www.yesteruaysmathsexam.com

Question	Scheme	Marks	AOs
1	Finds critical values $x^2 - x > 20 \Rightarrow x^2 - x - 20 > 0 \Rightarrow x = (5, -4)$	M1	1.1b
	Chooses outside region for their values Eg. $x > 5$, $x < -4$	M1	1.1b
	Presents solution in set notation $\{x: x < -4\} \cup \{x: x > 5\}$ oe	A1	2.5
		(3)	
		(3	(marks)

Notes

M1: Attempts to find the critical values using an algebraic method. Condone slips but an allowable method should be used and two critical values should be found

M1: Chooses the outside region for their critical values. This may appear in incorrect inequalities such as 5 < x < -4

A1: Presents in set notation as required $\{x: x < -4\} \cup \{x: x > 5\}$ Accept $\{x < -4 \cup x > 5\}$.

Do not accept $\{x < -4, x > 5\}$

Note: If there is a contradiction of their solution on different lines of working do not penalise intermediate working and mark what appears to be their final answer.

Question	Scheme	Marks	AOs	
12(a)	$H = ax^2 + bx + c$ and $x = 0$, $H = 3 \Rightarrow H = ax^2 + bx + 3$	M1	3.3	
	$H = ax^{2} + bx + 3$ and $x = 120, H = 27 \Rightarrow 27 = 14400a + 120b + 3$	M1	3.1b	
	$\mathbf{or} \frac{\mathrm{d}H}{\mathrm{d}x} = 2ax + b = 0 \text{ when } x = 90 \implies 180a + b = 0$	A1	1.1b	
	$H = ax^{2} + bx + 3$ and $x = 120, H = 27 \implies 27 = 14400a + 120b + 3$			
	$\frac{\mathrm{d}H}{\mathrm{d}x} = 2ax + b = 0 \text{when } x = 90 \implies 180a + b = 0$	dM1	3.1b	
	$\Rightarrow a = \dots, b = \dots$			
	$H = -\frac{1}{300}x^2 + \frac{3}{5}x + 3 \text{o.e.}$	A1	1.1b	
		(5)		
(b)(i)	$x = 90 \Rightarrow H\left(=-\frac{1}{300}(90)^2 + \frac{3}{5}(90) + 3\right) = 30 \text{ m}$	B1	3.4	
(b)(ii)	$H = 0 \Longrightarrow -\frac{1}{300}x^2 + \frac{3}{5}x + 3 = 0 \Longrightarrow x = \dots$	M1	3.4	
	$x = (-4.868,) 184.868$ $\Rightarrow x = 185 (m)$	A1	3.2a	
		(3)		
(c)	 Examples must focus on why the model may not be appropriate or give values/situations where the model would break down: E.g. The ground is unlikely to be horizontal The ball is not a particle so has dimensions/size The ball is unlikely to travel in a vertical plane (as it will 	B1	3.5b	
	 spin) <i>H</i> is not likely to be a quadratic function in r 			
		(1)		
I	(9 marks)			
Notes				

www.yesterdaysmathsexam.com

(a)

M1: Translates the problem into a suitable model and uses H = 3 when x = 0 to establish c = 3Condone with $a = \pm 1$ so $H = x^2 + bx + 3$ will score M1 but little else

M1: For a correct attempt at **using one of the two other pieces** of information within a quadratic model **Either** uses H = 27 when x = 120 (with c = 3) to produce a linear equation connecting *a* and *b* for the model **Or** differentiates and uses $\frac{dH}{dx} = 0$ when x = 90. Alternatives exist here, using the

symmetrical nature of the curve, so they could use $x = -\frac{b}{2a}$ at vertex or use point (60, 27) or (180,3).

A1: At least one correct equation connecting *a* and *b*. Remember "*a*" could have been set as negative so an equation such as 27 = -14400a + 120b + 3 would be correct in these circumstances.

dM1: Fully correct strategy that uses $H = a x^2 + b x + 3$ with the two other pieces of information in order to establish the values of **both** *a* **and** *b* for the model

A1: Correct equation, not just the correct values of a, b and c. Award if seen in part (b) (b)(i)

B1: Correct height including the units. CAO

(b)(ii)

M1: Uses H = 0 and attempts to solve for x. Usual rules for quadratics.

A1: Discards the negative solution (may not be seen) and identifies awrt 185 m. Condone lack of units

Question	Scheme	Marks	AOs
2(a)	$f(x) = (x-2)^2 \pm$	M1	1.2
	$f(x) = (x-2)^2 + 1$	A1	1.1b
		(2)	
(b)(i)	P = (0, 5)	B1	1.1b
(b)(ii)	Q = (2, 1)	B1ft	1.1b
		(2)	
(4 marks)			
Notes			

(a)

M1: Achieves $(x-2)^2 \pm \dots$ or states a = -2

A1: Correct expression $(x-2)^2 + 1$ ISW after sight of this

Condone a = -2 and b = 1. Condone $(x-2)^2 + 1 = 0$

(b)

(i) B1: Correct coordinates for *P*. Allow to be expressed x = 0, y = 5(ii) B1ft: Correct coordinates for *Q*. Allow to be expressed x = 2, y = 1 (Score for the correct answer or follow through their part (a) so allow (-a, b) where *a* and *b* are numeric) Score in any order if they state P = (0, 5) and Q = (2, 1)Allow part (b) to be awarded from a sketch. So award First B1 from a sketch crossing the *y*-axis at 5 Second B1 from a sketch with minimum at (2, 1)

.....

Question	Scheme	Marks	AOs
6 (a)	Attempts $P = 100 - 6.25(15 - 9)^2$	M1	3.4
	$=-125$ \therefore not sensible as the company would make a loss	A1	2.4
		(2)	
(b)	Uses $P > 80 \Rightarrow (x-9)^2 < 3.2$ or $P = 80 \Rightarrow (x-9)^2 = 3.2$	M1	3.1b
	$\Rightarrow 9 - \sqrt{3.2} < x < 9 + \sqrt{3.2}$	dM1	1.1b
	Minimum Price = $\pounds 7.22$	A1	3.2a
		(3)	
(c)	States (i) maximum profit =£ 100 000	B1	3.2a
	and (ii) selling price £9	B1	2.2a
		(2)	
		ſ	7 marks)

(a)

M1: Substitutes x = 15 into $P = 100 - 6.25(x-9)^2$ and attempts to calculate. This is implied by an answer of -125. Some candidates may have attempted to multiply out the brackets before they substitute in the x = 15. This is acceptable as long as the function obtained is quadratic. There

must be a calculation seen or implied by the value of -125.

A1: Finds P = -125 or states that P < 0 and explains that (this is not sensible as) the company would make a loss.

Condone P = -125 followed by an explanation that it is not sensible as the company would make a loss of £125 rather than £125 000. An explanation that it is not sensible as "the profit cannot be negative", "the profit is negative" or "the company will not make any money", "they might make a loss" is incomplete/incorrect. You may ignore any misconceptions or reference to the price of the toy being too cheap for this mark.

Alt: M1: Sets P = 0 and finds x = 5, 13 A1: States 15 > 13 and states makes a loss (b)

M1: Uses P...80 where ... is any inequality or "="in $P = 100 - 6.25(x-9)^2$ and proceeds to

 $(x-9)^2 \dots k$ where k > 0 and \dots is any inequality or "="

Eg. Condone P < 80 in $P = 100 - 6.25(x-9)^2 \Rightarrow (x-9)^2 < k$ where k > 0 If the candidate

attempts to multiply out then allow when they achieve a form $ax^2 + bx + c = 0$ dM1: Award for solving to find the two positive values for x. Allow decimal answers

FYI correct answers are $\Rightarrow 9 - \sqrt{3.2} < x < 9 + \sqrt{3.2}$ Accept $\Rightarrow x = 9 \pm \sqrt{3.2}$

Condone incorrect inequality work $100-6.25(x-9)^2 > 80 \Rightarrow (x-9)^2 > 3.2 \Rightarrow x > 9 \pm \sqrt{3.2}$

Alternatively award if the candidate selects the lower of their two positive values $9-\sqrt{3.2}$ A1: Deduces that the minimum Price = £7.22 (£7.21 is not acceptable)

(c)

(i) B1: Maximum Profit = \pounds 100 000 with units. Accept 100 thousand pound(s).

(ii) **B1:** Selling price = $\pounds 9$ with units

SC 1: Missing units in (b) and (c) only penalise once in these parts, withhold the final mark.

SC 2: If the answers to (c) are both correct, but in the wrong order score SC B1 B0

If (i) and (ii) are not written out score in the order given.

www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs	
9 (a)	117 tonnes	B1	3.4	
		(1)		
(b)	1200 tonnes	B1	2.2a	
		(1)		
(c)	Attempts $\{1200 - 3 \times (5 - 20)^2\} - \{1200 - 3 \times (4 - 20)^2\}$	M1	3.1a	
	93 tonnes	A1	1.1b	
		(2)		
(d)	States the model is only valid for values of <i>n</i> such that $n \leq 20$	B1	3.5b	
	States that the total amount mined cannot decrease	B1	2.3	
		(2)		
(6 marks)				
Notes				

Note: Only withhold the mark for a lack of tonnes, once, the first time that it occurs.

(a)

B1: 117 tonnes or 117 t.

(b)

B1: 1200 tonnes or 1200 t.

(c)

M1: Attempts $T_5 - T_4 = \{1200 - 3 \times (5 - 20)^2\} - \{1200 - 3 \times (4 - 20)^2\}$ May be implied by 525 - 432

Condone for this mark an attempt at $T_4 - T_3 = \{1200 - 3 \times (4 - 20)^2\} - \{1200 - 3 \times (3 - 20)^2\}$

A1: 93 tonnes or 93 t

(d)

For one mark

Shows an appreciation of the model

- States $n \leq 20$ or n < 20
- Condone for one mark $n \leq 40$ or n < 40 with "the mass of tin mined cannot be negative" oe
- Condone for one mark n = 40 with a statement that "the mass of tin mined becomes 0" oe
- after 20 years the (total) amount of tin mined starts to go down (*n* may not be mentioned and total may be missing)
- after 20 years the (total) mass reaches a maximum value. (Similar to above)
- States T_{max} is reached when n = 20

For two marks

States the limitation on n and explains fully. (Total mass, not mass must be used)

- States that $n \leq 20$ and explains that the total mass of tin cannot decrease.
- Alternatively states that *n* cannot be more than 20 and the total mass of tin would be decreasing
- $0 < n \le 20$ as the maximum total amount of tin mined is reached at 20 years

Quest	ion Scheme	Marks	AOs
10	Realises that $k = 0$ will give no real roots as equation becomes 3 = 0 (proof by contradiction)	B1	3.1a
	(For $k \neq 0$) quadratic has no real roots provided	M1	24
	$b^2 < 4ac \text{ so } 16k^2 < 12k$	1411	2.т
	4k(4k-3) < 0 with attempt at solution	M1	1.1b
	So $0 < k < \frac{3}{4}$, which together with $k = 0$ gives $0 \le k < \frac{3}{4} *$	A1*	2.1
		(4 n	narks)
Notes	:		
B1:	Explains why $k = 0$ gives no real roots		
M1:	Considers discriminant to give quadratic inequality – does not need the $k \neq 0$ for this		
	mark		
M1:	Attempts solution of quadratic inequality		
A1*:	Draws conclusion, which is a printed answer, with no errors (dependent on all three previous marks)		

Pearson Edexcel Level 3 Advanced GCE in Mathematics – Sample Assessment Materials Issue 1 – June 2017 $\ensuremath{\mathbb{C}}$ Pearson Education Limited 2017

Question	Scheme	Marks		
11				
(a)	$(13k-5)r^2 - 12kr - 6 = 0$ or $(5-13k)r^2 + 12kr + 6 = 0$	B1		
(<i>a</i>)	Uses $b^2 - 4ac$ with $a = \pm 13k \pm 5$ $b = \pm 12k$ and $c = \pm 6$	M1		
	And states $b^2 - 4ac > 0$ with $a = \pm (13k - 5)$ $b = \pm 12k$ and $c = \pm 6$	Alft		
	Proceeds correctly with no errors to $6k^2 + 13k - 5 > 0$ *	Al*		
		[4]		
(b)	Attempts to solve $6k^2 + 13k - 5 = 0$ to give $k =$	M1		
	\Rightarrow Critical values, $k = \frac{1}{3}, \frac{-5}{2}$	A1		
	$6k^2 + 13k - 5 > 0$ gives $k > \frac{1}{3}$ (or) $k < \frac{1}{2}$	M1 A1		
		[4]		
	Notes	8 marks		
(a)				
B1: Exp	resses equation as three term quadratic in x. $(13k-5)x^2 - 12kx - 6 = 0$ oe.			
The	equals 0 may be implied by subsequent work. Allow $(5-13k)x^2 + 12kx + 6 = 0$			
Allo	w an equation of the form $13kx^2 - 5x^2 - 12kx - 6(=0)$ as long as it is followed by $a = 13k - 6(=0)$	- 5		
M1: Atte	mpts $b^2 - 4ac$ with $a = \pm 13k \pm 5$, $b = \pm 12k$ and $c = \pm 6$			
or	uses quadratic formula to solve equation			
or u	or uses the discriminant on two sides of an equation or inequation e.g. $b^2 = 4ac$ or $b^2 < 4ac$			
A1: Use	s the discriminant condition, eg $b^2 - 4ac > 0$ or $b^2 > 4ac$ with $a = \pm 13k \pm 5$, $b = \pm 12k$ and $c = b^2 + 4ac = 10$	=±6		
AI*: Pro	ceeds to given answer with no errors. AG. Condone missing = 0 on the equation where $(12k - 5)x^2 - 12kx$ (0 is followed by $144k^2 + 24(12k - 5)x = 0$			
Wa	the for $a = 13k = 5$, $b = \pm 12k$ and $c = -6$ which does give the correct inequality but loses the fi	inal A1*		
(h)	watch for $a = 13k - 5$, $b = +12k$ and $c = -0$ which does give the correct inequality but loses the final A1*			
M1: Us or	es factorisation, formula, or completion of square method to find two values for k , finds two correct answers with no obvious method for their three term quadratic			
A1: Ot	tains $k = \frac{1}{2}, \frac{-5}{2}$ accept -2.5, 0.333 (awrt) here but need exact answer for final A1.			
Also condone $x = \frac{1}{x} = \frac{-5}{5}$ for this mark.				
M1. Ch	3 2	quadratia		
ine	WI: Chooses outside region ($k < 1$ neir Lower Limit $k >$ Their Upper Limit) for appropriate 3 term quadratic inequality. Do not award simply for diagram or table			
	Award if final answer is $1 < 1 < -5$ or $1 < -5$			
	Award if final answer is $k \ge \frac{1}{3}$ (or) $k \le \frac{1}{2}$ or $\frac{1}{3} < k < \frac{1}{2}$			
Cor	Condone x appearing instead of k			
A1: k:	A1: $k > \frac{1}{3}$ (or) $k < \frac{-5}{2}$ $\left(k \neq \frac{5}{13}\right)$ must be exact and must be k.			
Ми	Must be two separate inequalities and not be $k > \frac{1}{3}$ and $k < \frac{-5}{2}$			

www.yesterdaysmathsexam.com

Question Number	Scheme	Marks	i
2(a)	$4(x-2), 2x+1 \Longrightarrow 4x-8, 2x+1 \\ \Longrightarrow x, 4.5$	M1A1	
(b)	(2x-3)(x+5) > 0		(2)
	Roots are 1.5, – 5	B1	
	Chooses outsides $x < -5$, $x > 1.5$	M1A1	
			(3)
(c)	$x < -5, 1.5 < x_{,,}$ 4.5	B1	
			(1)
		(6 ma	rks)

(a)

- M1 Proceeds as far as $x_{,,...}$ after firstly multiplying out brackets oe. Condone x < ... for this mark Minimum expectation is that you see $4x 8...2x + 1 \Rightarrow x...c$ where ... is ,, or <
- A1 x, 4.5 or equivalent in set notation such as $\{x : x, 4.5\}$ $x \in (-\infty, 4.5]$. Accept just $(-\infty, 4.5]$
- (b)
- B1 Critical values are 1.5, -5
- M1 Chooses the outside values of their critical values. You may well see candidates multiply out the brackets and factorise incorrectly. They can score this mark for choosing the 'outsides' Do not allow this mark from just a diagram. You must see the inequalities. Accept for the method mark $x_{,,} -5, x_{..} 1.5$
- A1 Accept any of x < -5, x > 1.5' x < -5 or x > 1.5' $\{x : x < -5 \cup x > 1.5\}'$ $\{x : -\infty < x < -5 \cup 1.5 < x < \infty\}$ or their exact equivalents

Do not accept on its own (without seeing any of the above) 'x < -5 and x > 1.5'' ' $x < -5 \cap x > 1.5$ '' ' $x : x < -5 \cap x > 1.5$ ''

(c)

B1 cao Accept any of

x < -5, 1.5 < x, 4.5' x < -5 or 1.5 < x, 4.5' $(x : x < -5 \cup 1.5 < x, 4.5)'$ $x \in -\infty < x < -5 \cup 1.5 < x, 4.5'$ or their exact equivalents.

There must be just two distinct regions represented by just two inequalities. If a candidate writes $x_{,,}$ 4.5 x < -5, x > 1.5 it is B0

Question Number	Scheme	Marks	
13(a)	$3kx^{2} + (8k+6)x + 9k - 2 = 0 \text{ or } 3kx^{2} + 8kx + 6x + 9k - 2 = 0$	B1	
	Uses $b^2 - 4ac$ with $a = 3k$, $b = 8k \pm 6$ and $c = 9k \pm 2$	M1	
	$-44k^2 + 120k + 36 < 0$ or!!! $36 < 44k^2 - 120k$ o.e.	Δ1	
	Reached with no errors		
	$11k^2 - 30k - 9 > 0*$	A1*	
(b)		[4]	
(0)	Attempts to solve $11k^2 - 30k - 9 = 0$ to give $k = 2$	MI	
	$\Rightarrow \text{Critical values, } k = 3, -\frac{5}{11}$	A1	
	$k > 3$ (or) $k < -\frac{3}{11}$	M1 A1cao	
		[4]	
	Notas	8 marks	
(a)	P1: Multiplies by k and collects terms to one side in any order. Allow the r terms not to be com-	bined and	
(a)	the '= 0' may be implied by use of a correct discriminant.	ionicu anu	
	M1: Attempts $b^2 - 4ac$ with $a = 3k$, $b = 8k \pm 6$ and $c = 9k \pm 2$ or uses quadratic formula with	$b^2 - 4ac$	
	seen to solve their equation or uses $b^2 = 4ac$ or e.g. $b^2 < 4ac$. There must be no x's.		
	A1: Obtains a correct three term quadratic inequality that is not the printed answer with no A1: Correct answer with no errors	errors seen.	
(b)	M1: Uses factorisation, formula, or completion of square method to find two values for k or fin correct answers with no obvious method for <u>the given</u> three term quadratic	nds two	
	A1: Obtains $k = 3, -\frac{3}{11}$ accept awrt - 0.272		
	M1: Chooses outside region ($k <$ Their Lower Limit $k >$ Their Upper Limit) for a 3 term q inequality. Do not award simply for diagram or table.	uadratic	
	A1: $k > 3$ (or) $k < -\frac{3}{11}$ must be exact here but allow $-0.\dot{2}\dot{7}$ for $-\frac{3}{11}$.		
	Allow other notation such as $\left(-\infty, -\frac{3}{11}\right) \cup (3, \infty)$		
	$k > 3$ and $k < -\frac{3}{11}$ and $-\frac{3}{11} > k > 3$ score M1A0		
	ISW if possible e.g. $k > 3$, $k < -\frac{3}{11}$ followed by $-\frac{3}{11} > k > 3$ can score M1A1		
	$k > 3$, $k > -\frac{3}{11}$ followed by $k > 3$ (or) $k < -\frac{3}{11}$ can score M1A1		
	Allow (b) to be solved in terms of x for the first 3 marks but the final A mark needs the regions in terms of k. Fully correct answer with no working scores full marks.		
	Answers that are otherwise correct but use $\leq \geq 1$ lose final mark.		

Question Number	Scheme	Marks
9(a)	Uses $b^2 - 4ac = (6k+4)^2 - 4 \times 1 \times 3$	B1
	Multiplies out and uses $b^2 - 4ac < 0$	M1
	to give $36k^2 + 48k + 16 - 12 \le 0$ so $9k^2 + 12k + 1 \le 0^*$	A1 *
(b)	Solves quadratic by formula or completion of square to give $k =$	[5] M1
	Obtains $k = \frac{-12 \pm \sqrt{108}}{18}$ or accept $k = a \text{ wrt} - 1.24, -0.09$	A1
	Chooses region between two values and deduces $\frac{-2-\sqrt{3}}{3} < k < \frac{-2+\sqrt{3}}{3}$	M1 A1cao
		[4]
		7 marks

Question Number	Scheme	Marks
13.	$y = 3x^2 - 4x + 2$	
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x - 4 + \left\{ 0 \right\}$	M1A1
	At (1, 1) gradient of curve is 2 and so gradient of normal is $-\frac{1}{2}$	M1
	: $(y-1) = -\frac{1}{2}(x-1)$ and so $x + 2y - 3 = 0*$	M1 A1*
(b)	Eliminate x or y to give $2(3x^2 - 4x + 2) + x - 3 = 0$ or $y = 3(3 - 2y)^2 - 4(3 - 2y) + 2$ Solve three term quadratic e.g. $6x^2 - 7x + 1 = 0$ or $12y^2 - 29y + 17 = 0$ to give $x = -0$, y	[5] M1
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	M1
	$x = \frac{1}{6} \text{ or } y = 1\frac{5}{12}$	A1
	Both $x = \frac{1}{6}$ and $y = 1\frac{5}{12}$ i.e. $(\frac{1}{6}, 1\frac{5}{12})$ or $(0.17, 1.42)$ { Ignore $(1, 1)$ listed as well }	A1 [4]
(c)	When this line meets the curve $2(3x^2 - 4x + 2) + kx - 3 = 0$	M1
	So $6x^2 + (k-8)x + 1 = 0$	dM1
	Uses condition for equal roots $b^2 = 4ac''$ on their three term quadratic to get expression in k	ddM1
	So obtain $(k-8)^2 = 24$ i.e. $k^2 - 16k + 40 = 0$ *	A1 *
	If they use gradient of tangent to do part (c) see the end of the notes below*.	[4]
(d)	Solve the given quadratic or their quadratic by formula or completion of the square to	M1A1
	$\frac{16}{100} = \frac{16}{100} + \frac{16}{100} = \frac{16}{100} + \frac{16}{100} = \frac{16}{100} + \frac{16}{100} + \frac{16}{100} = \frac{16}{100} = \frac{16}{100} + \frac{16}{100} = \frac{16}{100} + \frac{16}{100} = 1$	[2]
	$k = 8 \pm \sqrt{24}$ or $8 \pm 2\sqrt{6}$ or $\frac{10 \pm \sqrt{30}}{2}$	[-]
	-	15 marks
	Notes	

Quest Numł	Scheme	Marks		
10(a	$kx^{2} + 4x + k = 2 \Longrightarrow kx^{2} + 4x + k - 2 = 0$			
	Attempts to calculate $b^2 - 4ac$ with $a = k, b = 4$ and $c = k \pm 2$	M1		
	$b^2 - 4ac = 4^2 - 4 \times k \times (k - 2)$	A1		
	Sets their $b^2 - 4ac > 0 \Rightarrow 16 - 4k(k-2) > 0$	dM1		
	$4k^2 - 8k - 16 < 0$			
	$k^2 - 2k - 4 < 0$	A1*		
		(4)		
(b)	Solves $(k-1)^2 - 5 = 0 \Longrightarrow k = 1 \pm \sqrt{5}$	M1		
	'Insides' $1 - \sqrt{5} < k < 1 + \sqrt{5}$	M1A1		
		(3)		
		(7 marks)		
a) N M1 A	ttempts to calculate $b^2 - 4ac$ with $a = k, b = 4$ and $c = k \pm 2$. Condone poor/incompl	ete bracketing.		
А	Iternatively they may set $b^2 \dots 4ac$ with \dots being =,>,<, \leq or \geq with $a = k, b = 4$ and	nd $c = k \pm 2$.		
A1 C	Correct (unsimplified) $b^2 - 4ac$. Accept $4^2 - 4k(k-2)$ oe. The bracketing must be correct.			
Ir	the alternative it is for $4^2 \dots 4k(k-2)$ with being =,>,<, \leq or \geq The bracketing	must be correct		
M1 S	ets their $b^2 - 4ac > 0$ with $a = k, b = 4$ and $c = k \pm 2 \Longrightarrow 4^2 - 4k(k \pm 2) > 0$			
Ir	the alternative it is for just $b^2 > 4ac$ with $a = k, b = 4$ and $c = k \pm 2 \Longrightarrow 4^2 > 4k(k \pm 2)$)		
A1* Pi to pi yo	coceeds correctly to the given answer $k^2 - 2k - 4 < 0$. You should expect to see the the other side of the inequality and a division of 4. Alternatively a division of -4 s oceeded by the reversal of the inequality. There is no requirement for these steps to bu need to check for sign errors which would be A0.	terms moved ove hould be be explained bu		
Special c	ase: If they start with $a = kx^2$, $b = 4x$ and $c = k \pm 2$ and proceed correctly they will s	score a maximum		
of M1A1 b)	dM1A0*. Treat candidates who start with $\sqrt{b^2 - 4ac}$ in a similar way.			
M1 Fo	or an attempt by either the formula or completing the square to solve $3TQ=0$. Do no ctorisation. If the formula is quoted it must be correct. If it is not quoted only acce	t accept pt expressions o		
th	e form $\frac{-(-2)\pm\sqrt{(-2)^2-4\times1\times-4}}{2\times1}$ with or without either bracket. Accept awrt 3.24	, -1.24 from a		

GC.

If completing the square is attempted accept $k^2 - 2k - 4 = 0 \Rightarrow (k \pm 1)^2 \pm 1 \pm 4 = 0 \Rightarrow k = ...$

M1 Chooses the inside values to their solution to the 3TQ=0. This is not dependent upon the previous M so for this mark you can accept the inside region from their roots obtained factorisation. If α is the smaller root and β is the larger root look for $\alpha < k < \beta$ or $k > \alpha$ and $k < \beta$ or $k > \alpha$ or $k < \beta$ or (α, β)

A1
$$1-\sqrt{5} < k < 1+\sqrt{5}$$
. Accept also $k > 1-\sqrt{5}$ and $k < 1+\sqrt{5}$, $k > 1-\sqrt{5}$ $k < 1+\sqrt{5}$, $(1-\sqrt{5}, 1+\sqrt{5})$
Also allow $k > 1-\sqrt{5}$ $k < 1+\sqrt{5}$ with a comma between.

Accept exact equivalents like $\frac{2-\sqrt{20}}{2} < k < \frac{2+\sqrt{20}}{2}$ or $1-\frac{\sqrt{20}}{2} < k < 1+\frac{\sqrt{20}}{2}$

Do not accept $k \ge 1 - \sqrt{5}$ or $k < 1 + \sqrt{5}$, $\left[1 - \sqrt{5}, 1 + \sqrt{5}\right]$ or decimals

Do not accept x in place of k for the final mark.

Special case for candidate who achieves $1 - \sqrt{5} \le k \le 1 + \sqrt{5}$ or $\left[1 - \sqrt{5}, 1 + \sqrt{5}\right]$ score M1M1A0

Question Number	Scheme	Marks	
8.	$kr^{2} + 8r + 2(k+7) = 0$		
	Uses $b^2 - Acc$ with $a - k$ $b - 8$ and attempt at $c = 2(k + 7)$	M1	
	$b^{2} = 4a^{2} - 64 - 56k + 2k^{2}$ or $64 - 56k + 2k^{2} - 6a^{2}$		
	b' - 4uc = 64 - 50k - 8k $b' - 4uc = 50k + 8k$ $b' - 4uc = 64 - 50k - 8k$		
	Attempts to solve $k + 1k - 8 = 0^{-1}$ to give $k = 1$		
	\Rightarrow Critical values, $\kappa = 1, -8$.	Alcso	
	Uses $b^2 - 4ac < 0$ or $b^2 < 4ac$ or $4ac - b^2 > 0$	M1	
	$k^2 + 7k - 8 > 0$ gives $k > 1$ (or) $k < -8$	M1 A1	
		[7]	
		7 marks	
	Notes		
	M1: Attempts $b^2 - 4ac$ for $a = k, b = 8$ and $c = 2(k+7)$ or attempt at c from quadratic = 0 (may c	omit bracket	
	or make sign slip or lose the 2, so $2k+7$ or $k+7$ for example)		
	or uses quadratic formula to solve equation or uses on two sides of an equation or inequation A1. Connect three terms are during a supression for h^2 . And the supression has not trively		
	A1: Correct inree term quadratic expression for $b = 4ac - (may be under root sign)$ dM1: Uses factorisation, formula, or completion of square method to find two values for k, or finds two		
	correct answers with no obvious method for their three term quadratic		
	A1: Obtains 1 and -8		
	M1: states $b^2 - 4ac < 0$ or $b^2 < 4ac$ anywhere (may be implied by the following work)		
	M1: Chooses outside region ($k <$ Their Lower Limit $k >$ Their Upper Limit) for appropriate 3 term		
	quadratic inequality. Do not award simply for diagram or table.		
	A1: $k > 1$ or $k < -8$ - allow anything which clearly indicates these regions e.g. $(-\infty, -8)$ or $(1, \infty)$		
	k > 1, $k < -8$ is A1 but $k > 1$ and $k < -8$ is A0		
	but $x > 1$, $x < -8$ is A0 (only lose 1 mark for using x instead of k) and $k \ge 1$ (or) $k \le -8$ is A0 Also $1 \le k \le -8$ is M1 A0		
	N.B. Lack of working: If there is no mention of $b^2 - 4ac < 0$ or $b^2 < 4ac$		
	then just the correct answer $k > 1$, $k < -8$ can imply the last M1M1A1		
	$k \ge 1, k \le -8$ can imply M0M1A0		
	k > 1, $k < -8$ can imply M1M1A0		
	Anything else needs to apply scheme		

Question Number	Scheme		Marks
5.(a)	$f(x) = (x-4)^2 + 3$	M1: $f(x) = (x \pm 4)^2 \pm \alpha$, $\alpha \neq 0$ (where α is a single number or a numerical expression $\neq 0$) A1: Allow $(x + 4)^2 + 3$ and ignore any spurious "= 0"	M1A1
	Allow $a = -4, b = 3$	to score both marks	
			(2)
(b)		B1: U shape anywhere even with no axes. Do not allow a "V" shape i.e. with an obvious vertex.	B1
		B1: $P(0, 19)$. Allow $(0, 19)$ or just 19 marked in the correct place as long as the curve (or straight line) passes through or touches here and allow (19, 0) as long as it is marked in the correct place. Correct coordinates may be seen in the body of the script as long as the curve (or straight line) passes through or touches here. If there is any ambiguity, the sketch has precedence. (There must be a sketch to score this mark)	B1
		B1: $Q(4, 3)$. Correct coordinates that can be scored without a sketch but if a sketch is drawn then it must have a minimum in the first quadrant and no other turning points. May be seen in the body of the script. If there is any ambiguity, the sketch has precedence. Allow this mark if 4 is clearly marked on the <i>x</i> -axis below the minimum and 3 is marked clearly on the <i>y</i> -axis and corresponds to the minimum	B1
		1 1 · · · · · · · · · · · · · · · · · · ·	(3)

(c)		Correct use of Pythagoras'		
	$PO^{2} = (0, 4)^{2} + (10, 3)^{2}$	Theorem on 2 points of the form	M1	
	PQ = (0-4) + (19-3)	$(0, p)$ and (q, r) where $q \neq 0$ and	1 VI 1	
		$p \neq r$ with p , q and r numeric.		
		Correct un-simplified numerical		
		expression for PQ including the		
		square root. This must come from		
	$PQ = \sqrt{4^2 + 16^2}$	<u>a correct <i>P</i> and <i>Q</i></u> . Allow e.g	A1	
	~	$PQ = \sqrt{(0-4)^2 + (19-3)^2}$.		
		Allow $\pm \sqrt{(0-4)^2 + (19-3)^2}$		
	$PO = 4 \sqrt{17}$	Cao and cso i.e. This must come	A 1	
	$PQ = 4\sqrt{17}$	$PQ = 4\sqrt{1}$	from a correct P and Q .	AI
	Note that it is possible to obtain the correct value for PQ from (-4,3) and			
	(0, 19) and e.g. $(0, 13)$ and $(4, -3)$ but the A marks in (c) can only be			
	awarded for the correct P and Q.			
			(3)	
			(8 marks)	

Question Number	Scheme		Marks
6.(a)	Replaces 2^{2x+1} with $2^{2x} \times 2$	Uses the addition or power law of indices on 2^{2x} or 2^{2x+1} . E.g.	
	states $2^{2x+1} = 2^{2x} \times 2$	$2^{x} \times 2^{x} = 2^{2x} \text{ or } (2^{x})^{2} = 2^{2x} \text{ or }$	M1
	or states $(2^x)^2 = 2^{2x}$	$2^{2x+1} = 2 \times 2^{2x}$ or $2^{x+0.5} = 2^x \times \sqrt{2}$ or $2^{2x+1} = (2^{x+0.5})^2$	
	$2^{2x+1} - 17 \times 2^{x} + 8 = 0$ $\Rightarrow 2y^{2} - 17y + 8 = 0*$	Cso. Complete proof that includes explicit statements for the addition and power law of indices on 2^{2x+1} with no errors. The equation needs to be as printed including the "= 0". If they work backwards, they do not need to write down the printed answer first but must end with the version in 2^x including '= 0'.	A1*
	The following are examples of acceptable proofs.		
	$2^{2x+1} = (2^{x+0.5})^2 = (2^x \sqrt{2})^2 = (y\sqrt{2})^2 = 2y^2$		
	$\Rightarrow 2^{2x+1} - 17(2^x) + 8 = 2y^2 - 17y + 8 = 0$		
	$2y^2 = 2 \times 2^x \times 2^x = 2^{2x+1}$		
	$\Rightarrow 2^{2x+1} - 17(2^x) + 8 = 2y^2 - 17y + 8 = 0$		
	$2y^2 - 17y + 8 = 0 \Longrightarrow 2\Big($	$2^{x} \Big)^{2} - 17 \Big(2^{x} \Big) + 8 = 0$	
	$\Rightarrow 2 \times 2^{2x} - 17(2^x) + 8 = 0 \Rightarrow 2^{2x+1} - 17(2^x) + 8 = 0$		
	$2^{2x+1} = 2 \times 2^{2x} \Longrightarrow 2 \times 2^{2x} - 17(2^x) + 8 = 0$		
	$\Rightarrow 2y^2 - 17y + 8 = 0$		
	Scores M1A0 as $2^{2x} = (2^x)^2$ has not been shown explicitly		
	Special Case: $2^{2r+1} = 2^{1} - (2r)^{2} = 2^{2r+1} - (2r)^{2} = 2^{1}$		
	$2^{-n+1} = 2^n \times (2^n) \text{ or } 2^{-n+1} = (2^n) \times 2^n$ With or without the multiplication signs and with no subsequent		
	Example of insufficient working:		
	$2^{2x+1} = 2(2^x)^2 = 2y^2$		
	scores no marks as neither ru	ule has been shown explicitly.	

(b)			
(0)	$2y^2 - 17y + 8 = 0 \Longrightarrow (2y)$	$-1)(y-8)(=0) \Rightarrow y = \dots$	
	C	or	
	$2\left(2^{x}\right)^{2}-17\left(2^{x}\right)+8=0 \Longrightarrow \left(2\left(2^{x}\right)^{2}+17\left(2^{x}\right)^{2}\right)$	$(x^{x})-1)((2^{x})-8)(=0) \Longrightarrow 2^{x}=$	
	Solves the given quadratic either in terms of y or in terms of 2^x See General Principles for solving a 3 term quadratic		M1
	Note that completing the square on e.g. $y^2 - \frac{17}{2}y + 4 = 0$ requires		
	$\left(y \pm \frac{17}{4}\right)^2 \pm q \pm 4 = 0 \Longrightarrow y = \dots$		
	$(y=)\frac{1}{2},8$ or $(2^{x}=)\frac{1}{2},8$	Correct values	A1
	$\Rightarrow 2^{x} = \frac{1}{2}, 8 \Rightarrow x = -1, 3$	M1: Either finds one correct value of x for their 2^x or obtains a correct numerical expression in terms of logs e.g. for $k > 0$ $2^x = k \Longrightarrow x = \log_2 k$ or $\frac{\log k}{\log 2}$ A1: $x = -1, 3$ only. Must be values of x.	M1 A1
			(4)

Question Number	Scheme	Notes	Marks
8. (a)	$2px^{2} - 6px + 4p'' = "3x - 7$ or $y = 2p\left(\frac{y+7}{3}\right)^{2} - 6p\left(\frac{y+7}{3}\right) + 4p$	Either: Compares the given quadratic expression with the given linear expression using $\langle , \rangle , = , \neq$ (May be implied) or Rearranges $y = 3x - 7$ to make x the subject and substitutes into the given quadratic	M1
	$\frac{\mathbf{Exa}}{2px^2 - 6px + 4p - 3x + 7(=0)}$ $2p\left(\frac{y+7}{3}\right)^2 - 6p\left(\frac{y+7}{3}\right) + 4p - y\left(\frac{y+7}{3}\right) + 4p - y$	$\frac{1}{2px^{2}} + 6px - 4p + 3x - 7 (= 0)$ $= 0), 2py^{2} + (10p - 9)y + 8p (= 0)$ $6px + 4p - 3x + 7$	dM1
	Moves all the terms to one side allowin The terms do not need to be collected	g sign errors only. Ignore $> 0, < 0, = 0$ etc. d. Dependent on the first method mark.	
	E.g. $b^2 - 4ac = (-6p-3)^2 - 4(2p)(4p+7)$ $b^2 - 4ac = (10p-9)^2 - 4(2p)(8p)$	Attempts to use $b^2 - 4ac$ with their <i>a</i> , <i>b</i> and <i>c</i> where $a = \pm 2p$, $b = \pm (-6p \pm 3)$ and $c = \pm (4p \pm 7)$ or for the quadratic in <i>y</i> , $a = \pm 2p$, $b = \pm (10p \pm 9)$ and $c = \pm 8p$. This could be as part of the quadratic formula or as $b^2 < 4ac$ or as $b^2 > 4ac$ or as $\sqrt{b^2 - 4ac}$ etc. If it is part of the quadratic formula only look for use of $b^2 - 4ac$. There must be no <i>x</i> 's or <i>y</i> 's. Dependent on both method marks	ddM1
	$4p^2 - 20p + 9 < 0 *$	Obtains printed answer with no errors seen (Allow $0 > 4p^2 - 20p + 9$) but this < 0 must been seen at some stage before the last line.	A1*
(b)	$(2p-9)(2p-1)=0 \Longrightarrow p=$ to obtain $p=$	Attempt to solve the given quadratic to find 2 values for p . See general guidance.	[4] M1
	$p = \frac{9}{2}, \frac{1}{2}$	Both correct. May be implied by e.g. $p < \frac{9}{2}$, $p < \frac{1}{2}$. Allow equivalent values e.g. 4.5, $\frac{36}{8}$, 0.5 etc. If they use the quadratic formula allow $\frac{20 \pm 16}{8}$ for this mark but not $\sqrt{256}$ for 16 and allow e.g. $\frac{5}{2} \pm 2$ if they complete the square. M1: Chooses 'inside' region i.e. Lower Limit $ Upper Limit or e.g.$	Al
	$\frac{1}{2} Allow equivalent values e.g. \frac{36}{8} for 4\frac{1}{2}$	Lower Limit $\leq p \leq$ Upper Limit A1: Allow $p \in (\frac{1}{2}, 4\frac{1}{2})$ or just $(\frac{1}{2}, 4\frac{1}{2})$ and allow $p > \frac{1}{2}$ and $p < 4\frac{1}{2}$ and $4\frac{1}{2} > p > \frac{1}{2}$ but $p > \frac{1}{2}, p < 4\frac{1}{2}$ scores M1A0 $\frac{1}{2} > p > 4\frac{1}{2}$ scores M0A0	M1A1
	Allow working in terms of <i>x</i> in (b) but the an	swer must be in terms of <i>p</i> for the final A mark.	[4]
			8 marks