

Mark Scheme (Results)

January 2015

Pearson Edexcel International A Level in Statistics 1 (WST01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015 Publications Code IA040679 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Scheme b = 0.26 + 0.28 or a' + 0.3 or c = 0.76 - b' b = 0.54 $c = 0.2(only)an odd number) = 0.1 + 0.28 + 0.24 = 0.62nd X_2 are both odd) = 0.622= 0.3844X_2 = 6 \mid \text{both are odd}1 + X_2 = 6 \cap X_1 \text{ and } X_2 \text{ are odd}P(X_1 \text{ and } X_2 \text{ are odd})$	or $1 - (0.62 + a^2)$	(1) 11 2 (3) 1 (1) 11
b = 0.54 (only) (only) (an odd number) = 0.1 + 0.28 + 0.24 = 0.62 (and X ₂ are both odd) = 0.62 ² = 0.3844 (X ₂ = 6 both are odd)	A^{\prime} or $1 - (0.62 + a^{\prime})$ A 2 B M	11 2 (3) 1 (1) 11 1
(only) an odd number) = $0.1 + 0.28 + 0.24 = 0.62$ nd X_2 are both odd) = 0.62^2 = 0.3844 $X_2 = 6$ both are odd)	B	1 (1) 11 1
nd X_2 are both odd) = 0.62^2 = 0.3844 $X_2 = 6 \mid \text{both are odd}$		1 1 1
$(0.24 \pm 0.28 \times 0.28 \pm 0.24 \times 0.1) = 0.1264$	М	11
$\frac{(0.24 + 0.28 \times 0.28 + 0.24 \times 0.1)}{(\text{their answer to d})'} = \frac{0.1264}{'(\text{d})'}$ 8824141	A awrt <u>0.329</u> A	.1ft .1
	(1	(3) 0 marks)
Notes	•••	to marks)
sight of 1 referring to d (may be in table of	r in the question)	
or any correct calculation seen (may be imp t their <u>values</u> for ' a ', ' b ' or ' c ' Do not av or at least two values correct or all 3 values correct	•	
M1 for $(0.1 + 0.28 + 0.24)^2$ oe i.e. must be a complete correct expression e.g. $(1 - [`a' + `c'])^2$ and ft their values for `a' and `c' A1 for awrt 0.384 or exact fraction $\frac{961}{2500}$		
for attempt at correct conditional probabil	X_2 rrect num' and their "(d)"	on denom'
	awrt 0.384 or exact fraction $\frac{1}{2500}$ for attempt at correct conditional probabil stated in words that mentions both X_1 and lay be implied by a numerical ratio with co his would score M1A1ft ft for $\frac{\text{correct numerator}}{0.384}$ or correct numer	awrt 0.384 or exact fraction $\frac{1}{2500}$ for attempt at correct conditional probability i.e. a correct ratio of pr stated in words that mentions both X_1 and X_2 lay be implied by a numerical ratio with correct num' and their "(d)" his would score M1A1ft for $\frac{\text{correct numerator}}{1}$ or correct numerator and denominator of the

	V 7 1' 00	D1
2. (a)	Year 7 median = 29	B1
	Year 11 median $= 54$	B1
		(2)
(b)	- 1 -	B1
	[Upper quartile =] 42	B1
		(2)
(c)		
	$Q_3 - Q_2$ (=13) > $Q_2 - Q_1$ (=7) $Q_3 - Q_2$ (=5) < $Q_2 - Q_1$ (=16)	M1
	Positive skew Negative skew	A1 A1
		(3)
(d)	Data is <u>skew</u> ed	B1
	Data is <u>not continuous</u>	B1
		(2)
		(9 marks)
	Notes	
(a)	In (a) at least one of the values should be assigned to a Year gro	up
SC	If you see just "29" and "54" award SC B1B0	
	1 st B1 for 29 seen (may be circled on diag.)	
	2 nd B1 for 54 seen	
(b)	1^{st} B1 for 22 and 2^{nd} B1 for 42 (these values may be circled on the diag	gram)
(c)	M1 for a comparison for either year using quartiles only.	
	For either " $Q_3 - Q_2 > Q_2 - Q_1$ and positive skew' Statements show	ld be
	\underline{Or} "Q ₃ – Q ₂ < Q ₂ – Q ₁ and negative skew" compatible with	
	1 st A1 for Year 7 clearly labelled "positive skew" (both words) ("correlated"	ion" is A0)
	2 nd A1 for Year 11 clearly labelled "negative skew" (both words) ("correla	ation" is A0)
Ans. only	If no comparison is stated then award M1A1A1 only if both statements a	
	and compatible with their medians and quartiles so score is 0 or 3	
(d)	1^{st} B1 for a statement mentioning (or implying) that the data is <u>skew</u> (or	not
	symmetric) Ignore ref to +ve or - ve	
SC	Allow for statement "mean \neq median" if mean = 48.8 and median = 5	4 or 53 seen
	2 nd B1 for a statement mentioning data is <u>not continuous</u> (allow identifial	
	Allow "this data is discrete" for 2 nd B1	1 <i>U</i> /
NB means	Year 7 $\bar{x} = 31.5$ Year 11 $\bar{x} = 48.8$	
	1	

3. (a) $29 \times 75 + 29 \times 83 + \dots + 46 \times 126 = 33856$ <u>33856</u>	B1cao	
(b) $\sum m = 306 \text{ and } \sum b = 861$ $S_{bm} = '33\ 856' - \frac{'861' \times '306'}{8} = 922.75$ awrt <u>923</u>	(1) B1 M1 A1	
	e) $r = \frac{"922.75"}{\sqrt{3083.875 \times 305.5}} = 0.9506706$ awrt <u>0.951</u>	(3) M1 A1	
(As milk price increase, so does bread price.	(2) B1 (1)	
(e) Since bread price increases but milk price stays the same Therefore the correlation will decrease (or be weaker)	B1 dB1 (2)	
		(9 marks)	
	Notes		
(B1 for 33856 as their final answer		
(B1 for both $\sum m$ and $\sum b$ seen or implied by $861 \times 306 = 263466$ or a correct answer These must be seen in (b) do not allow for $\sum m + \sum b = 306 + 861 = 1167$ just in (a) M1 for use of correct formula ft their answer to (a) A1 for awrt 923 [Answer only scores B1M1A1]		
	M1 for attempt at correct formula. Must have their S_{bm} and the given values of S_{bb} and S_{mm} (3sf or better) in the correct places. NB $\sqrt{3083.875 \times 305.5} = 970.63$ (0.95 with no working score M1 A0).Allow M1 even if $ r > 1$ A1 for awrt 0.951 [Answer only of awrt 0.951 scores M1A1]		
(B1 for a contextual description of positive correlation.Must use words "milk" and "bread" so "as <i>m</i> increases <i>b</i> increases" is B0Ignore any mention of correlation or skewness if a correct interpretation is given.		
(1 st B1 for a suitable reason e.g. $m = 46$, $b = 175$ does not follow trend/pattern <u>or</u> is an outlier		
N	or new point will be further from the (regression) line or 175 is more than expected "175 is larger than all values in table" is B0 since it makes no ref. to reg line or milk price. BUT "175 is an extreme value (or outlier)" implies the point is being considered and is B1		
	2^{nd} dB1 dep. on 1^{st} B1 for saying <i>r</i> (or "it") will <u>decrease</u> (allow weaker correlation) Mention of "skew decreases" is B0 <u>unless</u> there is a correct statement as well.		
Ň	B The new value of $r = 0.86767$ You may see this but it does not score and	ything.	

4. (a)(i)	x + 0.1 [P(x + 0.1) is B0]	B1	
4. (a)(1)	x + 0.1 [F (x + 0.1) IS B0]	DI	
(ii)	$P(B \cap A) = 0.1$	M1 A1	
	$P(B A) = \frac{P(B \cap A)}{P(A)} = \frac{0.1}{x + 0.1}$	(3)	
(b)	x+y+0.1 (o.e.) [P(x+y+0.1) is B0]	B1	
(~)		(1)	
(c)	x+y+0.1+0.32 = 1 or $x+y+0.1 = 0.68$ or "(b)" + 0.32 = 1 o.e.	M1	
	x + 0.1 = 2(y + 0.1)	M1	
	Eliminating x gives $3y = 0.48$	M1	
	x = 0.42 $y = 0.16$	A1 A1	
		(5)	
	NT-4	(9 marks)	
(a)(ii)	Notes M1 for a correct ratio of probabilities formula with at least one correct pr	obability	
(a)(II)		-	
	value (may ft their (a)(i) in the denominator) \underline{or} a prob ratio of the for	$\operatorname{rm} \frac{0.1}{(a)(i)}$	
		(4)(1)	
	If num' > denom' score M0. NB P(A) = $0.68 - y$ and P(B A) = $\frac{0.1}{0.68 - y}$ i	s B0M1A0	
	A1 for $\frac{0.1}{x+0.1}$ as their final answer		
	x + 0.1		
	D1 for one connect connection in words of a 0.1 to 0.1 to 0.1		
(b)	B1 for any correct expression in x and y e.g. $0.1 + x + 0.1 + y - 0.1$ Condone $x + y + 0.1 = 1 - 0.32$ or 0.68 since LHS is a correct expression		
	Condone $x + y + 0.1 = 1 - 0.52$ or 0.08 since LHS is a correct expression		
(c)	1^{st} M1 for using sum of probs. = 1 to form a "correct" linear equ'n in x and y [x + y = 0.58]		
	Ft their (b) and or their (a)(i) e.g. "(a)(i)" $+0.32 + y = 1$		
	2^{nd} M1 for using P(A) = 2P(B) to form a "correct" linear equ'n in x and y[x - 2y = 0.1]		
	Ft their P(A) from part (a)		
	If they use $2P(A) = P(B)$ or swap x and y score 2^{nd} M0 but allow access to 3^{rd} M		
	3 rd M1 for an attempt to solve their 2 linear equations. Implied by 1 st 2 Ms and correct ans.		
	Requires correct algebraic steps leading to an equation in one varia If there are not 2 equations this connect he secred (but see SC)	ble.	
	If there are not 2 equations this cannot be scored (but see SC) $1^{\text{st}} A1$ for $x = 0.42$ (following correct working and dep. on $1^{\text{st}} 2 \text{ Ms}$)		
	2^{nd} A1 for $y = 0.16$ (following correct working and dep. on 1^{st} 2 Ms)		
Beware	0.42 = 0.32 + 0.1 so answer only does not score full marks		
200040			
SC	P(A) = 0.68 - y = 2(y + 0.1) score M2 (2 nd and 3 rd Ms) and 2 nd A1 when y	= 0.16 seen	
	Sight of $x + y + 0.1 = 0.68$ (o.e.)(scores 1 st M1) and then 1 st A1 if $x = 0.42$ follows.		
or			
	Sight of $x + y + 0.1 = 0.68$ (o.e.)(scores 1 st M1) and then 2 nd A1 if $y = 0.1$	6 follows.	

		1	
5. (a)	Resting heart rate, h , is being measured (you can't control it)	B1	
	So it is the response variable	dB1	$\langle \mathbf{O} \rangle$
	For sucre additional minute of evenies heart rate decreases by 0.42 (here)	D1	(2)
(b)	For every additional minute of exercise, heart rate decreases by 0.43 (bpm)	B1	(1)
			(1)
(C)	$\left[\overline{t} = \right]50 \left[\overline{h} = \right]72$	B1 B1	
			(2)
(d)	$h = 93.5 - 0.43$ (50) so $h = 72$ or Allow: $72 = 93.5 - 0.43 \times 50$	B1 cso	
			(1)
(e)	[h = 93.5 - 0.43 (60)] $h = 67.7 (allow 68 if a correct expression is seen)$	B1	
(0)		D1	(1)
(f)	Since 1 hour (60 minutes) is within the range (of the <i>t</i> -values),	B1	
	The estimate is reliable	dB1	(0)
		M1 D1	(2)
(g)	$\frac{a-73}{8} = -1.96$ or $\frac{b-73}{8} = 1.96$	M1 B1	
		dM1	
	73±1.96×8	A1	
	(57.32, 88.68) awrt <u>57.3 and 88.7</u>	A 1	(\mathbf{A})
		(12	(4)
	Notos	(13 ma	rks)
(a)	Notes1 st B1for a reason that doesn't use words "response" or "explanatory"		
(a)	1 1 5	d by t	
	e.g. <i>h</i> is dependent on/ affected by/changed by/influenced by/determined by <i>t</i> or <i>t</i> is being controlled		
	2^{nd} dB1 dep. on 1^{st} B1 for choosing h as the response variable		
	2 abi depi on i bi foi encosing <i>n</i> as the response variable		
(b)	B1 for a correct interpretation in context. Need mention of "exercise" plus a	unit of t	ime
	and "heart rate" or "beats" with a correct corresponding value. No need for t		
	(Just saying "increase of t by 1 means decrease of h by 0.43 is B0need words!)		
		,	
(c)	1^{st} B1 for 50 and 2^{nd} B1 for 72		
(d)	B1cso allow a correct expr' with all 4 numbers in the correct places without a con	nment	
(f)	1^{st} B1 for a reason. Allow t or time or 60 is within data or "interpolation".		
	"Its" is B0B0. If they say both $t = 60$ and $h = 67.7$ are within range th	en B0B()
	unless they later specify that t is intended or mention "interpolation"		
	2^{nd} dB1 dep. on 1^{st} B1, for saying it is reliable (o.e. e.g. "accurate")		
(m)	a 73 b 72		
(g)	1 st M1 for $\frac{a-73}{8} = z$ or $\frac{b-73}{8} = z$ with $ z > 1$, must be a z-value		
	6 6		0
	B1 for 1.96 seen and used as a z value. NB $1 - 1.96$ is not a z value and $2^{nd} dN_1$ deg on $1^{st} M_1$ for recurrencing to find a or $h - 72 + z + 8$	scores B	U
	2^{nd} dM1 dep. on 1^{st} M1 for rearranging to find <i>a</i> or <i>b</i> $73 \pm z \times 8$ A1 for both <i>a</i> = awrt 57.3 and <i>b</i> = awrt 88.7		
Ans only	A1 for both $a = awrt 57.3$ and $b = awrt 88.7$ Both values seen and correct then answer only scores 4/4		
Ans only	<u>bour</u> values seen and correct men answer only scores 4/4		

-			
6.	(a)	$\frac{1^2}{k} + \frac{2^2}{k} + \frac{3^2}{k} + \frac{4^2}{k} = 1$ Or verify $\frac{1^2}{30} + \frac{2^2}{30} + \frac{3^2}{30} + \frac{4^2}{30} = \frac{30}{30} = 1$	M1
		$\frac{30}{k} = 1$, so $k = 30$ *	A1cso
		ĸ	(2)
	(b)	$1 - P(X = 4), 1 - \frac{16}{30} = \frac{7}{15}$ (or exact equiv. e.g. $\frac{14}{30}$ or $0.4\dot{6}$)	M1, A1
		. . 1 4 9 16 10	(2)
	(c)	$\left[E(X) = \right] 1 \times \frac{1}{30} + 2 \times \frac{4}{30} + 3 \times \frac{9}{30} + 4 \times \frac{16}{30}, = \frac{10}{3} \text{ (or exact equiv. e.g. 3.3rec)} \right]$	M1, A1
			(2)
	(d)	$\left[E(X^2) = \right] 1^2 \times \frac{1}{30} + 2^2 \times \frac{4}{30} + 3^2 \times \frac{9}{30} + 4^2 \times \frac{16}{30}, = \frac{354}{30} (= 11.8)$	M1, A1
		Var(X) = E(X ²) - E(X) ² = $\frac{354}{30} - \left(\frac{100}{30}\right)^2$	M1
		$Var(X) = \frac{31}{45}$ (or exact equivalent e.g. $0.6\dot{8}$)	A1
			(4)
	(e)	E(Y) = 3E(X) - 1 (= 9) Var(Y) = 3 ² Var(X) (=6.2)	M1
		Var(X) = 5 Var(X) (=0.2) E(Y ²) = Var(Y) + E(Y) ² = 6.2 + 9 ² , = <u>87.2</u> (o.e. e.g. $\frac{436}{5}$)	M1 M1, A1
			(4)
			(4) (14 marks)
		Notes	``
	(a)	NotesM1for clear use of sum of probs. = 1 (Minimum is $k = 1 + 2^2 + 3^2 + 4^2$)A1for correct conclusion with no incorrect working seen	``
	(a) (b)	M1 for clear use of sum of probs. = 1 (Minimum is $k = 1 + 2^2 + 3^2 + 4^2$) A1 for correct conclusion with no incorrect working seen	``
	(b)	M1 for clear use of sum of probs. = 1 (Minimum is $k = 1 + 2^2 + 3^2 + 4^2$) A1 for correct conclusion with no incorrect working seen	``
	(b)	M1 for clear use of sum of probs. = 1 (Minimum is $k = 1 + 2^2 + 3^2 + 4^2$) A1 for correct conclusion with no incorrect working seen M1 for 1 – P (X=4) or P(X=1) + P(X=2) + P(X=3)	(14 marks)
	(b) (c)	M1 for clear use of sum of probs. = 1 (Minimum is $k = 1 + 2^2 + 3^2 + 4^2$) A1 for correct conclusion with no incorrect working seen M1 for 1 – P (X=4) or P(X=1) + P(X=2) + P(X=3) M1 for attempt at correct expression for E(X) (at least 3 correct products) 1 st M1 for attempt at correct expression for E(X ²) (at least 3 correct products) 1 st A1 for 11.8 o.e. may be implied by fully correct sol'n. Condone Var(X) = E(X 2 nd M1 for using Var(X) formula with correct substitution, may ft their E(X)	(14 marks) (14 marks) (14 marks) (14 marks) (14 marks) (14 marks) (14 marks) (14 marks)
	(b) (c) (d) (e)	M1 for clear use of sum of probs. = 1 (Minimum is $k = 1 + 2^2 + 3^2 + 4^2$) A1 for correct conclusion with no incorrect working seen M1 for 1 – P (X=4) or P(X=1) + P(X=2) + P(X=3) M1 for attempt at correct expression for E(X) (at least 3 correct products) 1 st M1 for attempt at correct expression for E(X ²) (at least 3 correct products) 1 st A1 for 11.8 o.e. may be implied by fully correct sol'n. Condone Var(X) = E(X 2 nd M1 for using Var(X) formula with correct substitution, may ft their E(X) If Var(X) < 0 score 2 nd M0	(14 marks) (14 marks) (14 marks) (14 marks) (14 marks) (14 marks) (14 marks) (14 marks)
ALT 1 Prob d	(b) (c) (d) (e)	M1for clear use of sum of probs. = 1 (Minimum is $k = 1 + 2^2 + 3^2 + 4^2$)A1for correct conclusion with no incorrect working seenM1for 1 - P (X=4) or P(X=1) + P(X=2) + P(X=3)M1for attempt at correct expression for E(X) (at least 3 correct products)1 st M1 for attempt at correct expression for E(X ²) (at least 3 correct products)1 st A1 for 11.8 o.e. may be implied by fully correct sol'n. Condone Var(X) = E(X2 nd M1 for using Var(X) formula with correct substitution, may ft their E(X1 st M1 for finding $y = 2$, 5, 8 and 11 (at least 3 correct)	(14 marks) (14 marks) (t) (t) (t) (t) (t) (t) (t) (t) (t) (t
	(b) (c) (d) (e)	M1 for clear use of sum of probs. = 1 (Minimum is $k = 1 + 2^2 + 3^2 + 4^2$) A1 for correct conclusion with no incorrect working seen M1 for 1 – P (X=4) or P(X=1) + P(X=2) + P(X=3) M1 for attempt at correct expression for E(X) (at least 3 correct products) 1 st M1 for attempt at correct expression for E(X ²) (at least 3 correct products) 1 st A1 for 11.8 o.e. may be implied by fully correct sol'n. Condone Var(X) = E(2) 2 nd M1 for using Var(X) formula with correct substitution, may ft their E(2) If Var(X) < 0 score 2 nd M0 1 st M1 for finding $y = 2$, 5, 8 and 11 (at least 3 correct) 2 nd M1 for a correct prob. distribution for Y so P(Y = 2) = $\frac{1}{30}$, P(Y = 5) =	(14 marks) $(14 marks)$ $(14$
Prob d	(b) (c) (d) (e)	M1 for clear use of sum of probs. = 1 (Minimum is $k = 1 + 2^2 + 3^2 + 4^2$) A1 for correct conclusion with no incorrect working seen M1 for 1 – P (X=4) or P(X=1) + P(X=2)+ P(X=3) M1 for attempt at correct expression for E(X) (at least 3 correct products) 1 st M1 for attempt at correct expression for E(X ²) (at least 3 correct product 1 st A1 for 11.8 o.e. may be implied by fully correct sol'n. Condone Var(X) = E(2 2 nd M1 for using Var(X) formula with correct substitution, may ft their E(2 1f Var(X) < 0 score 2 nd M0 1 st M1 for finding $y = 2, 5, 8$ and 11 (at least 3 correct) 2 nd M1 for a correct prob. distribution for Y so P(Y = 2) = $\frac{1}{30}$, P(Y = 5) = 3 rd M1 for E(Y ²) = (2) ² × $\frac{1}{30}$ + (5) ² × $\frac{4}{30}$ + (8) ² × $\frac{9}{30}$ + (11) ² × $\frac{16}{30}$ (at least	(14 marks) (14 marks)
Prob d	(b) (c) (d) (e) ist'n	M1 for clear use of sum of probs. = 1 (Minimum is $k = 1+2^2+3^2+4^2$) A1 for correct conclusion with no incorrect working seen M1 for 1 – P (X=4) or P(X=1) + P(X=2)+ P(X=3) M1 for attempt at correct expression for E(X) (at least 3 correct products) 1 st M1 for attempt at correct expression for E(X ²) (at least 3 correct product) 1 st A1 for 11.8 o.e. may be implied by fully correct sol'n. Condone Var(X) = E(X) 2 nd M1 for using Var(X) formula with correct substitution, may ft their E(X) 1 st M1 for finding $y = 2$, 5, 8 and 11 (at least 3 correct) 2 nd M1 for a correct prob. distribution for Y so P(Y = 2) = $\frac{1}{30}$, P(Y = 5) = $\frac{3^{rd}}{30}$ M1 for E(Y ²) = $(2)^2 \times \frac{1}{30} + (5)^2 \times \frac{4}{30} + (8)^2 \times \frac{9}{30} + (11)^2 \times \frac{16}{30}$ (at least 1 st M1 attempt correct expression e.g. E($aX^2 + bX + c$) for any <i>a</i> , <i>b</i> and <i>c</i>	(14 marks) (14 marks)
Prob d	(b) (c) (d) (e) ist'n	M1 for clear use of sum of probs. = 1 (Minimum is $k = 1+2^2+3^2+4^2$) A1 for correct conclusion with no incorrect working seen M1 for 1 – P (X=4) or P(X=1) + P(X=2)+ P(X=3) M1 for attempt at correct expression for E(X) (at least 3 correct products) 1 st M1 for attempt at correct expression for E(X ²) (at least 3 correct product) 1 st A1 for 11.8 o.e. may be implied by fully correct sol'n. Condone Var(X) = E(X) 2 nd M1 for using Var(X) formula with correct substitution, may ft their E(X) 1 st M1 for finding $y = 2$, 5, 8 and 11 (at least 3 correct) 2 nd M1 for a correct prob. distribution for Y so P(Y = 2) = $\frac{1}{30}$, P(Y = 5) = $\frac{3^{rd}}{30}$ M1 for E(Y ²) = $(2)^2 \times \frac{1}{30} + (5)^2 \times \frac{4}{30} + (8)^2 \times \frac{9}{30} + (11)^2 \times \frac{16}{30}$ (at least 1 st M1 attempt correct expression e.g. E($aX^2 + bX + c$) for any <i>a</i> , <i>b</i> and <i>c</i>	(14 marks) (14 marks)

7. (a)	$P(W > 92) = P(Z > \frac{92 - 99}{3.6})$	M1	
	= P(Z > -1.94) or P(Z < 1.94) = 0.9738 awrt 0.974	A1 A1	
		(3)	
(b)	P(W < k) = 3P(W > k) so $P(W < k) = 0.75$ or $P(W > k) = 0.25$	B1	
	$\frac{k - 99}{3.6} = 0.67$	M1 B1	
	(<u>k=)101.4</u>	A1cao	
(c)	k is the upper quartile	(4) B1	
		(1)	
(d)			
	$\frac{116 - 120}{\sigma} = -0.8416$ $\sigma = 4.7528517$ awrt <u>4.75</u>	M1 B1	
	σ $\sigma = 4.7528517$ awrt <u>4.75</u>	A1	
		(3)	
		(11 marks)	
	Notes		
(a)	 M1 for standardising with 92, 99 and 3.6 1st A1 for either correct probability statement and <i>z</i> awrt <u>+</u> 1.94(may be seen as a correct shading on a diagram). 2nd A1 for awrt 0.974 		
NB			
(b) NB			
Ans. only	If z value not given and a value in [101.41, 101.43] is seen score B1M1B1 otherwise B1M1B0 for awrt 101.4 (and A1 when 101.4 given as final answer)		
(c)	B1 for Upper quartile (allow $Q_3 \text{ or third quartile } \underline{\text{or } 75^{\text{th}} \text{ percentile}}$)		
(d)	 M1 for an attempt to standardise and set equal to ± a z-value in 0.8~0.9 B1 for ± 0.8416 or better (calc gives 0.84162123). Value must be <u>used</u> as a z value NB 0.84 scores B0 but see SC A1 for awrt 4.75 following from an equation with compatible signs 		
SC	If they use $z = 0.84$ and get an answer of awrt 4.76 (with correct working) score M1B0A1		

www.yesterdaysmathsexam.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE