www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs		
10(a)	$T = al^b \Longrightarrow \log_{10} T = \log_{10} a + \log_{10} l^b$	M1	2.1		
	$\Rightarrow \log_{10} T = \log_{10} a + b \log_{10} l^*$				
	or	A1*	1.1b		
	$\Rightarrow \log_{10} T = b \log_{10} l + \log_{10} a^*$				
(b)	45	(2)			
(0)	$b = 0.495$ or $b = \frac{45}{91}$	B1	2.2a		
	$0 = "0.495" \times -0.7 + \log_{10} a \Longrightarrow a = 10^{0.346}$				
	or	M1	3.1a		
	$0.45 = "0.495" \times 0.21 + \log_{10} a \Longrightarrow a = 10^{0.346}$				
	$T = 2.22l^{0.495}$	A1	3.3		
		(3)			
(c)	The time taken for one swing of a pendulum of length 1 m	B1	3.2a		
		(1)	mortra)		
	Notes	(0)	marks)		
(a)					
Implied by A1*: Uses	is logs of both sides and shows the addition law. $T = al^b \Rightarrow \log_{10} a + \log_{10} l^b$ the power law to obtain the given equation with no errors. Allow the ing in the working but they must be present in the final answer.	bases to be	e		
	allow t rather than T and A rather than a.				
	Allow working backwards e.g.				
	$\log_{10} T = b \log_{10} l + \log_{10} a \Longrightarrow \log_{10} T = \log_{10} l^b + \log_{10} a$				
	$\Rightarrow \log_{10} T = \log_{10} al^b \Rightarrow T = al^b *$				
	M1: Uses the given answer and uses the power law and addition law a A1: Reaches the given equation with no errors as above	correctly			
(b)	45				
B1: Deduc	the correct value for b (Allow awrt 0.495 or $\frac{45}{91}$)				
	ct strategy to find the value of a.				
	tutes one of the given points and their value for b into $\log_{10} T = \log_{10} T$				
must be co	orrect log work to identify the value of <i>a</i> . Allow slips in rearranging to prect log work to find <i>a</i> .				
Alternatively finds the equation of the straight line and equates the constant to $\log_{10} a$ and uses					
correct log work to identify the value of a. E $a = v - 0.45 = "0.495"(x - 0.21) \implies v = "0.495"(x + 0.346) \implies a - 10^{0.346} = 0.0000000000000000000000000000000000$					
E.g. $y - 0.45 = "0.495"(x - 0.21) \Rightarrow y = "0.495"x + 0.346 \Rightarrow a = 10^{0.346} =$					
	A1: Complete equation $T = 2.22l^{0.495}$ or $T = 2.22l^{\frac{45}{91}}$				
(Allow awrt 2.22 and awrt 0.495 or $\frac{45}{91}$)					
Must see the <u>equation</u> not just correct values as it is a requirement of the question.					
(c) B1: Correc	ct interpretation				

Question	Scheme	Marks	AOs
8(a)	A = 1000	B1	3.4
	$2000 = 1000e^{5k}$ or $e^{5k} = 2$	M1	1.1b
	$e^{5k} = 2 \Longrightarrow 5k = \ln 2 \Longrightarrow k = \dots$	M1	2.1
	$N = 1000e^{\left(\frac{1}{5}\ln 2\right)t}$ or $N = 1000e^{0.139t}$	A1	3.3
		(4)	
(b)	$\frac{dN}{dt} = 1000 \times \left(\frac{1}{5}\ln 2\right) e^{\left(\frac{1}{5}\ln 2\right)t} \text{ or } \frac{dN}{dt} = 1000 \times 0.139 e^{0.139t}$ $\left(\frac{dN}{dt}\right)_{t=8} = 1000 \times \left(\frac{1}{5}\ln 2\right) e^{8 \times \frac{1}{5}\ln 2} \text{ or } \left(\frac{dN}{dt}\right)_{t=8} = 1000 \times 0.139 e^{0.139\times 8}$	M1	3.1b
	= awrt 420	A1	1.1b
		(2)	
(c)	$500e^{1.4 \times \left(\frac{1}{5}\ln 2\right)T} = 1000e^{\left(\frac{1}{5}\ln 2\right)T} \text{ or } 500e^{1.4 \times "0.139"t} = 1000e^{"0.139"t}$	M1	3.4
-	Correct method of getting a linear equation in T E.g. $0.08T \ln 2 = \ln 2$ or $1.4 \times "0.339"T = \ln 2 + "0.339"t$	M1	2.1
	T = 12.5 hours	A1	1.1b
		(3)	
· ·		(9	marks

www.yesterdaysmathsexam.com

Notes

Mark as one complete question. Marks in (a) can be awarded from (b)

(a)

- B1: Correct value of A for the model. Award if equation for model is of the form $N = 1000e^{-t}$
- M1: Uses the model to set up a correct equation in *k*. Award for substituting N = 2000, t = 5 following through on their value for *A*.
- M1: Uses correct ln work to solve an equation of the form $ae^{5k} = b$ and obtain a value for k

A1: Correct equation of model. Condone an ambiguous $N = 1000e^{\frac{1}{5}\ln 2t}$ unless followed by something incorrect. Watch for $N = 1000 \times 2^{\frac{1}{5}t}$ which is also correct

(b)

M1: Differentiates αe^{kt} to βe^{kt} and substitutes t = 8 (Condone $\alpha = \beta$ so long as you can see an attempt to differentiate)

A1: For awrt 420 (2sf).

(c)

M1: Uses both models to set up an equation in T using their value for k, but also allow in terms of k

M1: Uses correct processing using lns to obtain a linear equation in T (or t)

A1: Awrt 12.5

Answers to (b) and (c) appearing without working (i.e. from a calculator).

It is important that candidates show sufficient working to make their methods clear.

(b) If candidate has for example $N = 1000e^{0.139t}$, and then writes at t = 8 $\frac{dN}{dt} = awrt 420 award both$

marks. Just the answer from a correct model equation score SC 1,0.

(c) The first M1 should be seen E.g $500e^{1.4\times"0.139"t} = 1000e^{"0.139"t}$

If the answer T = 12.5 appears without any further working score SC M1 M1 A0

.....

Question	Scheme	Marks	AOs	
9 (a) Way 1	$\{d = kV^n \Longrightarrow\} \log_{10} d = \log_{10} k + n \log_{10} V$ or $\log_{10} d = m \log_{10} V + c$ or $\log_{10} d = m \log_{10} V - 1.77$ seen or used as part of their argument	M1	2.1	
	Alludes to $d = kV^n$ and gives a full explanation by comparing their result with a linear model e.g. $Y = MX + C$	A1	2.4	
	$\{k=\}\ 10^{-1.77} = 0.017$ or $\log 0.017 = -1.77$ linked together in the same part of the question	B1 *	1.1b	
		(3)		
9 (a) Way 2	$\log_{10} d = m \log_{10} V + c \text{ or } \log_{10} d = m \log_{10} V - 1.77$ or $\log_{10} d = \log_{10} k + n \log_{10} V$ seen or used as part of their argument	M1	2.1	
	$\{d = kV^n \Longrightarrow\} \log_{10} d = \log_{10}(kV^n)$ $\implies \log_{10} d = \log_{10} k + \log_{10} V^n \implies \log_{10} d = \log_{10} k + n\log_{10} V$	A1	2.4	
	$\{k=\}\ 10^{-1.77} = 0.017$ or $\log 0.017 = -1.77$ linked together in the same part of the question	B1 *	1.1b	
		(3)		
(a)	Starts from $\log_{10} d = m \log_{10} V + c$ or $\log_{10} d = m \log_{10} V - 1.77$	M1	2.1	
Way 3	$\log_{10} d = m \log_{10} V + c \implies d = 10^{m \log_{10} V + c} \implies d = 10^c V^m \implies d = kV^n$ or $\log_{10} d = m \log_{10} V - 1.77 \implies d = 10^{m \log_{10} V - 1.77}$ $\implies d = 10^{-1.77} V^m \implies d = kV^n$	A1	2.4	
	$\{k=\}\ 10^{-1.77} = 0.017$ or $\log 0.017 = -1.77$ linked together in the same part of the question	B1 *	1.1b	
		(3)		
(b)	$\{d = 20, V = 30 \Longrightarrow\}$ $20 = k(30)^n$ or $\log_{10} 20 = \log_{10} k + n \log_{10} 30$	M1	3.4	
	$20 = k(30)^n \implies \log 20 = \log k + n \log 30 \implies n = \frac{\log 20 - \log k}{\log 30} \implies n = \dots$ $\log_{10} 20 = \log_{10} k + n \log_{10} 30 \implies n = \frac{\log_{10} 20 - \log_{10} k}{\log_{10} 30} \implies n = \dots$	M1	1.1b	
	$\{n = \text{awrt } 2.08 \implies\} d = (0.017)V^{2.08}$ or $\log_{10} d = -1.77 + 2.08\log_{10} V$	Al	1.1b	
	Note: You can recover the A1 mark for a correct model equation given in part (c)	(3)	1.10	
(c)	$d = (0.017)(60)^{2.08}$	M1	3.4	
	• $13.333+84.918=98.251 \Rightarrow$ Sean stops in time	M1	3.1b	
	• $100-13.333 = 86.666 \& d = 84.918 \Rightarrow$ Sean stops in time	Alft	3.2a	
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	(3)	J.2a	
	l		9 marks)	
No	ADVICE: Ignore labelling (a), (b), (c) when marking this question Note: Give B0 in (a) for $10^{-1.77} = 0.01698$ without reference to 0.017 in the same part			

Question	Scheme	Marks	AOs
9(a)	$t = 0, \ \theta = 18 \Longrightarrow 18 = A - B$		
	or	M1	3.1b
	$t = 10, \ \theta = 44 \Longrightarrow 44 = A - Be^{-0.7}$		
	$t = 0, \ \theta = 18 \Longrightarrow 18 = A - B$		
	and		
	$t = 10, \ \theta = 44 \Longrightarrow 44 = A - Be^{-0.7}$	M1	3.1a
	and		
L	$\Rightarrow A = \dots, B = \dots$		
		A1	
	At least one of: $A = 69.6$, $B = 51.6$ but allow awrt 70/awrt 52	M1 on EPEN	1.1b
	$\theta = 69.6 - 51.6 \mathrm{e}^{-0.07t}$	A1	3.3
		(4)	
(b)	The maximum temperature is "69.6"(°C) (according to the model)	B1ft	3.4
	(The model has an) upper limit of "69.6"(°C)	DIR	5.4
-	(The model suggests that) the boiling point is "69.6"(°C)		
	Model is not appropriate as 69.6(°C) is much lower than 78(°C)	B1ft	3.5a
		(2)	
			(6 marks)

Question Number		Scheme		Marks	
6(a)	25e or equivalent dec	cimal - Accept awrt 68		B1	
(b)	$50 = 25e^{1-10k}$			M1	(1)
	Way 1 $e^{1-10k} = 2$	Way 2 $e^{-10k} = 2/e$	Way 3 $e^{10k} = e/2$	A1	
	$\Rightarrow 1 - 10k = \ln 2$	$-10k = \ln(2/e)$	$10k = \ln(e/2)$	M1	
	$\Rightarrow k = \frac{\ln e - \ln 2}{10}$	Way 2 $e^{-10k} = 2/e$ $-10k = \ln(2/e)$ $k = \frac{-\ln(\frac{2}{e})}{10}$	No intermediate step needed		
		$\Rightarrow k = \frac{\ln\left(\frac{1}{2}e\right)}{10} *$	'	A1*	(4)
(c)	Uses $m = 20$ and their	numerical k so $20 = 25e^{1}$	$\Rightarrow t = \frac{1 - \ln 0.8}{k'}$	M1 dM1	
		=	$\Rightarrow t = awrt 40 (years)$	A1	(3)
				(8 marks)	

	stion nber	Scheme	Marks
	(a)	320 (°C)	B1
()	b)	$T = 180 \Rightarrow 300e^{-0.04t} = 160, \Rightarrow e^{-0.04t} = \frac{160}{300} (awrt 0.53)$	M1, A1
		$t = \frac{1}{-0.04} \ln\left(\frac{160}{300}\right) or \frac{1}{0.04} \ln\left(\frac{300}{160}\right)$	dM1
		15.7 (minutes) cao	A1cso
(c)	$\frac{\mathrm{d}T}{\mathrm{d}t} = (-0.04) \times 300 \mathrm{e}^{-0.04t} = (-0.04) \times (T - 20)$	M1 A1
		$=\frac{20-T}{25}*$	A1*
		25	(8 marks)
Alt	t (b)	Puts $T = 180$ so $180 = 300e^{-0.04t} + 20$ and $300e^{-0.04t} = 160$	M1
		$\ln 300 - 0.04t = \ln 160 \Longrightarrow t =, \qquad \frac{\ln 300 - \ln 160}{0.04}$	dM1, A1
		15.7 (minutes) cao	Alcso
a) 81 5) 41 A1	Sub Cor Fo	by cao - do not need ° C postitutes $T= 180$ and proceeds to a form $Ae^{-0.04t} = B$ or $Ce^{0.04t} = D$ indone slips on the power for this mark. For example condone $Ae^{-0.4t} = B$ if $e^{-0.04t} = \frac{160}{300}$ or $e^{0.04t} = \frac{300}{160}$ or exact equivalent such as $e^{-0.04t} = \frac{8}{15}$ is compared to be a state of the state of t	
M1		bendent upon having scored the first M1, it is for moving from $e^{kt} = c, c > 0$	$\Rightarrow t = \frac{\ln c}{t}$
A1 c)		correct answer and correct solution only. Do not accept awrt	K
11	Dif	ferentiates to give $\frac{dT}{dt} = ke^{-0.04t}$. Condone $\frac{dT}{dt} = ke^{-0.4t}$ following T=300e ^{-0.4t}	^t + 20
	This	is can be achieved from T=300e ^{-0.04t} + 20 \Rightarrow $t = \frac{1}{-0.04} \ln\left(\frac{T-20}{300}\right) \Rightarrow \frac{dt}{dT} = \frac{k}{(T-20)}$	$\overline{0}$ for M1
.1	Cor	rect derivative and correctly eliminates t to achieve $\frac{dT}{dt} = (-0.04) \times (T - 20)$ o	e
		andidate changes the subject it is for $\frac{dt}{dT} = \frac{-25}{(T-20)}$ oe	
	Alt	ernatively obtains the correct derivative, substitutes T in $\frac{dT}{dt} = \frac{20 - T}{25} \rightarrow \frac{dT}{dt}$	$-=-12e^{-0.04t}$ and
		ul 23 ul	

dt = 25compares. To score the A1* under this method there must be a statement. Obtains printed answer correctly – no errors

A1*

www.yesterdaysmathsexam.com

Question Number	S	Scheme	Marks
9.(a)	$t = 0 \Longrightarrow P = \frac{9000}{3+7} = 900$	M1: Sets $t = 0$, may be implied by $e^0 = 1$ or may be implied by $\frac{9000}{3+7}$ or by a correct answer of 900. A1: 900	M1A1
			(2)
(b)	$t \to \infty P \to \frac{9000}{3} = 3000$	Sight of 3000	B1
			(1)
(c)	$t = 4, P = 2500 \Rightarrow 2500 = \frac{9000e^{4k}}{3e^{4k} + 7}$	Correct equation with $t = 4$ and $P = 2500$	B1
	$e^{4k} = \frac{17500}{1500} = (awrt 11.7 or 11.6)$ or $e^{-4k} = \frac{1500}{17500} = (awrt 0.857)$	M1: Rearranges the equation to make $e^{\pm 4k}$ the subject. They need to multiply by the $3e^{4k} + 7$ term, and collect terms in e^{4k} or e^{-4k} reaching $e^{\pm 4k} = C$ where C is a constant. A1: Achieves intermediate answer of $e^{4k} = \frac{17500}{1500} = (awrt 11.7 \text{ or } 11.6) \text{ or}$ $e^{-4k} = \frac{1500}{17500} = (awrt 0.857)$	M1A1
	$k = \frac{1}{4} \ln\left(\frac{35}{3}\right) $ or awrt 0.614	d M1: Proceeds from $e^{\pm 4k} = C$, $C > 0$ by correctly taking ln's and then making k the subject of the formula. Award for e.g. $e^{4k} = C \Rightarrow 4k = \ln(C) \Rightarrow k = \frac{\ln(C)}{4}$ A1: cao: Awrt 0.614 or the correct exact answer (or equivalent)	d M1A1
			(5)
	Alternative c	correct work in (c):	
	$t = 4, P = 2500 \Rightarrow 2500 = \frac{9000e^{4k}}{3e^{4k} + 7}$	Correct equation with $t = 4$ and $P = 2500$	B1
	$7500e^{4k} + 17500 = 9000e^{4k}$		
	$1500e^{4k} = 17500$		ļ
	$\ln 1500 + \ln e^{4k} = \ln 17500$	M1: Takes ln's correctly A1: Correct equation	- M1A1
	$\ln e^{4k} = \ln 17500 - \ln 1500$		
	$\frac{4k = \ln 17500 - \ln 1500}{k = \frac{\ln 17500 - \ln 1500}{4}}$	Makes k the subject	M1A1
	$k = \frac{1}{4} \ln\left(\frac{35}{3}\right) $ or awrt 0.614	cao: Awrt 0.614 or the correct exact answer (or equivalent)	

www.yesterdaysmathsexam.com

(d)

$$\frac{dP}{dt} = \frac{(3e^{tt} + 7) \times 9000e^{tt} - 9000e^{tt} \times 3ke^{tt}}{(3e^{tt} + 7)^2} \left(= \frac{63000ke^{tt}}{(3e^{tt} + 7)^2} \right)$$
Differentiates using the quotient rule to achieve

$$\frac{dP}{dt} = \frac{(3e^{tt} + 7) \times Pe^{tt} - 9000e^{tt} \times Qe^{tt}}{(3e^{tt} + 7)^2}$$
or

$$\frac{dP}{dt} = 9000ke^{tt} (3e^{tt} + 7)^{-1} - 9000e^{tt} (3e^{tt} + 7)^{-2} \times 3ke^{tt}$$
Differentiates using the product rule to achieve

$$\frac{dP}{dt} = Pe^{tt} (3e^{tt} + 7)^{-1} - 9000e^{tt} (3e^{tt} + 7)^{-2} \times Qe^{tt}$$
or

$$\frac{dP}{dt} = Pe^{tt} (3e^{tt} + 7)^{-1} - 9000e^{tt} (3e^{tt} + 7)^{-2} \times Qe^{tt}$$

$$\frac{dP}{dt} = 63000ke^{-kt} (3 + 7e^{-kt})^{-2}$$
Differentiates using the chain rule on $P = 9000 (3 + 7e^{-kt})^{-1}$ to achieve

$$\frac{dP}{dt} = \pm De^{-kt} (3 + 7e^{-kt})^{-2}$$
Watch for $e^{kt} \to kte^{kt}$ which is M0
Sub $t = 10$ and $k = 0.614 \Rightarrow \frac{dP}{dt} = \dots$
Sub stitutes $t = 10$ and their k to obtain
a value for $\frac{dP}{dt}$. If the value for $\frac{dP}{dt}$ is
incorrect then the substitution of
 $t = 10$ must be seen explicitly.

$$\frac{dP}{dt} = 9$$
Avrt 9 (NB $\frac{dP}{dt} = 9.1694...$) A1
(11 marks)

Qu	Scheme	Marks
10.(a)	When $t = 0$ $N = 15$	B1 (1)
(b)	Puts $t = 10$ so $N = 56.6$ (accept 56 or 57)	M1A1 (2)
(c)	$82 = \frac{300}{3 + 17e^{-0.2t}} \implies e^{-0.2t} = \frac{54}{1394} = \text{awrt } 0.039$	M1 A1
	$-0.2t = \ln\left(\frac{54}{1394}\right) \Longrightarrow t =$	dM1
	(1394) t = awrt 16.3	A1
(d)	$\frac{dN}{dt} = (-0.2) \times 300 \times (-1) \times 17e^{-0.2t} (3 + 17e^{-0.2t})^{-2}$	(4) M1 A1
	=4.38 so 4 insects per week	A1 cso
		(3) (10 marks)
A1: Accept (c) M1: Subst A1: For e ⁻ dM1: Dept A1: awrt acceptable It is possible	itutes $t = 10$ into the correct formula. Sight of $N = \frac{300}{3+17e^{-0.2\times10}}$ is fine t 56 or 57 or awrt 56.6. These values would imply the M. itutes 82 and proceeds to obtain $e^{\pm 0.2t} = C$ Condone slips on the power $e^{-0.2t} = \frac{27}{697}$ oe $e^{0.2t} = \frac{697}{27}$ oe Accept decimals Eg $e^{-0.2t} = awrt 0.039$ or $e^{0.2t} = awrt 25.8$ endent upon previous M, scored for taking ln's (of a positive value) and proceeding to $t = 16.3$ Accept 16 (weeks), 16.25 (weeks), 16 weeks 2 days or 17 weeks following correct lo accuracy. Accept $t = 5\ln\left(\frac{1394}{54}\right)oe$ for this mark le to answer this by taking ln's at the point $1394e^{-0.2t} = 54$ $\ln(1394) - 0.2t = \ln(54)$ dM1 A1 As scheme	og work and
(d) M1: Differ A1: Correc	rentiates to give a form equivalent to $\frac{dN}{dt} = ke^{-0.2t}(3+17e^{-0.2t})^{-2}$ (may use quotient rule) et derivative which may be unsimplified $\frac{dN}{dt} = 1020e^{-0.2t}(3+17e^{-0.2t})^{-2}$ as awrt 4 following a correct derivative. This is cso	

		(9 marks)
		(4)
	$\implies T = \frac{\ln 45}{0.8} = 4.76$	M1A1
(c)	Sets $\pm \frac{(15+e^{0.8t}) \times 96e^{0.6t} - 160e^{0.6t} \times 0.8e^{0.8t}}{(15+e^{0.8t})^2} = 0 \Longrightarrow e^{0.8t} = 45$	M1A1
		(3)
(b)	$\frac{\mathrm{d}P}{\mathrm{d}t} = -\frac{(15 + \mathrm{e}^{0.8t}) \times 96\mathrm{e}^{0.6t} - 160\mathrm{e}^{0.6t} \times 0.8\mathrm{e}^{0.8t}}{(15 + \mathrm{e}^{0.8t})^2}$	M1A1
	$e^{kt} \rightarrow a e^{kt}$	M1
		(2)
13.(a)	$t = 0 \Longrightarrow \left(P = \right) 200 - \frac{160}{15 + 1} = 190 \Longrightarrow 190\ 000$	M1A1
Question Number	Scheme	Marks

M1: Sets t = 0 in the top and bottom of the fraction, giving $e^0 = 1$. Award if candidate attempts $200 - \frac{160}{15+1}$ but not

 $\frac{200-160}{15+1}$ This can be awarded for a correct answer.

A1: Correct answer only. Accept 190 000 or (P =) 190 (ants).

The answer is an integer so do **not** allow awrt 190 or awrt 190 000 i.e. there should be no decimals. (b)

M1: For showing that $e^{kt} \rightarrow ae^{kt}$ where *a* is a constant. This may be embedded within the product or quotient rule or their attempt to differentiate.

M1: For applying the quotient rule to obtain $\frac{dP}{dt} = \pm \frac{(15 + e^{0.8t}) \times p e^{0.6t} - q e^{0.8t} \times e^{0.6t}}{(15 + e^{0.8t})^2}$ or applying the product rule to obtain $\frac{dP}{dt} = \pm \left[A e^{0.6t} (15 + e^{0.8t})^{-2} \times B e^{0.8t} + (15 + e^{0.8t})^{-1} \times C e^{0.6t} \right]$

Allow invisible brackets for this mark but not for the A mark below.

A1: A correct un-simplified or simplified $\frac{dP}{dP}$

Note
$$\frac{dP}{dt} = -\frac{(15 + e^{0.8t}) \times 96e^{0.6t} - 160e^{0.6t} \times 0.8e^{0.8t}}{(15 + e^{0.8t})^2}$$
 or $-160e^{0.6t} (15 + e^{0.8t})^{-2} \times 0.8e^{0.8t} + (15 + e^{0.8t})^{-1} \times 128e^{0.6t}$

(c) Allow recovery here if the signs are reversed.

M1: Sets their $\frac{dP}{dt} = 0$ to obtain $pe^{0.8t} = q$ or $Ae^{0.6t} = Be^{1.4t}$ or equivalent. A1: $e^{0.8t} = 45$ or $1440e^{0.6t} = 32e^{1.4t}$ or equivalent correct equation.

M1: Having set their $\frac{dP}{dt} = 0$ and obtained either Ae^{±kt} = B (k may be incorrect) or $Ce^{\pm \alpha t} = De^{\pm \beta t}$ where k, $\alpha, \beta \neq 0$ it is awarded for the correct order of operations, taking ln's leading to t = ...

It cannot be awarded from impossible equations Eg $e^{0.8t} = -45$

A1:
$$T = \frac{\ln 45}{0.8}$$
 or equivalent or awrt = 4.76

Question Number	Scheme	Marks
3 (a)	3500	B1
		(1)
(b)	$3500(1.035)^{t} > 10000 \Rightarrow (1.035)^{t} > \frac{20}{7} \text{ (awrt 2.86)}$	M1A1
	$\Rightarrow t > \frac{\log \frac{20}{7}}{\log 1.035} = 30.516 = 30$ hrs 31 mins	M1A1
	or 30 hrs 32 mins	
		(4)
(c)	$\frac{\mathrm{d}N}{\mathrm{d}t} = 3500 (1.035)^t \ln 1.035 \Rightarrow \frac{\mathrm{d}N}{\mathrm{d}t} \Big _{t=8} = 3500 (1.035)^8 \ln 1.035 = \mathrm{awrt} 159$	B1M1A1
		(3)
		(8 marks)

B1: 3500

(b)

M1: For substituting N = 10000 and proceeding to $(1.035)^t \dots A$ where \dots is $>, \ge , =, < \text{ or } \le A1: (1.035)^t \dots \frac{20}{7}$ where \dots is $>, \ge , =, < \text{ or } \le Accept$ awrt 2.86 for $\frac{20}{7}$ or equivalent e.g. $\frac{10000}{3500}, \frac{100}{35}$ M1: Proceeds correctly to find a value for *t*.

Accept expressions such as $t_{...} \frac{\log \frac{20}{7}}{\log 1.035}$, $t_{...} \frac{\ln \frac{20}{7}}{\ln 1.035}$ or $t_{...} \log_{1.035} \frac{20}{7}$ or awrt 30.5 as evidence A1: 30hrs 31 mins or 30hrs 32 mins (**Not** 1831 minutes)

Attempts and Trial and Improvement should be sent to review.

(c)

B1: For
$$\frac{dN}{dt} = 3500(1.035)^t \ln 1.035$$
 or $\frac{dN}{dt} = 3500e^{t \ln 1.035} \ln 1.035$ (Allow $\frac{dN}{dt} = N \ln 1.035$)

M1: For substituting t = 8 into their $\frac{dN}{dt}$ which is a function of t but which is **not** the original function. A1: awrt 159 (Award as soon as a correct answer is seen and isw)

Question Number	Scheme	Marks	
8 (a)	$P_0 = \frac{100}{1+3} + 40 = 65$	B1	
	1+5	(1)
	$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{e}^{kt} = C\mathrm{e}^{kt}$	M1	
(b)	$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{\left(1+3\mathrm{e}^{-0.9t}\right) \times -10\mathrm{e}^{-0.1t} - 100\mathrm{e}^{-0.1t} \times -2.7\mathrm{e}^{-0.9t}}{\left(1+3\mathrm{e}^{-0.9t}\right)^2}$	M1 A1	
		(3	3)
(c)(i)	At maximum $-10e^{-0.1t} - 30e^{-0.1t} \times e^{-0.9t} + 270e^{-0.1t} \times e^{-0.9t} = 0$		
	$e^{-0.1t} \left(-10 + 240e^{-0.9t} \right) = 0$		
	$e^{-0.9t} = \frac{10}{240}$ or $e^{0.9t} = 24$	M1	
	$-0.9t = \ln\left(\frac{1}{24}\right) \Longrightarrow t = \frac{10}{9}\ln(24) = 3.53$	M1, A1	
(c) (ii)	Sub $t = 3.53 \Longrightarrow P_T = 102$	A1	
		(4	I)
(d)	40	B1	
		(1	1)
		9 marks	

B1 $(P_0 =)65$

(b)

M1 For sight of $\frac{d}{dt}e^{kt} = Ce^{kt}$ (Allow C=1)This may be within an incorrect product or quotient rule

M1 Scored for a full application of the quotient rule. If the formula is quoted it should be correct.

The denominator should be present even when the correct formula has been quoted.

In cases where a formula has not been quoted it is very difficult to judge that a correct formula has been used (due to the signs between the terms). So.....

if the formula has not been quoted look for the order of the terms

$$\frac{(1+3e^{-0.9t}) \times pe^{-0.1t} - qe^{-0.1t} \times e^{-0.9t}}{(1+3e^{-0.9t})^2}$$
$$\frac{(1+3e^{-0.9t}) \times pe^{-0.1t} + qe^{-0.1t} \times e^{-0.9t}}{(1+3e^{-0.9t})^2}$$

Question	Scheme	Marks
9(a)	Subs $D = 15$ and $t = 4$ $x = 15e^{-0.2 \times 4} = 6.740 \ (mg)$	M1A1
(b)	$15e^{-0.2\times7} + 15e^{-0.2\times2} = 13.754(mg)$	(2) M1A1* (2)
(c)	$15e^{-0.2 \times T} + 15e^{-0.2 \times (T+5)} = 7.5$	(2) M1
	$15e^{-0.2\times7} + 15e^{-0.2\times2} = 13.754(mg)$ $15e^{-0.2\times7} + 15e^{-0.2\times(T+5)} = 7.5$ $15e^{-0.2\times7} + 15e^{-0.2\times7}e^{-1} = 7.5$ $15e^{-0.2\times7} (1+e^{-1}) = 7.5 \implies e^{-0.2\times7} = \frac{7.5}{15(1+e^{-1})}$	dM1
	$T = -5\ln\left(\frac{7.5}{15(1+e^{-1})}\right) = 5\ln\left(2+\frac{2}{e}\right)$	A1, A1
		(4) (8 marks)

M1 Attempts to substitute both D = 15 and t = 4 in $x = De^{-0.2t}$ It can be implied by sight of $15e^{-0.8}$, $15e^{-0.2\times4}$ or awrt 6.7 Condone slips on the power. Eg you may see -0.02

A1 CAO 6.740 (mg) Note that 6.74 (mg) is A0

(b)

M1 Attempt to find the sum of two expressions with D = 15 in both terms with t values of 2 and 7 Evidence would be $15e^{-0.2\times7} + 15e^{-0.2\times2}$ or similar expressions such as $(15e^{-1} + 15)e^{-0.2\times2}$

Award for the sight of the two numbers awrt **3.70** and awrt **10.05**, followed by their total awrt **13.75** Alternatively finds the amount after 5 hours, $15e^{-1} = awrt 5.52$ adds the second dose = **15** to get a total of awrt **20.52** then multiplies this by $e^{-0.4}$ to get awrt **13.75**. Sight of $5.52+15=20.52 \rightarrow 13.75$ is fine.

- A1* cso so both the expression $15e^{-0.2\times7} + 15e^{-0.2\times2}$ and 13.754(mg) are required Alternatively both the expression $(15e^{-0.2\times5} + 15) \times e^{-0.2\times2}$ and 13.754(mg) are required. Sight of just the numbers is not enough for the A1*
- (c)
- M1 Attempts to write down a correct equation involving *T* or *t*. Accept with or without correct bracketing Eg. accept $15e^{-0.2\times T} + 15e^{-0.2\times (T\pm 5)} = 7.5$ or similar equations $(15e^{-1} + 15)e^{-0.2\times T} = 7.5$

dM1 Attempts to solve their equation, dependent upon the previous mark, by proceeding to $e^{-0.2 \times T} = ...$ An attempt should involve an attempt at the index law $x^{m+n} = x^m \times x^n$ and taking out a factor of $e^{-0.2 \times T}$ Also score for candidates who make $e^{+0.2 \times T}$ the subject using the same criteria

A1 Any correct form of the answer, for example,
$$-5 \ln \left(\frac{7.5}{15(1+e^{-1})} \right)$$

A1 CSO T =
$$5\ln\left(2+\frac{2}{e}\right)$$
 Condone *t* appearing for *T* throughout this question.

Question Number	Scheme	Marks
4(a)	$(\theta =)20$	B1 (1)
(b)	Sub $t = 40, \theta = 70 \Rightarrow 70 = 120 - 100 e^{-40\lambda}$	
	$\Rightarrow e^{-40\lambda} = 0.5$	M1A1
	$\Rightarrow \lambda = \frac{\ln 2}{40}$	M1A1
		(4)
(c)	$\theta = 100 \Rightarrow T = \frac{\ln 0.2}{-\text{their}'\lambda'}$	M1
	T = awrt 93	A1
		(2)
		(7 marks)
Alt (b)	Sub $t = 40, \theta = 70 \Rightarrow 100 e^{-40\lambda} = 50$	
	$\Rightarrow \ln 100 - 40\lambda = \ln 50$	M1A1
	$\Rightarrow \lambda = \frac{\ln 100 - \ln 50}{40} = \frac{\ln 2}{40}$	M1A1
		(4)

Question Number	Scheme	Marks
8.(a)	$P = \frac{800e^0}{1+3e^0}, = \frac{800}{1+3} = 200$	M1,A1 (2)
(b)	$250 = \frac{800e^{0.1t}}{1+3e^{0.1t}}$	
	$250(1+3e^{0.1t}) = 800e^{0.1t} \Rightarrow 50e^{0.1t} = 250, \Rightarrow e^{0.1t} = 5$ $t = \frac{1}{0.1}\ln(5)$ $t = 10\ln(5)$	M1,A1 M1 A1
(c)	$P = \frac{800e^{0.1t}}{1+3e^{0.1t}} \Longrightarrow \frac{dP}{dt} = \frac{(1+3e^{0.1t}) \times 800 \times 0.1e^{0.1t} - 800e^{0.1t} \times 3 \times 0.1e^{0.1t}}{(1+3e^{0.1t})^2}$	(4) M1,A1
	At t=10 $\frac{dP}{dt} = \frac{(1+3e) \times 80e - 240e^2}{(1+3e)^2} = \frac{80e}{(1+3e)^2}$	M1,A1
(d)	$P = \frac{800e^{0.1t}}{1+3e^{0.1t}} = \frac{800}{e^{-0.1t}+3} \Longrightarrow P_{\text{max}} = \frac{800}{3} = 266 \text{ . Hence P cannot be 270}$	(4) B1 (11 marks)
(a) M as A1	1 Sub $t = 0$ into P and use $e^0 = 1$ in at least one of the two cases. Accept P evidence	$P = \frac{800}{1+3}$

(b)

Sub P=250 into $P = \frac{800e^{0.1t}}{1+3e^{0.1t}}$, cross multiply, collect terms in $e^{0.1t}$ and proceed M1 to $Ae^{0.1t} = B$ Condone bracketing issues and slips in arithmetic. If they divide terms by $e^{0.1t}$ you should expect to see $Ce^{-0.1t} = D$ $e^{0.1t} = 5$ or $e^{-0.1t} = 0.2$

A1

Question Number	Scheme	Mark	S
8.(a)	$t = 0 \Longrightarrow P = \frac{8000}{1+7} = 1000$ cao	M1A1	
	2000		(2)
(b)	$t \to \infty P \to \frac{8000}{1} = 8000$	B1	
			(1)
(c)	$t = 3, P = 2500 \Longrightarrow 2500 = \frac{8000}{1 + 7e^{-3k}}$	B1	
	$e^{-3k} = \frac{2.2}{7} = (0.31)$ oe	M1,A1	
	$k = -\frac{1}{3}\ln\left(\frac{2.2}{7}\right) = \text{awrt } 0.386$	M1A1	
			(5)
(d)	Sub t=10 into $P = \frac{8000}{1 + 7e^{-0.386t}} \Rightarrow P = 6970$ cao	M1A1	
			(2)
(e)	$\frac{\mathrm{d}P}{\mathrm{d}t} = -\frac{8000}{(1+7e^{-kt})^2} \times -7ke^{-kt}$	M1,A1	
	Sub t=10 $\left. \frac{\mathrm{d}P}{\mathrm{d}t} \right _{t=10} = 346$	A1	
			(3)
		(13 ma	rks)