Question	Scheme	Marks	AOs
10(a)	$T=a l^{b} \Rightarrow \log _{10} T=\log _{10} a+\log _{10} l^{b}$	M1	2.1
	$\begin{aligned} & \Rightarrow \log _{10} T=\log _{10} a+b \log _{10} l^{*} \\ & \text { or } \\ & \Rightarrow \log _{10} T=b \log _{10} l+\log _{10} a^{*} \end{aligned}$	A1*	1.1b
		(2)	
(b)	$b=0.495$ or $b=\frac{45}{91}$	B1	2.2a
	$\begin{gathered} 0=" 0.495 " \times-0.7+\log _{10} a \Rightarrow a=10^{0.346 \ldots} \\ \text { or } \\ 0.45=\text { " } 0.495 " \times 0.21+\log _{10} a \Rightarrow a=10^{0.346 \ldots . .} \end{gathered}$	M1	3.1a
	$T=2.22 l^{0.495}$	A1	3.3
		(3)	
(c)	The time taken for one swing of a pendulum of length 1	B1	3.2a
		(1)	
(6 marks)			
Notes			
(a) M1: Takes logs of both sides and shows the addition law. Implied by $T=a l^{b} \Rightarrow \log _{10} a+\log _{10} l^{b}$ A1*: Uses the power law to obtain the given equation with no errors. Allow the bases to be missing in the working but they must be present in the final answer. Also allow t rather than T and A rather than a. Allow working backwards e.g. $\begin{gathered} \log _{10} T=b \log _{10} l+\log _{10} a \Rightarrow \log _{10} T=\log _{10} l^{b}+\log _{10} a \\ \Rightarrow \log _{10} T=\log _{10} a l^{b} \Rightarrow T=a l^{b} * \end{gathered}$ M1: Uses the given answer and uses the power law and addition law correctly A1: Reaches the given equation with no errors as above (b) B1: Deduces the correct value for b (Allow awrt 0.495 or $\frac{45}{91}$) M1: Correct strategy to find the value of a. E.g. substitutes one of the given points and their value for b into $\log _{10} T=\log _{10} a+b \log _{10} l$ and uses correct log work to identify the value of a. Allow slips in rearranging their equation but must be correct log work to find a. Alternatively finds the equation of the straight line and equates the constant to $\log _{10} a$ and uses correct log work to identify the value of a. E.g. $y-0.45=" 0.495 "(x-0.21) \Rightarrow y=" 0.495 " x+0.346 \Rightarrow a=10^{0.346}=\ldots$ A1: Complete equation $T=2.22 l^{0.495}$ or $T=2.22 l^{\frac{45}{91}}$ (Allow awrt 2.22 and awrt 0.495 or $\frac{45}{91}$) Must see the equation not just correct values as it is a requirement of the question. (c) B1: Correct interpretation			

www. yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
8(a)	$A=1000$	B1	3.4
	$2000=1000 \mathrm{e}^{5 k}$ or $\mathrm{e}^{5 k}=2$	M1	1.1b
	$\mathrm{e}^{5 k}=2 \Rightarrow 5 k=\ln 2 \Rightarrow k=\ldots$	M1	2.1
	$N=1000 \mathrm{e}^{\left(\frac{1}{5} \mathrm{l} 22\right) t}$ or $N=1000 \mathrm{e}^{0.139 t}$	A1	3.3
		(4)	
(b)	$\begin{aligned} \frac{\mathrm{d} N}{\mathrm{~d} t} & =1000 \times\left(\frac{1}{5} \ln 2\right) \mathrm{e}^{\left(\frac{1}{5} \ln 2\right) t} \text { or } \frac{\mathrm{d} N}{\mathrm{~d} t}=1000 \times 0.139 \mathrm{e}^{0.139 t} \\ \left(\frac{\mathrm{~d} N}{\mathrm{~d} t}\right)_{t=8} & =1000 \times\left(\frac{1}{5} \ln 2\right) \mathrm{e}^{8 \times \frac{1}{5} \ln 2} \text { or }\left(\frac{\mathrm{d} N}{\mathrm{~d} t}\right)_{t=8}=1000 \times 0.139 \mathrm{e}^{0.139 \times 8} \end{aligned}$	M1	3.1b
	$=$ awrt 420	A1	1.1b
		(2)	
(c)	$500 \mathrm{e}^{1.4 \times\left(\frac{1}{5} \ln 2\right)^{T}}=1000 \mathrm{e}^{\left.\left(\frac{1}{5} \ln 2\right)\right)^{T}} \text { or } 500 \mathrm{e}^{1.4 x^{\prime \prime} 0.139^{" t}}=1000 \mathrm{e}^{0.139^{" t} t}$	M1	3.4
	Correct method of getting a linear equation in T E.g. $0.08 T \ln 2=\ln 2 \quad$ or $1.4 \times " 0.339 " T=\ln 2+" 0.339 " t$	M1	2.1
	$T=12.5$ hours	A1	1.1b
		(3)	
(9 marks)			
	Notes		

Mark as one complete question. Marks in (a) can be awarded from (b)
(a)

B1: Correct value of A for the model. Award if equation for model is of the form $N=1000 \mathrm{e}^{.{ }^{t}}$
M1: Uses the model to set up a correct equation in k. Award for substituting $N=2000, t=5$ following through on their value for A.
M1: Uses correct \ln work to solve an equation of the form $a \mathrm{e}^{5 k}=b$ and obtain a value for k
A1: Correct equation of model. Condone an ambiguous $N=1000 \mathrm{e}^{\frac{1}{5} \ln 2 t}$ unless followed by something incorrect. Watch for $N=1000 \times 2^{\frac{1}{5} t}$ which is also correct
(b)

M1: Differentiates $\alpha \mathrm{e}^{k t}$ to $\beta \mathrm{e}^{k t}$ and substitutes $t=8$ (Condone $\alpha=\beta$ so long as you can see an attempt to differentiate)
A1: For awrt 420 (2sf).
(c)

M1: Uses both models to set up an equation in T using their value for k, but also allow in terms of k
M1: Uses correct processing using lns to obtain a linear equation in T (or t)
A1: Awrt 12.5

Answers to (b) and (c) appearing without working (i.e. from a calculator).
It is important that candidates show sufficient working to make their methods clear.
(b) If candidate has for example $N=1000 \mathrm{e}^{0.139 t}$, and then writes at $t=8 \frac{\mathrm{~d} N}{\mathrm{~d} t}=$ awrt 420 award both marks. Just the answer from a correct model equation score SC 1,0.
(c) The first M1 should be seen E.g $500 \mathrm{e}^{1.4 x^{" 0.139 " t}}=1000 \mathrm{e}^{" 0.1399^{" t}}$

If the answer $T=12.5$ appears without any further working score SC M1 M1 A0

Question	Scheme	Marks	AOs
$\begin{gathered} 9(a) \\ \text { Way } 1 \end{gathered}$	$\left\{d=k V^{n} \Rightarrow\right\} \log _{10} d=\log _{10} k+n \log _{10} V$ or $\log _{10} d=m \log _{10} V+c$ or $\log _{10} d=m \log _{10} V-1.77$ seen or used as part of their argument	M1	2.1
	Alludes to $d=k V^{n}$ and gives a full explanation by comparing their result with a linear model e.g. $Y=M X+C$	A1	2.4
	$\{k=\} 10^{-1.77}=0.017 \text { or } \log 0.017=-1.77$ linked together in the same part of the question	B1 *	1.1b
		(3)	
$\begin{gathered} 9(a) \\ \text { Way } 2 \end{gathered}$	$\begin{gathered} \hline \log _{10} d=m \log _{10} V+c \text { or } \log _{10} d=m \log _{10} V-1.77 \\ \text { or } \log _{10} d=\log _{10} k+n \log _{10} V \end{gathered}$ seen or used as part of their argument	M1	2.1
	$\begin{gathered} \left\{d=k V^{n} \Rightarrow\right\} \log _{10} d=\log _{10}\left(k V^{n}\right) \\ \Rightarrow \log _{10} d=\log _{10} k+\log _{10} V^{n} \Rightarrow \log _{10} d=\log _{10} k+n \log _{10} V \end{gathered}$	A1	2.4
	$\{k=\} 10^{-1.77}=0.017 \text { or } \log 0.017=-1.77$ linked together in the same part of the question	B1 *	1.1b
		(3)	
(a)$\text { Way } 3$	Starts from $\log _{10} d=m \log _{10} V+c$ or $\log _{10} d=m \log _{10} V-1.77$	M1	2.1
	$\begin{gathered} \log _{10} d=m \log _{10} V+c \Rightarrow d=10^{m \log _{10} V+c} \Rightarrow d=10^{c} V^{m} \Rightarrow d=k V^{n} \\ \text { or } \log _{10} d=m \log _{10} V-1.77 \Rightarrow d=10^{m \log _{10} V-1.77} \\ \Rightarrow d=10^{-1.77} V^{m} \Rightarrow d=k V^{n} \end{gathered}$	A1	2.4
	$\{k=\} 10^{-1.77}=0.017 \text { or } \log 0.017=-1.77$ linked together in the same part of the question	B1 *	1.1b
		(3)	
(b)	$\{d=20, V=30 \Rightarrow\} \quad 20=k(30)^{n} \quad$ or $\quad \log _{10} 20=\log _{10} k+n \log _{10} 30$	M1	3.4
	$20=k(30)^{n} \Rightarrow \log 20=\log k+n \log 30 \Rightarrow n=\frac{\log 20-\log k}{\log 30} \Rightarrow n=\ldots$	M1	1.1b
	$\log _{10} 20=\log _{10} k+n \log _{10} 30 \Rightarrow n=\frac{\log _{10} 20-\log _{10} k}{\log _{10} 30} \Rightarrow n=\ldots$		
	$\{n=$ awrt $2.08 \Rightarrow\} d=(0.017) V^{2.08}$ or $\log _{10} d=-1.77+2.08 \log _{10} V$	A1	1.1b
	Note: You can recover the A1 mark for a correct model equation given in part (c)	(3)	
(c)	$d=(0.017)(60)^{2.08}$	M1	3.4
	- 13.333... $+84.918 \ldots=98.251 \ldots \Rightarrow$ Sean stops in time	M1	3.1b
	- $100-13.333 \ldots=86.666 \ldots$ \& $d=84.918 \Rightarrow$ Sean stops in time	A1ft	3.2a
		(3)	
(9 marks)			

ADVICE: Ignore labelling (a), (b), (c) when marking this question
Note: Give B0 in (a) for $10^{-1.77}=0.01698 \ldots$ without reference to 0.017 in the same part

Question	Scheme	Marks	AOs
9(a)	$\begin{gathered} t=0, \theta=18 \Rightarrow 18=A-B \\ \text { or } \\ t=10, \theta=44 \Rightarrow 44=A-B \mathrm{e}^{-0.7} \end{gathered}$	M1	3.1b
	$t=0, \theta=18 \Rightarrow 18=A-B$ and $\begin{gathered} t=10, \theta=44 \Rightarrow 44=A-B \mathrm{e}^{-0.7} \\ \quad \text { and } \\ \Rightarrow A=\ldots, B=\ldots \end{gathered}$	M1	3.1a
	At least one of: $A=69.6, B=51.6$ but allow awrt 70/awrt 52		1.1b
	$\theta=69.6-51.6 \mathrm{e}^{-0.67 t}$	A1	3.3
		(4)	
(b)	The maximum temperature is " 69.6 " $\left({ }^{\circ} \mathrm{C}\right)$ (according to the model) (The model has an) upper limit of " $69.6^{\circ}\left({ }^{\circ} \mathrm{C}\right)$ (The model suggests that) the boiling point is " 69.6 " $\left({ }^{\circ} \mathrm{C}\right)$	B1 ft	3.4
	Model is not appropriate as $69.6\left({ }^{\circ} \mathrm{C}\right)$ is much lower than $78\left({ }^{\circ} \mathrm{C}\right)$	B1ft	3.5a
		(2)	
(6 marks)			

Question Number	Scheme	Marks
6(a)	$320\left({ }^{\circ} \mathrm{C}\right)$	B1
(b)	$\mathrm{T}=180 \Rightarrow 300 \mathrm{e}^{-0.04 t}=160 \Rightarrow \mathrm{e}^{-0.04 t}=\frac{160}{300}($ awrt 0.53$)$	M1, A1
	$t=\frac{1}{-0.04} \ln \left(\frac{160}{300}\right) \text { or } \frac{1}{0.04} \ln \left(\frac{300}{160}\right)$	dM1
	15.7 (minutes) cao	A1cso
(c)	$\frac{\mathrm{d} T}{\mathrm{~d} t}=(-0.04) \times 300 \mathrm{e}^{-0.04 t}=(-0.04) \times(T-20)$	M1 A1
	$=\frac{20-T}{25} *$	$\mathrm{A} 1^{*}$
		(8 marks)
Alt (b)	Puts $T=180$ so $180=300 \mathrm{e}^{-0.04 t}+20$ and $300 \mathrm{e}^{-0.04 t}=160$	M1
	$\ln 300-0.04 t=\ln 160 \Rightarrow t=. ., \quad \frac{\ln 300-\ln 160}{0.04}$	dM1, A1
	15.7 (minutes) cao	A1cso

(a)

B1 320 cao - do not need ${ }^{\circ} \mathrm{C}$
(b)

M1 \quad Substitutes $T=180$ and proceeds to a form $A e^{-0.04 t}=B \quad$ or $C e^{0.04 t}=D$
Condone slips on the power for this mark. For example condone $A e^{-0.4 t}=B$
A1 For $e^{-0.04 t}=\frac{160}{300}$ or $e^{0.04 t}=\frac{300}{160}$ or exact equivalent such as $e^{-0.04 t}=\frac{8}{15}$
Accept decimals here $e^{-0.04 t}=0.53$.. or $e^{0.04 t}=1.875$
dM 1 Dependent upon having scored the first M1, it is for moving from $\mathrm{e}^{k t}=c, c>0 \Rightarrow t=\frac{\ln c}{k}$
A1 15.7 correct answer and correct solution only. Do not accept awrt
(c)

M1 Differentiates to give $\frac{\mathrm{d} T}{\mathrm{~d} t}=k \mathrm{e}^{-0.04 t}$. Condone $\frac{\mathrm{d} T}{\mathrm{~d} t}=k \mathrm{e}^{-0.4 t}$ following $\mathrm{T}=300 \mathrm{e}^{-0.4 t}+20$
This can be achieved from $\mathrm{T}=300 \mathrm{e}^{-0.04 t}+20 \Rightarrow t=\frac{1}{-0.04} \ln \left(\frac{T-20}{300}\right) \Rightarrow \frac{\mathrm{d} t}{\mathrm{~d} T}=\frac{k}{(T-20)}$ for M1
A1 Correct derivative and correctly eliminates t to achieve $\frac{\mathrm{d} T}{\mathrm{~d} t}=(-0.04) \times(T-20)$ oe
If candidate changes the subject it is for $\frac{\mathrm{d} t}{\mathrm{~d} T}=\frac{-25}{(T-20)}$ oe
Alternatively obtains the correct derivative, substitutes T in $\frac{\mathrm{d} T}{\mathrm{~d} t}=\frac{20-T}{25} \rightarrow \frac{\mathrm{~d} T}{\mathrm{~d} t}=-12 \mathrm{e}^{-0.04 t}$ and compares. To score the A1* under this method there must be a statement.
A1* Obtains printed answer correctly - no errors

Question Number	Scheme		Marks
9.(a)	$t=0 \Rightarrow P=\frac{9000}{3+7}=900$	M1: Sets $t=0$, may be implied by $e^{0}=1$ or may be implied by $\frac{9000}{3+7}$ or by a correct answer of 900 .	M1A1
		A1: 900	
			(2)
(b)	$t \rightarrow \infty \quad P \rightarrow \frac{9000}{3}=3000$	Sight of 3000	B1
			(1)
(c)	$t=4, P=2500 \Rightarrow 2500=\frac{9000 \mathrm{e}^{4 k}}{3 \mathrm{e}^{4 k}+7}$	Correct equation with $t=4$ and $P=2500$	B1
	$\mathrm{e}^{4 k}=\frac{17500}{1500}=(\text { awrt } 11.7 \text { or } 11.6)$ or $\mathrm{e}^{-4 k}=\frac{1500}{17500}=(\text { awrt } 0.857)$	M1: Rearranges the equation to make $\mathrm{e}^{ \pm 4 k}$ the subject. They need to multiply by the $3 \mathrm{e}^{4 k}+7$ term, and collect terms in $\mathrm{e}^{4 k}$ or $\mathrm{e}^{-4 k}$ reaching $\mathrm{e}^{ \pm 4 k}=C$ where C is a constant. A1: Achieves intermediate answer of $\begin{aligned} & \mathrm{e}^{4 k}=\frac{17500}{1500}=(\text { awrt } 11.7 \text { or } 11.6) \text { or } \\ & \mathrm{e}^{-4 k}=\frac{1500}{17500}=(\text { awrt } 0.857) \end{aligned}$	M1A1
	$k=\frac{1}{4} \ln \left(\frac{35}{3}\right)$ or awrt 0.614	dM1: Proceeds from $\mathrm{e}^{ \pm 4 k}=C, C>0$ by correctly taking \ln 's and then making k the subject of the formula. Award for e.g. $e^{4 k}=C \Rightarrow 4 k=\ln (C) \Rightarrow k=\frac{\ln (C)}{4}$	dM1 A1
		A1: cao: Awrt 0.614 or the correct exact answer (or equivalent)	
			(5)
	Alternative correct work in (c):		
	$t=4, P=2500 \Rightarrow 2500=\frac{9000 \mathrm{e}^{4 k}}{3 \mathrm{e}^{4 k}+7}$	Correct equation with $t=4$ and $P=2500$	B1
	$7500 \mathrm{e}^{4 k}+17500=9000 \mathrm{e}^{4 k}$		
	$1500 \mathrm{e}^{4 k}=17500$		
	$\ln 1500+\ln \mathrm{e}^{4 k}=\ln 17500$	M1: Takes ln's correctly	M1A1
		A1: Correct equation	
	$\ln \mathrm{e}^{4 k}=\ln 17500-\ln 1500$		
	$4 k=\ln 17500-\ln 1500$		
	$k=\frac{\ln 17500-\ln 1500}{4}$	Makes k the subject	M1A1
	$k=\frac{1}{4} \ln \left(\frac{35}{3}\right)$ or awrt 0.614	cao: Awrt 0.614 or the correct exact answer (or equivalent)	

www. yesterdaysmathsexam.com

(d)	$\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{\left(3 e^{k t}+7\right) \times 9000 k e^{k t}-9000 e^{k t} \times 3 k e^{k t}}{\left(3 e^{k t}+7\right)^{2}}\left(=\frac{63000 k e^{k t}}{\left(3 e^{k t}+7\right)^{2}}\right)$ Differentiates using the quotient rule to achieve $\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{\left(3 e^{k t}+7\right) \times P e^{k t}-9000 e^{k t} \times Q e^{k t}}{\left(3 e^{k t}+7\right)^{2}}$ or $\frac{\mathrm{d} P}{\mathrm{~d} t}=9000 \mathrm{ke}^{k t}\left(3 \mathrm{e}^{k t}+7\right)^{-1}-9000 \mathrm{e}^{k t}\left(3 \mathrm{e}^{k t}+7\right)^{-2} \times 3 k \mathrm{e}^{k t}$ Differentiates using the product rule to achieve $\frac{\mathrm{d} P}{\mathrm{~d} t}=P \mathrm{e}^{k t}\left(3 \mathrm{e}^{k t}+7\right)^{-1}-9000 \mathrm{e}^{k t}\left(3 \mathrm{e}^{k t}+7\right)^{-2} \times Q \mathrm{e}^{k t}$ or $\frac{\mathrm{d} P}{\mathrm{~d} t}=63000 k \mathrm{e}^{-k t}\left(3+7 \mathrm{e}^{-k t}\right)^{-2}$ Differentiates using the chain rule on $P=9000\left(3+7 \mathrm{e}^{-k t}\right)^{-1}$ to achieve $\frac{\mathrm{d} P}{\mathrm{~d} t}= \pm D \mathrm{e}^{-k t}\left(3+7 \mathrm{e}^{-k t}\right)^{-2}$ Watch for $\mathrm{e}^{k t} \rightarrow k t \mathrm{e}^{k t}$ which is M0		M1
	Sub $t=10$ and $k=0.614 \Rightarrow \frac{\mathrm{~d} P}{\mathrm{~d} t}=\ldots$	Substitutes $t=10$ and their k to obtain a value for $\frac{\mathrm{d} P}{\mathrm{~d} t}$. If the value for $\frac{\mathrm{d} P}{\mathrm{~d} t}$ is incorrect then the substitution of $t=10$ must be seen explicitly.	dM1 (A1 on Epen)
	$\frac{\mathrm{d} P}{\mathrm{~d} t}=9$	Awrt 9 (NB $\frac{\mathrm{d} P}{\mathrm{~d} t}=9.1694 \ldots$)	A1
			(3)
			(11 marks)

It is possible to answer this by taking \ln 's at the point $1394 \mathrm{e}^{-0.2 t}=54$
M1A1 $\ln (1394)-0.2 t=\ln (54) \quad$ dM1 A1 As scheme
(d)

M1: Differentiates to give a form equivalent to $\frac{\mathrm{d} N}{\mathrm{~d} t}=k e^{-0.2 t}\left(3+17 \mathrm{e}^{-0.2 t}\right)^{-2}$ (may use quotient rule)
A1: Correct derivative which may be unsimplified $\frac{\mathrm{d} N}{\mathrm{~d} t}=1020 \mathrm{e}^{-0.2 t}\left(3+17 \mathrm{e}^{-0.2 t}\right)^{-2}$
A1: Obtains awrt 4 following a correct derivative. This is cso

Question Number	Scheme	Marks
13.(a)	$t=0 \Rightarrow(P=) 200-\frac{160}{15+1}=190 \Rightarrow 190000$	M1A1
	$\frac{\mathrm{d} P}{\mathrm{~d} t}=-\frac{\left(15+\mathrm{e}^{0.8 t}\right) \times 96 \mathrm{e}^{0.6 t}-160 \mathrm{e}^{0.6 t} \times 0.8 \mathrm{e}^{0.8 t}}{\left(15+\mathrm{e}^{0.8 t}\right)^{2}}$	M1
	Sets $\pm \frac{\left(15+e^{0.8 t}\right) \times 96 e^{0.6 t}-160 e^{0.6 t} \times 0.8 e^{0.8 t}}{\left(15+e^{0.8 t}\right)^{2}}=0 \Rightarrow \mathrm{e}^{0.8 t}=45$	M1A1
(c)	$\Rightarrow T=\frac{\ln 45}{0.8}=4.76$	M1A1
		M1A1
		(3)

(a)

M1: Sets $t=0$ in the top and bottom of the fraction, giving $\mathrm{e}^{0}=1$. Award if candidate attempts $200-\frac{160}{15+1}$ but not $\frac{200-160}{15+1}$ This can be awarded for a correct answer.
A1: Correct answer only. Accept 190000 or ($\mathrm{P}=$) 190 (ants).
The answer is an integer so do not allow awrt 190 or awrt 190000 i.e. there should be no decimals.
(b)

M1: For showing that $\mathrm{e}^{k t} \rightarrow a \mathrm{e}^{k t}$ where a is a constant. This may be embedded within the product or quotient rule or their attempt to differentiate.
M1: For applying the quotient rule to obtain $\frac{\mathrm{d} P}{\mathrm{~d} t}= \pm \frac{\left(15+\mathrm{e}^{0.8 t}\right) \times p \mathrm{e}^{0.6 t}-q \mathrm{e}^{0.8 t} \times \mathrm{e}^{0.6 t}}{\left(15+\mathrm{e}^{0.8 t}\right)^{2}}$ or applying the product rule to obtain $\frac{\mathrm{d} P}{\mathrm{~d} t}= \pm\left[A \mathrm{e}^{0.6 t}\left(15+\mathrm{e}^{0.8 t}\right)^{-2} \times B \mathrm{e}^{0.8 t}+\left(15+\mathrm{e}^{0.8 t}\right)^{-1} \times C \mathrm{e}^{0.6 t}\right]$
Allow invisible brackets for this mark but not for the A mark below.
A1: A correct un-simplified or simplified $\frac{\mathrm{d} P}{\mathrm{~d} t}$
Note $\frac{\mathrm{d} P}{\mathrm{~d} t}=-\frac{\left(15+\mathrm{e}^{0.8 t}\right) \times 96 \mathrm{e}^{0.6 t}-160 \mathrm{e}^{0.6 t} \times 0.8 \mathrm{e}^{0.8 t}}{\left(15+\mathrm{e}^{0.8 t}\right)^{2}}$ or $-160 \mathrm{e}^{0.6 t}\left(15+\mathrm{e}^{0.8 t}\right)^{-2} \times 0.8 \mathrm{e}^{0.8 t}+\left(15+\mathrm{e}^{0.8 t}\right)^{-1} \times 128 \mathrm{e}^{0.6 t}$

(c) Allow recovery here if the signs are reversed.

M1: Sets their $\frac{\mathrm{d} P}{\mathrm{~d} t}=0$ to obtain $p \mathrm{e}^{0.8 t}=q$ or $\mathrm{Ae}^{0.6 t}=B \mathrm{e}^{1.4 t}$ or equivalent.
A1: $\mathrm{e}^{0.8 t}=45$ or $1440 \mathrm{e}^{0.6 t}=32 \mathrm{e}^{1.4 t}$ or equivalent correct equation.
M1: Having set their $\frac{\mathrm{d} P}{\mathrm{~d} t}=0$ and obtained either $\mathrm{Ae}^{ \pm t t}=B$ (k may be incorrect) or $C \mathrm{e}^{ \pm \alpha t}=D \mathrm{e}^{ \pm \beta t}$ where $k, \alpha, \beta \neq 0$ it is awarded for the correct order of operations, taking ln's leading to $t=$..
It cannot be awarded from impossible equations Eg e ${ }^{0.8 t}=-45$
A1: $T=\frac{\ln 45}{0.8}$ or equivalent or awrt $=4.76$

Question Number	Scheme	Marks
3(a)	3500	B1
		(1)
(b)	$3500(1.035)^{t}>10000 \Rightarrow(1.035)^{t}>\frac{20}{7} \quad($ awrt 2.86)	M1A1
	$\Rightarrow t>\frac{\log \frac{20}{7}}{\log 1.035}=30.516=30 \mathrm{hrs} 31 \mathrm{mins} .$	M1A1
		(4)
(c)	$\frac{\mathrm{d} N}{\mathrm{~d} t}=\left.3500(1.035){ }^{t} \ln 1.035 \Rightarrow \frac{\mathrm{~d} N}{\mathrm{~d} t}\right\|_{t=8}=3500(1.035){ }^{8} \ln 1.035=\operatorname{awrt} 159$	B1M1A1
		(3)
		(8 marks)

(a)

B1: 3500
(b)

M1: For substituting $N=10000$ and proceeding to $(1.035)^{t} \ldots A$ where \ldots is $>, \geqslant,=,<$ or \leqslant
A1: $(1.035)^{t} \ldots \frac{20}{7}$ where \ldots is $>, \geqslant,=,<$ or \leqslant Accept awrt 2.86 for $\frac{20}{7}$ or equivalent e.g. $\frac{10000}{3500}, \frac{100}{35}$
M1: Proceeds correctly to find a value for t.
Accept expressions such as $t \ldots \frac{\log \frac{20}{7}}{\log 1.035}, t \ldots \frac{\ln \frac{20}{7}}{\ln 1.035}$ or $t \ldots \log _{1.035} \frac{20}{7}$ or awrt 30.5 as evidence
A1: 30hrs 31 mins or 30 hrs 32 mins (Not 1831 minutes)
Attempts and Trial and Improvement should be sent to review.
(c)

B1: For $\frac{\mathrm{d} N}{\mathrm{~d} t}=3500(1.035)^{t} \ln 1.035$ or $\frac{\mathrm{d} N}{\mathrm{~d} t}=3500 \mathrm{e}^{t \ln 1.035} \ln 1.035\left(\right.$ Allow $\left.\frac{\mathrm{d} N}{\mathrm{~d} t}=N \ln 1.035\right)$
M1: For substituting $t=8$ into their $\frac{\mathrm{d} N}{\mathrm{~d} t}$ which is a function of t but which is not the original function.
A1: awrt 159 (Award as soon as a correct answer is seen and isw)

(a)

B1 $\quad\left(P_{0}=\right) 65$
(b)

M1 For sight of $\frac{\mathrm{d}}{\mathrm{d} t} \mathrm{e}^{k t}=C \mathrm{e}^{k t}$ (Allow $C=1$)This may be within an incorrect product or quotient rule
M1 Scored for a full application of the quotient rule. If the formula is quoted it should be correct.
The denominator should be present even when the correct formula has been quoted.
In cases where a formula has not been quoted it is very difficult to judge that a correct formula has been used (due to the signs between the terms). So \qquad
if the formula has not been quoted look for the order of the terms $\frac{\left(1+3 \mathrm{e}^{-0.9 t}\right) \times p \mathrm{e}^{-0.1 t}-q \mathrm{e}^{-0.1 t} \times \mathrm{e}^{-0.9 t}}{\left(1+3 \mathrm{e}^{-0.9 t}\right)^{2}}$

$$
\frac{\left(1+3 \mathrm{e}^{-0.9 t}\right) \times p \mathrm{e}^{-0.1 t}+q \mathrm{e}^{-0.1 t} \times \mathrm{e}^{-0.9 t}}{\left(1+3 \mathrm{e}^{-0.9 t}\right)^{2}}
$$

Question	Scheme	Marks
9(a)	Subs $D=15$ and $t=4 \quad x=15 \mathrm{e}^{-0.2 \times 4}=6.740(m g)$	M1A1
(b)	$15 \mathrm{e}^{-0.2 \times 7}+15 \mathrm{e}^{-0.2 \times 2}=13.754(m g)$	
(c)	$15 \mathrm{e}^{-0.2 \times T}+15 \mathrm{e}^{-0.2 \times(T+5)}=7.5$ $15 \mathrm{e}^{-0.2 \times T}+15 \mathrm{e}^{-0.2 \times T} \mathrm{e}^{-1}=7.5$ $15 \mathrm{e}^{-0.2 \times T}\left(1+\mathrm{e}^{-1}\right)=7.5 \Rightarrow \mathrm{e}^{-0.2 \times T}=\frac{7.5}{15\left(1+\mathrm{e}^{-1}\right)}$ $\mathrm{T}=-5 \ln \left(\frac{7.5}{15\left(1+\mathrm{e}^{-1}\right)}\right)=5 \ln \left(2+\frac{2}{\mathrm{e}}\right)$	M1A1*
(2)		
(2)		
(4)		

(a)

M1 Attempts to substitute both $D=15$ and $t=4$ in $x=D \mathrm{e}^{-0.2 t}$
It can be implied by sight of $15 \mathrm{e}^{-0.8}, 15 \mathrm{e}^{-0.2 \times 4}$ or awrt 6.7
Condone slips on the power. Eg you may see -0.02
A1 CAO $6.740(\mathrm{mg})$ Note that $6.74(\mathrm{mg})$ is A0
(b)

M1 Attempt to find the sum of two expressions with $D=15$ in both terms with t values of 2 and 7 Evidence would be $15 \mathrm{e}^{-0.2 \times 7}+15 \mathrm{e}^{-0.2 \times 2}$ or similar expressions such as $\left(15 \mathrm{e}^{-1}+15\right) \mathrm{e}^{-0.2 \times 2}$
Award for the sight of the two numbers awrt $\mathbf{3 . 7 0}$ and awrt $\mathbf{1 0 . 0 5}$, followed by their total awrt $\mathbf{1 3 . 7 5}$ Alternatively finds the amount after 5 hours, $15 \mathrm{e}^{-1}=$ awrt $\mathbf{5 . 5 2}$ adds the second dose $=\mathbf{1 5}$ to get a total of awrt $\mathbf{2 0 . 5 2}$ then multiplies this by $\mathrm{e}^{-0.4}$ to get awrt $\mathbf{1 3 . 7 5}$.
Sight of $5.52+15=20.52 \rightarrow 13.75$ is fine.
A1* cso so both the expression $15 \mathrm{e}^{-0.2 \times 7}+15 \mathrm{e}^{-0.2 \times 2}$ and $13.754(\mathrm{mg})$ are required Alternatively both the expression $\left(15 \mathrm{e}^{-0.2 \times 5}+15\right) \times \mathrm{e}^{-0.2 \times 2}$ and $13.754(\mathrm{mg})$ are required.
Sight of just the numbers is not enough for the A1*
M1 Attempts to write down a correct equation involving T or t. Accept with or without correct bracketing Eg. accept $15 \mathrm{e}^{-0.2 \times T}+15 \mathrm{e}^{-0.2 \times(T \pm 5)}=7.5$ or similar equations $\left(15 \mathrm{e}^{-1}+15\right) \mathrm{e}^{-0.2 \times T}=7.5$
dM1 Attempts to solve their equation, dependent upon the previous mark, by proceeding to $\mathrm{e}^{-0.2 \times T}=\ldots$. An attempt should involve an attempt at the index law $x^{m+n}=x^{m} \times x^{n}$ and taking out a factor of $\mathrm{e}^{-0.2 \times T}$ Also score for candidates who make $\mathrm{e}^{+0.2 \times T}$ the subject using the same criteria
A1 Any correct form of the answer, for example, $-5 \ln \left(\frac{7.5}{15\left(1+\mathrm{e}^{-1}\right)}\right)$
A1 CSO $\mathrm{T}=5 \ln \left(2+\frac{2}{\mathrm{e}}\right)$ Condone t appearing for T throughout this question.

Question Number	Scheme	Marks
8.(a)	$P=\frac{800 \mathrm{e}^{0}}{1+3 \mathrm{e}^{0}},=\frac{800}{1+3}=200$	M1,A1
(b)	$\begin{gathered} 250=\frac{800 \mathrm{e}^{0.1 t}}{1+3 \mathrm{e}^{0.1 t}} \\ 250\left(1+3 \mathrm{e}^{0.1 t}\right)=800 \mathrm{e}^{0.1 t} \Rightarrow 50 \mathrm{e}^{0.1 t}=250, \Rightarrow \mathrm{e}^{0.1 t}=5 \end{gathered}$	M1,A1
	$\begin{aligned} & t=\frac{1}{0.1} \ln (5) \\ & t=10 \ln (5) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(c)	$P=\frac{800 \mathrm{e}^{0.1 t}}{1+3 \mathrm{e}^{0.1 t}} \Rightarrow \frac{\mathrm{~d} P}{\mathrm{~d} t}=\frac{\left(1+3 \mathrm{e}^{0.1 t}\right) \times 800 \times 0.1 \mathrm{e}^{0.1 t}-800 \mathrm{e}^{0.1 t} \times 3 \times 0.1 \mathrm{e}^{0.1 t}}{\left(1+3 \mathrm{e}^{0.1 t}\right)^{2}}$	(4) $\mathrm{M} 1, \mathrm{~A} 1$
	At $t=10$ $\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{(1+3 \mathrm{e}) \times 80 \mathrm{e}-240 \mathrm{e}^{2}}{(1+3 \mathrm{e})^{2}}=\frac{80 \mathrm{e}}{(1+3 \mathrm{e})^{2}}$	M1,A1
		(4)
(d)	$P=\frac{800 \mathrm{e}^{0.1 t}}{1+3 \mathrm{e}^{0.1 t}}=\frac{800}{\mathrm{e}^{-0.1 t}+3} \Rightarrow P_{\max }=\frac{800}{3}=266$. Hence P cannot be 270	B1 (1) (11 marks)

(a)

M1 $\operatorname{Sub} t=0$ into P and use $\mathrm{e}^{0}=1$ in at least one of the two cases. Accept $P=\frac{800}{1+3}$ as evidence
A1 200. Accept this for both marks as long as no incorrect working is seen.
(b)

M1 Sub $P=250$ into $P=\frac{800 \mathrm{e}^{0.1 t}}{1+3 \mathrm{e}^{0.1 t}}$, cross multiply, collect terms in $\mathrm{e}^{0.1 t}$ and proceed to $A \mathrm{e}^{0.1 t}=B$

Condone bracketing issues and slips in arithmetic.
If they divide terms by $\mathrm{e}^{0.1 t}$ you should expect to see $C \mathrm{e}^{-0.1 t}=D$
A1 $\mathrm{e}^{0.1 t}=5$ or $\mathrm{e}^{-0.1 t}=0.2$

Question Number	Scheme	Marks
8.(a)	$t=0 \Rightarrow P=\frac{8000}{1+7}=1000$	M1A1
(b)	$t \rightarrow \infty \quad P \rightarrow \frac{8000}{1}=8000$	(2) B1
		(1)
(c)	$\begin{aligned} & t=3, P=2500 \Rightarrow 2500=\frac{8000}{1+7 e^{-3 k}} \\ & e^{-3 k}=\frac{2.2}{7}=(0.31 . .) \quad \text { oe } \end{aligned}$	B1
		M1,A1
	$k=-\frac{1}{3} \ln \left(\frac{2.2}{7}\right)=\text { awrt } 0.386$	M1A1
		(5)
(d)	Sub $\mathrm{t}=10$ into $\quad P=\frac{8000}{1+7 e^{-0.386 t}} \Rightarrow P=6970 \quad$ cao	M1A1
		(2)
(e)	$\begin{aligned} \frac{\mathrm{d} P}{\mathrm{~d} t} & =-\frac{8000}{\left(1+7 e^{-k t}\right)^{2}} \times-7 k e^{-k t} \\ \text { Sub } \mathrm{t}=\left.10 \quad \frac{\mathrm{~d} P}{\mathrm{~d} t}\right\|_{t=10} & =346 \end{aligned}$	M1,A1
		A1
		(3)
		(13 marks)

