www.yesterdaysmathsexam.com


| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 2(i) | $16 a^{2}=2 \sqrt{a} \Rightarrow a^{\frac{3}{2}}=\frac{1}{8} \quad \begin{aligned} & 16 a^{2}-2 \sqrt{a}=0 \\ & \Rightarrow 2 a^{\frac{1}{2}}\left(8 a^{\frac{3}{2}}-1\right)=0 \\ & \Rightarrow a^{\frac{3}{2}}=\frac{1}{8} \end{aligned}$ | M1 | 1.1b |
|  | $\Rightarrow a=\left(\frac{1}{8}\right)^{\frac{2}{3}} \quad \Rightarrow a=\left(\frac{1}{8}\right)^{\frac{2}{3}}$ | M1 | 1.1b |
|  | $\Rightarrow a=\frac{1}{4} \quad \Rightarrow a=\frac{1}{4}$ | A1 | 1.1b |
|  | Deduces that $a=0$ is a solution | B1 | 2.2a |
|  |  | (4) |  |
| (ii) | $b^{4}+7 b^{2}-18=0 \Rightarrow\left(b^{2}+9\right)\left(b^{2}-2\right)=0$ | M1 | 1.1b |
|  | $b^{2}=-9,2$ | A1 | 1.1b |
|  | $b^{2}=k \Rightarrow b=\sqrt{k}, k>0$ | dM1 | 2.3 |
|  | $b=\sqrt{2},-\sqrt{2}$ only | A1 | 1.1b |
|  |  | (4) |  |
| (8 marks) |  |  |  |
| Notes |  |  |  |
| (i) <br> M1: Combines the two algebraic terms to reach $a^{ \pm \frac{3}{2}}=C$ or equivalent such as $(\sqrt{a})^{3}=C$ $(C \neq 0)$ <br> An alternative is via squaring and combining the algebraic terms to reach $a^{ \pm 3}=k, k>0$ <br> Eg. $\quad . . a^{4}=\ldots a \Rightarrow a^{ \pm 3}=k \quad$ or $\quad \ldots a^{4}=\ldots a \Rightarrow \ldots a^{4}-\ldots a=0 \Rightarrow \ldots a\left(a^{3}-\ldots\right)=0 \Rightarrow a^{3}=\ldots$ <br> Allow for slips on coefficients. <br> M1: Undoes the indices correctly for their $a^{\frac{m}{n}}=C$ <br> (So M0 M1 A0 is possible) <br> You may even see logs used. <br> A1: $a=\frac{1}{4}$ and no other solutions apart from 0 Accept exact equivalents Eg 0.25 <br> B1: Deduces that $a=0$ is a solution. <br> (ii) <br> M1: Attempts to solve as a quadratic equation in $b^{2}$ Accept $\left(b^{2}+m\right)\left(b^{2}+n\right)=0$ with $m n= \pm 18$ or solutions via the use of the quadratic formula Also allow candidates to substitute in another variable, say $u=b^{2}$ and solve for $u$ <br> A1: Correct solution. Allow for $b^{2}=2$ or $u=2$ with no incorrect solution given. <br> Candidates can choose to omit the solution $b^{2}=-9$ or $u=-9$ and so may not be seen <br> dM1: Finds at least one solution from their $b^{2}=k \Rightarrow b=\sqrt{k}, k>0$. Allow $b=1.414$ |  |  |  |


| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 3 (i) | $x \sqrt{2}-\sqrt{18}=x \Rightarrow x(\sqrt{2}-1)=\sqrt{18} \Rightarrow x=\frac{\sqrt{18}}{\sqrt{2}-1}$ | M1 | 1.1b |
|  | $\Rightarrow x=\frac{\sqrt{18}}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}$ | dM1 | 3.1a |
|  | $x=\frac{\sqrt{18}(\sqrt{2}+1)}{1}=6+3 \sqrt{2}$ | A1 | 1.1b |
|  |  | (3) |  |
| (ii) | $4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow 2^{6 x-4}=2^{-\frac{3}{2}}$ | M1 | 2.5 |
|  | $6 x-4=-\frac{3}{2} \Rightarrow x=\ldots$ | dM1 | 1.1b |
|  | $x=\frac{5}{12}$ | A1 | 1.1b |
|  |  | (3) |  |
| (6 marks) |  |  |  |

## Notes

(i)

M1: Combines the terms in $x$, factorises and divides to find $x$. Condone sign slips and ignore any attempts to simplify $\sqrt{18}$
Alternatively squares both sides $x \sqrt{2}-\sqrt{18}=x \Rightarrow 2 x^{2}-12 x+18=x^{2}$
dM1: Scored for a complete method to find $x$. In the main scheme it is for making $x$ the subject and then multiplying both numerator and denominator by $\sqrt{2}+1$
In the alternative it is for squaring both sides to produce a 3 TQ and then factorising their quadratic equation to find $x$. (usual rules apply for solving quadratics)

A1: $\quad x=6+3 \sqrt{2}$ only following a correct intermediate line. Allow $\frac{6+3 \sqrt{2}}{1}$ as an intermediate line.
In the alternative method the $6-3 \sqrt{2}$ must be discarded.
(ii)

M1: Uses correct mathematical notation and attempts to set both sides as powers of 2 or 4 .
$\operatorname{Eg} 2^{a x+b}=2^{c}$ or $4^{d x+e}=4^{f}$ is sufficient for this mark.
Alternatively uses logs (base 2 or 4 ) to get a linear equation in $x$.
$4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow \log _{2} 4^{3 x-2}=\log _{2} \frac{1}{2 \sqrt{2}} \Rightarrow 2(3 x-2)=\log _{2} \frac{1}{2 \sqrt{2}}$.
Or $\quad 4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow 3 x-2=\log _{4} \frac{1}{2 \sqrt{2}}$
Or $\quad 4^{3 x-2}=\frac{1}{2 \sqrt{2}} \Rightarrow 4^{3 x}=4 \sqrt{2} \Rightarrow 3 x=\log _{4} 4 \sqrt{2}$

| Question | Scheme |  | Marks | AOs |
| :---: | :---: | :---: | :---: | :---: |
| 12(a) | $2^{2 x}+2^{4}$ is wrong in line $2-$ it should be $2^{2 x} \times 2^{4}$ |  | B1 | 2.3 |
|  | In line $4,2^{4}$ has been replaced by 8 instead of by 16 |  | B1 | 2.3 |
|  |  |  | (2) |  |
| (b) | Way 1: $\begin{aligned} & 2^{2 x+4}-9\left(2^{x}\right)=0 \\ & 2^{2 x} \times 2^{4}-9\left(2^{x}\right)=0 \end{aligned}$ <br> Let $2^{x}=y$ $16 y^{2}-9 y=0$ | Way 2: $(2 x+4) \log 2-\log 9-x \log 2=0$ | M1 | 2.1 |
|  | $y=\frac{9}{16} \text { or } y=0$ <br> So $x=\log _{2}\left(\frac{9}{16}\right)$ or $\frac{\log \left(\frac{9}{16}\right)}{\log 2}$ o.e. with no second answer | $x=\frac{\log 9}{\log 2}-4 \text { o.e. }$ | A1 | 1.1b |
|  |  |  | (2) |  |
|  |  |  | (4 marks) |  |
| Notes: |  |  |  |  |
| (a) <br> B1: Lists error in line 2 (as above) <br> B1: Lists error in line 4 (as above) |  |  |  |  |
| (b) <br> M1: Correct work with powers reaching this equation <br> A1: Correct answer here - there are many exact equivalents |  |  |  |  |


| Question <br> Number | Scheme | Marks |
| :---: | :--- | :--- |
| 2 (a) | $\frac{1}{3} x^{2}$ | B1 |
| (b) | $\left(\frac{x}{\sqrt{2}}\right)^{-2}=\frac{2}{x^{2}}$ | B1 |
| (c) | $\sqrt{3}(x) \div \sqrt{\frac{48}{x^{4}}}=\frac{\sqrt{3}}{\sqrt{48}} \times x \sqrt{x^{4}}=\frac{1}{4} x^{3}$ | M1A1 |
| (1) |  |  |
| (4) marks) |  |  |

(a)

B1 $\frac{1}{3} x^{2} \quad$ Accept exact alternatives like $\frac{x^{2}}{3}$ and $0 . \dot{3} x^{2}$ but not expressions such as $0.33 x^{2}$
(b)

B1 $\frac{2}{x^{2}}$ Accept exact alternatives such as $2 \times x^{-2}$ or $2 \times \frac{1}{x^{2}}$ (All forms must have a ' 2 ')
(c)

M1 Either the correct coefficient (accept $\frac{1}{4}$ or 0.25) or the correct power of $x$ (accept $x^{3}$ or $\frac{1}{x^{-3}}$ )
A1 Only accept $\frac{1}{4} x^{3}$ or simplified equivalents such as $0.25 \times x^{3}$ Do NOT accept $\frac{1}{4 x^{-3}}$ for this mark.


M1: Shows at least one term on LHS as multiple of $\sqrt{5}$ with a correct intermediate step
Look for $\sqrt{45}=\sqrt{9} \times \sqrt{5}$ or $\sqrt{3 \times 3 \times 5}=3 \sqrt{5}$, or even $45=3 \times 3 \times 5$ or $9 \times 5$ followed by $\sqrt{45}=3 \sqrt{5}$

$$
\begin{aligned}
& \frac{20}{\sqrt{5}}=\frac{20 \sqrt{5}}{\sqrt{5} \sqrt{5}} \text { or } \frac{20 \sqrt{5}}{5}=4 \sqrt{5} \text { or } \frac{4 \times 5}{\sqrt{5}}=4 \sqrt{5} \\
& \sqrt{6} \sqrt{30}=\sqrt{6} \sqrt{6} \sqrt{5} \text { or } \sqrt{6} \sqrt{30}=\sqrt{180}=\sqrt{36 \times 5}=6 \sqrt{5}
\end{aligned}
$$

or even $180=2 \times 2 \times 3 \times 3 \times 5$ followed by $\sqrt{180}=6 \sqrt{5}$
A1*: All three terms must have the intermediate step with $3 \sqrt{5}-4 \sqrt{5}+6 \sqrt{5}$ followed by $5 \sqrt{5}$
Special Case: Score M1 A0 for $\sqrt{45}-\frac{20}{\sqrt{5}}+\sqrt{6} \sqrt{30}=3 \sqrt{5}-4 \sqrt{5}+6 \sqrt{5}=5 \sqrt{5}$ without the intermediate steps

## Alternative method:

M1: Multiplies all terms by $\sqrt{5}$ to achieve $\sqrt{45} \times \sqrt{5}-20+\sqrt{5} \sqrt{6} \sqrt{30}=5 \sqrt{5} \sqrt{5}$ and simplifies any one of the above terms to $15,-20,30$ or 25 showing the intermediate step
A1: All terms simplified showing the intermediate step (see main scheme on how to apply) followed by $15-20+30=25$, and minimal conclusion eg. hence true
(ii)

M1: Multiply numerator and denominator by $\sqrt{2}-6$ or $6-\sqrt{2}$
A1: Multiplies out to a correct (unsimplified) answer. For example allow $=\frac{17 \times 2-17 \times 6 \sqrt{2}}{2-36}$
A1: The denominator must be simplified so $\frac{34-17 \times 6 \sqrt{2}}{-34}$ or similar such as $\frac{17 \times 2-102 \sqrt{2}}{-34}$ is seen before you see the given answer $3 \sqrt{2}-1$. There is no need to 'split' into two separate fractions.

## Alternative method:

M1: Alternatively multiplies the rhs by $(\sqrt{2}+6)(3 \sqrt{2}-1)$
A1: Correct unsimplified rhs Accept $3 \times 2-6+18 \sqrt{2}-\sqrt{2}$
A1*: Simpifies rhs to $17 \sqrt{2}$ and gives a minimal conclusion e.g. hence true or hence $\frac{17 \sqrt{2}}{(\sqrt{2}+6)}=3 \sqrt{2}-1$

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 3 (i) | Either $4^{2 x+1}=2^{2(2 x+1)}$ and $8^{4 x}=2^{3 \times 4 x}$ or $8^{4 x}=4^{\frac{3}{2} \times 4 x}$ | M1 |
|  | $2(2 x+1)=12 x \Rightarrow x=\frac{1}{4}$ | dM1A1 |
| (ii)(a) |  | (3) |
|  | $3 \sqrt{18}-\sqrt{32}=9 \sqrt{2}-4 \sqrt{2}=5 \sqrt{2}$ | M1A1 |
|  |  | (2) |
| (b) | $\sqrt{n}=5 \sqrt{2} \Rightarrow n=(5 \sqrt{2})^{2}=25 \times 2=50$ | M1A1 |
|  |  | $\text { (7 marks) }^{(2)}$ |
| Alt 3 (i) | Taking logs of both sides and proceeding to (2x+1) $\log 4=4 x \log 8$ | M1 |
|  | $\Rightarrow x=\frac{\log 4}{4 \log 8-2 \log 4}$ |  |
|  | $\Rightarrow x=\frac{\log 4}{\log 256}=\frac{1}{4}$ | dM1A1 |
|  |  | (3) |

(i)

M1 Writes both sides as powers of 2 or equivalent $\operatorname{Eg} 2^{2(2 x+1)}=2^{3 \times 4 x}$
Alternatively writes both sides as powers of 4 or 8 or 64 . $\operatorname{Eg} 8^{4 x}=4^{\frac{3}{2} \times 4 x}$
Note that expressions such as $\quad 2^{2+(2 x+1)}=2^{3+4 x}$ would be M0
Condone poor (or missing) brackets $2^{2 \times 2 x+1}=2^{3}$ but not incorrect index work eg $4^{2 x+1}=8^{\frac{1}{2}(2 x+1)}$ It is possible to use logs. most commonly with base 2 or 4 . Using logs it is for reaching a linear form of the equation, again condoning poor bracketing .

$$
4^{2 x+1}=8^{4 x} \Rightarrow \log 4^{2 x+1}=\log 8^{4 x} \Rightarrow(2 x+1) \log 4=4 x \log 8
$$

dM1 Dependent upon the previous M. It is for equating the indices and proceeding to $x=$..
Condone sign/bracketing errors when manipulating the equation but not processing errors
If logs are used they must be evaluated without a calculator. Lengthy decimals would be evidence of this and would be dM0
$(2 x+1) \log _{2} 4=4 x \log _{2} 8 \Rightarrow(2 x+1) \times 2=4 x \times 3 \Rightarrow x=.$.
$4^{2 x+1}=8^{4 x} \Rightarrow 2 x+1=4 x \log _{4} 8 \Rightarrow 2 x+1=\frac{3}{2} \times 4 x \Rightarrow x=.$. is fine
A1 $\quad x=\frac{1}{4}$ or equivalent
(ii)(a) Mark part (ii) as one complete question. Marks in (a) can be gained from (b)

M1 Writes either $\sqrt{18}=3 \sqrt{2}$ or $3 \sqrt{18}=9 \sqrt{2}$ or $\sqrt{32}=4 \sqrt{2}$
If the candidate writes $3 \sqrt{18}-\sqrt{32}=k \sqrt{2}$ it can be scored for $\frac{3 \sqrt{18}}{\sqrt{2}}=9$ or $\frac{\sqrt{32}}{\sqrt{2}}=4$
A1 $5 \sqrt{2}$ or states $k=5$
The answer without working (the M1) would be 0 marks
(ii)(b)

M1 Moves from $\sqrt{n}=k \sqrt{2}$ to $n=2 k^{2}$
Also accept for this mark $\sqrt{n}=\sqrt{50}$ or indeed $\sqrt{50}$ on its own
A1 $\quad(n=) 50$

| Question Number | Scheme |  |  | Marks |
| :---: | :---: | :---: | :---: | :---: |
| 2(i) | Way 1: $\frac{49}{\sqrt{7}}=\frac{7^{2}}{7^{\frac{1}{2}}}=7^{2-\frac{1}{2}}$ | $7 \sqrt{7}=7^{1+\frac{1}{2}}$ | Way 3: $7^{a}=\frac{49}{\sqrt{7}} \Rightarrow a=\frac{\log \frac{49}{\sqrt{7}}}{\log 7}!$ <br> or $7^{a}=\frac{49}{\sqrt{7}} \Rightarrow a=\log _{7} \frac{49}{\sqrt{7}}$ | M1 |
|  | $!!(a=) 1 \frac{1}{2}(\mathrm{oe})$ or see answer $=7^{1 \frac{1}{2}}$ |  |  | A1 |
|  |  |  |  | [2] |
| (ii) | $\begin{gathered} \text { Way 1: } \\ \frac{10(\sqrt{18}+4)}{(\sqrt{18}-4)(\sqrt{18}+4)}! \end{gathered}$ | $(15 \sqrt{2}+20)(\sqrt{18}-4)$ |  | M1 |
|  | $=\frac{\cdots}{2}$ ! | $=15 \sqrt{36}-60 \sqrt{2}+20 \sqrt{18}-80$ ! |  | B1 |
|  | $\frac{10}{\sqrt{18}-4}=5(3 \sqrt{2}+4)=15 \sqrt{2}+20 *!$ | $\begin{aligned} & =90-60 \sqrt{2}+60 \sqrt{2}-80 \\ = & 10 \text { so } \frac{10}{\sqrt{18}-4}=15 \sqrt{2}+20^{*} \end{aligned}$ |  | A1cso |
|  | ! |  |  | [3] |
|  |  |  |  | 5 marks |
|  | Notes |  |  |  |
| (i) | Way 1:  <br> M1: Subtracts their powers of 7 M1: Cance <br> and adds th | Way 2: <br> M1: Cancels fraction to $7 \sqrt{7}$ and adds their powers of 7 | Way 3: <br> M1: Correct use of logs to correct expression for $a$ | obtain a |
|  | A1: cao (answer only is 2 marks) <br> Do not allow work with inexact decimals for this mark e.g. $49 \times 7^{-\frac{1}{2}}=18.52 \Rightarrow \log 18.52=1.4999 \ldots \Rightarrow a=1.5 \text { scores M1 A } 0$ |  |  |  |
| (ii) | Way 1: <br> M1: Multiply numerator and denominator by $\sqrt{18}+4$ or equivalent. The statement $\frac{10(\sqrt{18}+4)}{(\sqrt{18}-4)(\sqrt{18}+4)}$ is sufficient but do not allow $\frac{10(\sqrt{18}+4)}{\sqrt{18}-4(\sqrt{18}+4)}$ unless missing brackets are implied by subsequent work. B1: Correctly obtains $\pm 2$ in the denominator (Must follow M1 - i.e. treat as A1). May be implied by e.g. $\frac{10(\sqrt{18}+4)}{18-16}=5(\sqrt{18}+4)$ <br> A1: Correct result with no errors seen and $\sqrt{18}=3 \sqrt{2}$ used before their final answer. Note that for Way 1, correct work leading to $5 \sqrt{18}+20$ followed by! $15 \sqrt{2}+20$ with no intermediate step would lose the final mark | Way 2: <br> M1: Attempts to expand $(15 \sqrt{2}+20)(\sqrt{18}-4)$ to obtain at least 3 (not necessarily correct) terms <br> B1: All 4 terms correct (Must follow M1 - i.e. treat as A1) <br> A1: Obtains 10 with no errors and $\sqrt{18}=3 \sqrt{2}$ seen or implied by e.g. $20 \sqrt{18}=60 \sqrt{2}$ and conclusion that states the given answer i.e. not just $10=10$ |  |  |


| Question <br> Number | Scheme | Marks |
| :---: | :---: | :--- |
| 3.(a) | $\frac{1}{3} x$ as the final answer. | B1 |
| (b) | $81 x^{-3}$ as the final answer | B1 |
| (c) | $x^{\frac{3}{2}}$ as the final answer | B1 |
|  |  | (3 marks) |

In all parts of this question candidates do not have to explicitly state the values of $k$ and $n$. Award the $\operatorname{mark}(\mathrm{s})$ as above. If they go on to give incorrect values of $k$ and $n$ you may isw, but do not isw on incorrect index work Eg. $\frac{1}{3} x=x^{-3}$. If candidates make two different attempts and give two (or more) different answers then please put these in review
(a)

B1 $\quad \frac{1}{3} x$ but accept equivalent such as $\frac{x}{3}, \frac{1}{3} \times x, \frac{1}{3} x^{1}$ or $3^{-1} x$ etc.
(b)

B1 $81 x^{-3}$. Accept exact equivalents such as $81 \times x^{-3}$
Do not accept $\frac{81}{x^{3}}$ as the final answer unless it is preceded by $81 x^{-3}$ as it is not in the form required by the question.
(c)

B1 $\quad x^{\frac{3}{2}}$ but accept exact equivalents such as $1 \times x^{1.5}$
Do not accept $x x^{\frac{1}{2}}$ or $x \sqrt{x}$ as the final answer unless preceded by $x^{\frac{3}{2}}$ as they are not in the form required by the question.

## January 2015 <br> International A Level WMA01/01 Core Mathematics C12 <br> Mark Scheme

| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 1. | (a) $x^{2}$ <br> (b) $\quad \frac{1}{4} x^{4}$ or $\frac{1}{2^{2}} x^{4}$ or $0.25 x^{4}$ |  | B1 |
|  |  |  | $\begin{array}{cc}  \\ \mathrm{B} 1, \mathrm{~B} 1 & \begin{array}{l} {[1]} \\ {[2]} \end{array} \end{array}$ |
|  |  |  | 3 marks |
|  | Notes |  |  |

(a) B1: This answer only
(b) B1: For $\frac{1}{4} x^{k}$ as final answer, $k$ can even be 0 . Also accept $\frac{1}{2^{2}}$ for B1 but $2^{-2}$ is not simplified and is B0

B1: for $x$ to power 4 (independent mark) so $k x^{4}$ with $k$ a constant (could even be 1) as final answer n.b. Can score B0B1 or B1B0 or B0B0 or B1B1

## Mark the final answer on this question

Also note : Candidates who misread question as $\sqrt{2 x^{3}} \div \sqrt{\frac{32}{x^{2}}}$ should get $\frac{1}{4} x^{\frac{5}{2}}$ This is awarded B1B0 Special case: The answer $\left(\frac{1}{\sqrt{2}} x\right)^{4}$ is awarded B0 B1 as $x$ may be in a bracket with power 4 outside.

| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| $\mathbf{2}$ | $\sqrt{27}=3 \sqrt{3}, \frac{6}{\sqrt{3}}=2 \sqrt{3}$ |  |
|  | $x \sqrt{27}+21=\frac{6 x}{\sqrt{3}} \Rightarrow 3 \sqrt{3} x+21=2 \sqrt{3} x$ |  |
| $\Rightarrow \sqrt{3} x=-21$ |  |  |
| $\Rightarrow x=-\frac{21}{\sqrt{3}} \Rightarrow x=-7 \sqrt{3}$ | M1 A1 |  |
|  |  | M1 A1 |
|  |  | (4 marks) |

M1 Simplify either $\sqrt{27}=3 \sqrt{3}$ or $\frac{6}{\sqrt{3}}=2 \sqrt{3}=\left(\frac{6 \sqrt{3}}{3}\right)$
A1 Uses both $\sqrt{27}=3 \sqrt{3}$ and $\frac{6}{\sqrt{3}}=2 \sqrt{3}$ to rewrite equation in a form equivalent to $3 \sqrt{3} x+21=2 \sqrt{3} x$
M1 Collects $x$ terms on one side of the equation, simplifies and divides reaching $x=\ldots$
A1 Writes answer in the required form $-7 \sqrt{3}$. Accept $-1 \sqrt{147}$

| Question <br> Number | Scheme | Marks |
| :---: | :---: | :--- |
| Alt 2 | $x \sqrt{27}+21$ $=\frac{6 x}{\sqrt{3}}(\times \sqrt{3}) \Rightarrow \sqrt{3} \sqrt{27} x+21 \sqrt{3}=6 x$ <br>  $\Rightarrow 9 x+21 \sqrt{3}=6 x$ <br>  $\Rightarrow 3 x=-21 \sqrt{3} \Rightarrow x=-7 \sqrt{3}$ | M1 |
|  |  | A1 |
|  | M1A1 |  |
| (4 marks) |  |  |

M1 Multiply equation by $\sqrt{3}$, seen in at least two terms.
A1 $9 x+21 \sqrt{3}=6 x$ or equivalent but the $\sqrt{81}$ must have been dealt with
M1 Collects terms in $x$, and proceeds to $x=$..
A1 Writes answer in the required form $-7 \sqrt{3}$. Accept $-1 \sqrt{147}$

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 4. (i) | $\begin{aligned} & \frac{4(2 \sqrt{2}+\sqrt{6})}{(2 \sqrt{2}-\sqrt{6})(2 \sqrt{2}+\sqrt{6})} \\ & (2 \sqrt{2}-\sqrt{6})(2 \sqrt{2}+\sqrt{6})=8-6=2 \\ & \sqrt{6}=\sqrt{2} \sqrt{3} \text { used in numerator - may be implied by a correct factorisation of numerator } \\ & \text { Concludes } \frac{4(2 \sqrt{2}+\sqrt{6})}{2}=2 \sqrt{2}(2+\sqrt{3}) \quad * \\ & \sqrt{27}=3 \sqrt{3} \quad \text { and } \sqrt{21} \times \sqrt{7}=7 \sqrt{3} \\ & 1^{\text {st two terms }} \\ & 3^{\text {rd }} \text { term } \\ & \text { See } 2 \sqrt{3} \text { or } \frac{6 \sqrt{3}}{3} \\ & 3 \sqrt{3}+7 \sqrt{3}-2 \sqrt{3}=8 \sqrt{3} \text { or } 3 \sqrt{3}+7 \sqrt{3}-\frac{6 \sqrt{3}}{3}=8 \sqrt{3} * \end{aligned}$ | M1 <br> B1 <br> B1 <br> A1 * <br> B1 <br> B1 <br> B1 * <br> [3] |
| $\begin{array}{r} \text { Alterr } \\ \text { for } \end{array}$ | Assume result and multiply both sides by $(2 \sqrt{2}-\sqrt{6})$ $(2 \sqrt{2}-\sqrt{6})(4 \sqrt{2}+2 \sqrt{6})=16-12=4$ <br> So LHS = RHS and result is true | $\begin{array}{\|lrl} \text { M1 } & & \\ \text { B1 } & \text { B1 } & \\ \text { A1 } & {[4]} \\ \hline \end{array}$ |
| $\begin{array}{\|c} \hline \begin{array}{c} \text { Alternative } \\ \text { for (ii) } \end{array} \\ \hline \end{array}$ | $\begin{array}{ll} \frac{\sqrt{81}+\sqrt{21 \times 7 \times 3}-6}{\sqrt{3}} & \\ \frac{9+21-6}{\sqrt{3}} & \\ \frac{24}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=8 \sqrt{31}+\sqrt{21 \times 7 \times 3}-6=8 \sqrt{3} \sqrt{3} \\ & 9+21-6=24 \\ \text { so equation is true } \end{array}$ | B1 <br> B1 <br> B1 <br> [3] <br> (7 marks) |
|  | Notes |  |
| (i) M1: Multiplies numerator and denominator by $\pm(2 \sqrt{2}+\sqrt{6})$ <br> B1: correct treatment of denominator to give 2 (may be implied by answer obtained with no errors seen) <br> B1: Splits $\sqrt{6}=\sqrt{2} \sqrt{3}$ - may be implied, but B0 for $2 \sqrt{6}=2 \sqrt{2}(2 \sqrt{3} \ldots) \quad$ A1 cao reaches result and no errors should be seen N.B. $\frac{4(2 \sqrt{2}+\sqrt{6})}{2}=2 \sqrt{2}(2+\sqrt{3})$ may be awarded B1 A1 as there is an implication that $\sqrt{6}=\sqrt{2} \sqrt{3}$ <br> (ii) B1: expresses both of first two terms as multiple of root 3 correctly <br> B1: rationalises denominator in second term -may not see working <br> B1: has used $3 \sqrt{3}+7 \sqrt{3}-2 \sqrt{3}=8 \sqrt{3}$ <br> N.B. $3 \sqrt{3}+7 \sqrt{3}-\frac{6}{\sqrt{3}}=8 \sqrt{3}$ is B1B0B0 |  |  |
| (i) <br> Alternative | M1: Assume result and multiply both sides by $(2 \sqrt{2}-\sqrt{6})$ <br> $\begin{array}{llll}\mathbf{2}^{\text {nd }} \mathbf{B 1} & \text { : Uses } & \sqrt{2} \sqrt{3}=\sqrt{6} \quad \mathbf{1}^{\text {st }} \mathbf{B 1} \text { : Multiplies out these two brackets to give } 4 \quad \text { A1: conclusion }\end{array}$ |  |
| (ii) <br> Alternatives | B1: Uses common denominator or multiplies both sides by root 3 and obtains correct unsimplified equation <br> B1: LHS numerator correctly simplified or just see $9+21-6$ <br> B1: In the first alternative must see multiplication of numerator and denominator by $\sqrt{3}$ to give $8 \sqrt{3}$ In the second need statement LHS = RHS and so true |  |


| Question Number | Scheme | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 3.(a) | $\sqrt{50}-\sqrt{18}=5 \sqrt{2}-3 \sqrt{2}$ | $\sqrt{50}=5 \sqrt{2}$ or $\sqrt{18}=3 \sqrt{2}$ and the other term in the form $k \sqrt{2}$. This mark may be implied by the correct answer $2 \sqrt{2}$ | M1 |
|  | $=2 \sqrt{2}$ | Or $a=2$ | A1 |
|  |  |  | [2] |
| $\begin{gathered} \text { (b) } \\ \text { WAY } 1 \end{gathered}$ | $\frac{12 \sqrt{3}}{\sqrt{50}-\sqrt{18}}=\frac{12 \sqrt{3}}{2 " 2 \sqrt{2}}$ | Uses part (a) by replacing denominator by their $a \sqrt{2}$ where $a$ is numeric. This is all that is required for this mark. | M1 |
|  | $=\frac{12 \sqrt{3}}{2 " 2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{12 \sqrt{6}}{4}$ | Rationalises the denominator by a correct method e.g. multiplies numerator and denominator by $k \sqrt{2}$ to obtain a multiple of $\sqrt{6}$. Note that multiplying numerator and denominator by $2 \sqrt{2}$ or $-2 \sqrt{2}$ is quite common and is acceptable for this mark. May be implied by a correct answer. This is dependent on the first M1. | dM1 |
|  | $=3 \sqrt{6}$ or $b=3, c=6$ | Cao and cso | A1 |
|  |  |  | [3] |
| $\begin{gathered} \text { (b) } \\ \text { WAY } 2 \end{gathered}$ | $\begin{aligned} & \frac{12 \sqrt{3}}{\sqrt{50}-\sqrt{18}} \times \frac{\sqrt{50}+\sqrt{18}}{\sqrt{50}+\sqrt{18}} \\ & \text { or } \\ & \frac{12 \sqrt{3}}{5 \sqrt{2}-3 \sqrt{2}} \times \frac{5 \sqrt{2}+3 \sqrt{2}}{5 \sqrt{2}+3 \sqrt{2}} \end{aligned}$ | For rationalising the denominator by a correct method i.e. multiplying numerator and denominator by $k(\sqrt{50}+\sqrt{18})$ | M1 |
|  | $\frac{60 \sqrt{6}+36 \sqrt{6}}{50-18}$ | For replacing numerator by $\alpha \sqrt{6}+\beta \sqrt{6}$. <br> This is dependent on the first M1 and there is no need to consider the denominator for this mark. | dM1 |
|  | $=3 \sqrt{6}$ or $b=3, c=6$ | Cao and cso | A1 |
|  |  |  | [3] |
| $\begin{gathered} \text { (b) } \\ \text { WAY } 3 \end{gathered}$ | $\frac{12 \sqrt{3}}{\sqrt{50}-\sqrt{18}}=\frac{12 \sqrt{3}}{22} 2 \sqrt{2}$ | Uses part (a) by replacing denominator by their $a \sqrt{2}$ where $a$ is numeric. This is all that is required for this mark. | M1 |
|  | $=\frac{12 \sqrt{3}}{2 \sqrt{2}}=\frac{6 \sqrt{3}}{\sqrt{2}}=\frac{\sqrt{108}}{\sqrt{2}}=\sqrt{54}=\sqrt{9} \sqrt{6}$ | Cancels to obtain a multiple of $\sqrt{6}$. This is dependent on the first M1. | dM1 |
|  | $=3 \sqrt{6}$ Or $b=3, c=6$ | Cao and cso | A1 |
|  |  |  | [3] |
| $\begin{gathered} \text { (b) } \\ \text { WAY } 4 \end{gathered}$ | $\frac{12 \sqrt{3}}{\sqrt{50}-\sqrt{18}}=\frac{12 \sqrt{3}}{2 " 2 \sqrt{2}}$ | Uses part (a) by replacing denominator by their $a \sqrt{2}$ where $a$ is numeric. This is all that is required for this mark. | M1 |
|  | $\left(\frac{12 \sqrt{3}}{22^{2} \sqrt{2}}\right)^{2}=\frac{432}{8}$ |  |  |
|  | $\sqrt{54}=\sqrt{9} \sqrt{6}$ | Obtains a multiple of $\sqrt{6}$. This is dependent on the first M1. | dM1 |
|  | $=3 \sqrt{6}$ Or $b=3, c=6$ | Cao and cso (do not allow $\pm 3 \sqrt{6}$ ) | A1 |
|  |  |  | 5 marks |



