}{dr^2}$ and deduces value of $\frac{d^2C}{dr^2} > 0$ so minimum (<i>r</i> may have been been been been been been been be	en wrong)

N..B. Some candidates have **misread** the volume as 75 instead of 75π . PTO for marking instruction.

Question Number	Scheme			Marks
10. (a)	$\frac{1}{2}(9x+6x)4x$ or $2x \times 15x$ or $\left(\frac{1}{2}4x \times (9x-6x)+6x \times 4x\right)$ or $6x^{2}+24x^{2}$ or $\left(9x \times 4x-\frac{1}{2}4x \times (9x-6x)\right)$ or $36x^{2}-6x^{2}$	trapezium. Note that 3 incorrect w If there is a area of the	t attempt at the area of a $0x^2$ on its own or $30x^2$ from ork e.g. $5x \times 6x$ is M0. clear intention to find the trapezium correctly allow the A1 can be withheld if there s.	M1A1 cso
	$\Rightarrow 30x^2y = 9600 \Rightarrow y = \frac{9600}{30x^2} \Rightarrow y = \frac{320}{x^2} *$		t proof with at least one e step and no errors seen. quired.	
(T)				[2]
(b)	$(S =) \frac{1}{2} (9x + 6x) 4x + \frac{1}{2} (9x + 6x) 4x + 6xy + 9xy + 5xy + 4xy$		M1A1	
	M1: An attempt to find the area of six faces of the $(9x + 6x)4x$ or $60x^2$ and the 4 other faces may be	-		
	included. There must be attempt at the areas of two A1: Correct expression Allow just $(S =) 60x^2 +$	n in any form.		
	$y = \frac{320}{x^2} \Rightarrow (S =) 30x^2 + 3$			M1
	Substitutes $y = \frac{320}{x^2}$ into their expression for <i>S</i> (may	be done earli	er). S should have at least	
	one x^2 term and one xy term but there may be other terms which may be dimensionally incorrect.			
	So, $(S =) 60x^2 + \frac{7680}{x} *$		Correct solution only. " $S =$ " is not required here.	A1* cso
				[4]

10(c)	$\frac{\mathrm{d}S}{\mathrm{d}x} = 120x - 7680x^{-2} \left\{ = 120x - \frac{7680}{x^2} \right\}$	M1: Either $60x^2 \rightarrow 120x$ or $\frac{7680}{x} \rightarrow \frac{\pm \lambda}{x^2}$ A1: Correct differentiation (need not be	M1
		A1: Correct differentiation (need not be simplified).	A1 aef
	$120x - \frac{7680}{x^2} = 0$ $\Rightarrow x^3 = \frac{7680}{120}; = 64 \Rightarrow x = 4$	Simplified). M1: $S' = 0$ and "their $x^3 = \pm$ value" or "their $x^{-3} = \pm$ value" Setting their $\frac{dS}{dx} = 0$ and "candidate's ft <u>correct</u> power of $x = a$ value". The power of x must be consistent with their differentiation. If inequalities are used this mark cannot be gained until candidate states value of x or S from their x without inequalities. $S' = 0$ can be implied by $120x = \frac{7680}{x^2}$. Some may spot that $x = 4$ gives S' = 0 and provided they clearly show $S'(4) = 0allow this mark as long as S' is correct. (If S'is incorrect this method is allowed if theirderivative is clearly zero for their value of x)A1: x = 4 only (x^3 = 64 \implies x = \pm 4 scores A0)Note that the value of x is not explicitly requiredso the use of x = \sqrt[3]{64} to give S = 2880 would$	M1A1 cso
		imply this mark.	
	Note some candidates stop here and d	o not go on to find S – maximum mark is 4/6	
	$\{x = 4,\}$	Substitute candidate's value of $x (\neq 0)$ into a	ddM1
		formula for S. Dependent on both previous M marks.	ddM1
	$S = 60(4)^2 + \frac{7680}{4} = 2880 \text{ (cm}^2\text{)}$	2880 cso (Must come from correct work)	A1 cao and cso
			[6]

10(d)	$\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$ M1: Attempt $S''(x^n \to x^{n-1})$ and considers sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any substitution. An attempt to solve $S'' = 0$ is M0 A1: $120 + \frac{15360}{x^3}$ and > 0 and conclusion.	MIAIG
	$\Rightarrow \text{ Minimum}$ $\Rightarrow \text{ Minimum}$ Requires a <u>correct</u> second derivative of $120 + \frac{15360}{x^3} \text{ (need not be simplified)} \text{ and a} $ valid reason (e.g. > 0), <u>and conclusion</u> . Only follow through a correct second derivative i.e. x may be incorrect but must be positive and/or S'' may have been <u>evaluated incorrectly</u> .	M1A1ft
	A correct S" followed by $S''("4") = "360"$ therefore minimum would score no marks in (d)	
	A correct S'' followed by $S''("4") = "360"$ which is positive therefore minimum would score	
	both marks	
		[2]
	Note parts (c) and (d) can be marked together.	
		Total 14

	Marks		
Scheme			
$(h =) \frac{60}{\pi x^2}$ or equivalent exact (not decimal) expression e.g. $(h =) 60 \div \pi x^2$		(1)	
$(A =)2\pi x^2 + 2\pi xh$ or $(A =)2\pi r^2 + 2\pi rh$ or $(A =)2\pi r^2 + \pi dh$ may not be simplified and may appear on separate lines			
Either $(A) = 2\pi x^2 + 2\pi x \left(\frac{60}{\pi x^2}\right)$ or As $\pi x h = \frac{60}{x}$ then $(A =)2\pi x^2 + 2\left(\frac{60}{x}\right)$			
$A = 2\pi x^2 + \left(\frac{120}{x}\right) \qquad \bigstar$	A1 cso	(3)	
$\left(\frac{dA}{dx}\right) = 4\pi x - \frac{120}{x^2}$ or $= 4\pi x - 120x^{-2}$	M1 A1		
$4\pi x - \frac{120}{x^2} = 0$ implies $x^3 =$ (Use of > 0 or < 0 is M0 then M0A0)	M1		
$x = \sqrt{\frac{120}{4\pi}}$ or answers which round to 2.12 (-2.12 is A0)	dM1 A1	(5)	
$A = 2\pi (2.12)^2 + \frac{120}{2.12}, = 85 \qquad \text{(only ft } x = 2 \text{ or } 2.1 - \text{both give } 85\text{)}$	M1, A1	(2)	
Either $\frac{d^2 A}{dx^2} = 4\pi + \frac{240}{x^3}$ and sign Or (method 2) considers gradient to left and right of their 2.12 (e.g at 2 and 2.5)	M1		
considered (May appear in (c)) Or (method 3) considers value of A either side			
Finds numerical values for gradients and observes			
which is > 0 and therefore minimum gradients go from negative to zero to positive so	A 1		
(most substitute 2.12 but it is not essential concludes minimum	AI	(2)	
to see a substitution) (may appear in (c)) OR finds numerical values of A , observing			
greater than minimum value and draws conclusion	13 mar	·ks	
(a) B1 : This expression must be correct and in part (a) $\frac{60}{3}$ is B0			
(b) B1: Accept any equivalent correct form – may be on two or more lines.			
M1 : substitute their expression for h in terms of x into Area formula of the form $kx^2 + cxh$ A1: There should have been no errors in part (b) in obtaining this printed answer			
M1: Setting $\frac{dA}{dx} = 0$ and finding a value for x^3 ($x^3 =$ may be implied by answer). Allow $\frac{dy}{dx} = 0$			
 dM1: Using cube root to find x A1 : For any equivalent correct answer (need 3sf or more) Correct answer implies previous M mark (d) M1 : Substitute the (+ve) x value found in (c) into equation for A and evaluate . A1 is for 85 only 			
attempted and sign considered A1: Clear statements and conclusion. (numerical substitution of x is not necessary in first metho		ıd x	
	$(h =) \frac{60}{\pi x^2} \text{ or equivalent exact (not decimal) expression e.g. } (h =)60 + \pi x^2$ $(A =)2\pi x^2 + 2\pi xh \text{ or } (A =)2\pi r^2 + 2\pi rh \text{ or } (A =)2\pi r^2 + \pi dh$ may not be simplified and may appear on separate lines Either $(A) = 2\pi x^2 + 2\pi x \left(\frac{60}{\pi x^2}\right) \text{ or } \text{ As } \pi xh = \frac{60}{x} \text{ then } (A =)2\pi x^2 + 2\left(\frac{60}{x}\right)$ $A = 2\pi x^2 + \left(\frac{120}{x}\right) \qquad \qquad$	$(h =) \frac{60}{\pi x^2}$ or equivalent exact (not decimal) expression e.g. $(h =)60 + \pi x^2$ B1 $(A =)2\pi x^2 + 2\pi xh$ or $(A =)2\pi r^2 + 2\pi rh$ or $(A =)2\pi r^2 + \pi dh$ B1may not be simplified and may appear on separate lines $(A =)2\pi x^2 + 2\pi x \left(\frac{60}{\pi x^2}\right)$ or $As \pi xh = \frac{60}{x} then (A =)2\pi x^2 + 2\left(\frac{60}{x}\right)$ M1 $A = 2\pi x^2 + \left(\frac{120}{x}\right)$ *A1 coo $(\frac{dA}{dx}) = 4\pi x - \frac{120}{x^2}$ or $= 4\pi x - 120x^{-2}$ M1 A1 $4\pi x - \frac{120}{x^2} = 0$ implies $x^3 =$ (Use of > 0 or < 0 is M0 then M0A0)	

		ning, changing lives
Question number	Scheme	Marks
8 (a)	$kr^{2} + cxy = 4$ or $kr^{2} + c[(x + y)^{2} - x^{2} - y^{2}] = 4$	M1
	$\frac{1}{4}\pi x^2 + 2xy = 4$	A1
	$y = \frac{4 - \frac{1}{4}\pi x^2}{2x} = \frac{16 - \pi x^2}{8x}$	B1 cso
(b)	$P = 2x + cy + k \pi r$ where $c = 2$ or 4 and $k = \frac{1}{4}$ or $\frac{1}{2}$	(3) M1
	$P = \frac{\pi x}{2} + 2x + 4\left(\frac{4 - \frac{1}{4}\pi x^2}{2x}\right) \text{ or } P = \frac{\pi x}{2} + 2x + 4\left(\frac{16 - \pi x^2}{8x}\right) \text{ o.e.}$	A1
	$P = \frac{\pi x}{2} + 2x + \frac{8}{x} - \frac{\pi x}{2}$ so $P = \frac{8}{x} + 2x$ *	A1 (3)
(c)	$\left(\frac{\mathrm{d}P}{\mathrm{d}x}\right) = -\frac{8}{x^2} + 2$	M1 A1
	$-\frac{8}{x^2} + 2 = 0 \Longrightarrow x^2 = \dots$	M1
	and so $x = 2$ o.e. (ignore extra answer $x = -2$)	A1
	P = 4 + 4 = 8 (m)	B1 (5)
(d)	$y = \frac{4-\pi}{4}$, (and so width) = 21 (cm)	M1, A1 (2) 13
Notes	(a) M1: Putting sum of one or two <i>xy</i> terms and one kr^2 term equal to 4 (<i>k</i> and <i>c</i> matched A1: For any correct form of this equation with <i>x</i> for radius (may be unsimplified B1 : Making <i>y</i> the subject of their formula to give this printed answer with no error (b) M1 : Uses Perimeter formula of the form $2x + cy + k \pi r$ where $c = 2$ or 4 and A1: Correct unsimplified formula with <i>y</i> substituted as shown, i.e. $c = 4$, $k = \frac{1}{2}$, $r = x$ and $y = \frac{16 - \pi x^2}{8x}$ or $y = \left(\frac{4 - \frac{1}{4}\pi x^2}{2x}\right)$ A1: obtains printed answer with at least one line of correct simplification or exp giving printed answer or stating result has been shown or equivalent (c) M1: At least one power of <i>x</i> decreased by 1 (Allow 2 <i>x</i> becomes 2) A1: accept any equivalent correct answer M1: Setting $\frac{dP}{dx} = 0$ and finding a value for correct power of <i>x</i> for candidate A1 : For $x = 2$. (This mark may be given for equivalent and may be implied by correct <i>P</i> B1: 8 (cao) N.B. This may be awarded if seen in part (d) (d) M1 : Substitute <i>x</i> value found in (c) into equation for <i>y</i> from (a) (or substitute <i>x</i> and <i>P</i> in from (b)) and evaluate (may see 0.2146 and correct answer implies M1 or need to see substitivas wrong.) A1 is for 21 or 21 cm or 0.21m as this is to nearest cm	1) Fors $k = \frac{1}{4}$ or $\frac{1}{2}$ ansion before) to equation for <i>P</i>