

Question	Scheme	Marks	AOs
3(a)	(Discrete) uniform (distribution)	B1	1.2
		(1)	
(b)	$\mathrm{B}(28,0.2)$	B1	3.3
(i)	$\mathrm{P}(X \geq 7)=1-\mathrm{P}(X \leq 6)[=1-0.6784 \ldots]$	M1	3.4
	awrt 0.322	A1	1.1b
(ii)	$\mathrm{P}(4 \leq X<8)=\mathrm{P}(X \leq 7)-\mathrm{P}(X \leq 3)[=0.818 \ldots-0.160 \ldots]$	M1	3.1 b
	awrt $\underline{0.658}$	A1	1.1b
		(5)	
(6 marks)			
Notes			
(a)	Continuous uniform is B0		
(b)	$\mathbf{B 1}$: for identifying correct model, $\mathrm{B}(28,0.2)$ allow B, bin or binomial may be implied by one correct answer or sight one correct probability i.e. awrt 0.678 , awrt 0.818 or awrt 0.160 $\mathrm{B}(0.2,28)$ is B 0 unless it is used correctly		
(i)	M1: Writing or using $1-\mathrm{P}(X \leq 6)$ or $1-\mathrm{P}(X<7)$ A1: awrt 0.322 (correct answer only scores M1A1)		
(ii)	M1: Writing or using $\mathrm{P}(X \leq 7)-\mathrm{P}(X \leq 3)$ or $\mathrm{P}(X<8)-\mathrm{P}(X<4)$ or $\mathrm{P}(X=4)+\mathrm{P}(X=5)+\mathrm{P}(X=6)+\mathrm{P}(X=7)$ Condone $\mathrm{P}(4)$ as $\mathrm{P}(X=4)$, etc. A1: awrt 0.658 (correct answer only scores M1A1)		

Question	Scheme	Marks	AOs
5(a)	The alternative hypothesis should be $\mathrm{H}_{1}: p>0.15$	B1	2.5
	The calculation of the test statistic should be $\mathrm{P}(X \geq 8)$ [= 0.0698]	B1	2.3
		(2)	
(b)	These will affect the conclusion (as the null hypothesis should not be rejected) since $\mathrm{P}(X \geq 8)[=0.0698]$ is greater than 0.05	B1	2.4
		(1)	
(c)	$\mathrm{P}(X \leq 8)=0.9722 \ldots>0.95$ or $\mathrm{P}(X \geq 9)=0.0277 \ldots<0.05$	M1	2.1
	CR: $\{X \geq 9\}$	A1	1.1b
		(2)	
(d)	awrt 0.0278	B1ft	1.1b
		(1)	
(6 marks)			
Notes			
(a)	B1: Identifying that \geq should be $>$ in the alternative hypothesis B1: Identifying that $\mathrm{P}(X=8)$ should be $\mathrm{P}(X \geq 8)$ Stating $\mathrm{P}(X=8)$ is incorrect on its own is insufficient Check for errors identified and corrected next to the question		
(b)	B1: Will affect conclusion and correct supporting reason		
(c)	M1: For use of tables to find probability associated with critical value $[\mathrm{P}(X \leq 8)$ or $\mathrm{P}(X \geq 9)$ with $\mathrm{B}(30,0.15)$ (may be implied by either correct probability awrt 0.97 or awrt 0.03) or by the correct CR] A1: $\quad[30 \geq] X \geq 9$ o.e. e.g. $X>8$ Allow ' 9 or more' or ' $\mathrm{CR} \geq 9$ '		
(d)	B1ft: awrt 0.0278 (allow awrt 2.78\%) or correct ft their one-tailed upper CR from $\mathrm{B}(30,0.15)$ to 3 s.f.		

Question		Scheme	Marks	AOs
5(a)		Let $C=$ the number of successful calls. $C \square \mathrm{~B}\left(9, \frac{1}{6}\right)$	M1	3.3
		$\mathrm{P}(C \geq 3)=1-\mathrm{P}(C \leq 2)=0.1782 \ldots \quad$ awrt 0.178	A1	1.1b
			(2)	
(b)		Let $X=$ the number of occasions when at least 3 calls are successful. $\mathrm{P}(X=1)=5 \times(" 0.1782 \ldots . . ") \times(" 0.8217 \ldots . . .)^{4}$	M1	1.1 b
		$=0.4061 \ldots$ awrt 0.406	A1	1.1b
			(2)	
(c)		$\mathrm{H}_{0}: p=\frac{1}{6} \quad \mathrm{H}_{1}: p>\frac{1}{6}$	B1	2.5
		Let $R=$ the number of successful calls $R \square \mathrm{~B}\left(35, \frac{1}{6}\right)$	M1	3.3
		$\mathrm{P}(R \geq 11)=1-\mathrm{P}(R \leq 10)=0.02 \ldots$	A1	3.4
		There is sufficient evidence to support that Rowan has more successful sales calls than Afrika.	A1	2.2b
			(4)	
(8 marks)				
Notes				
5(a)	M1:	For selecting the right model		
	A1:	awrt 0.178		
(b)	M1:	For $5 \times($ "their $(a) ") \times(\text { " } 1-\text { their }(a) ")^{4}$		
	A1:	awrt 0.406		
(c)	B1:	for correctly stating both hypotheses in terms of p or π Accept $p=0.1 \dot{6}$		
	M1:	For selecting a suitable model. May be implied by a correct probability or CR		
	A1:	Correct probability statement and answer of 0.02 or better ($0.02318 \ldots$) (CR $R \geq 11$ and either $\mathrm{P}(R \leq 9)=0.9450$ or $\mathrm{P}(R \leq 10)=0.9768$ or $1-\mathrm{P}(R \leq 10)=0.0232)$		
	A1:	Dependent on M1A1 but can ignore hypotheses. For conclusion in context supporting Rowan's belief / Rowan is a better sales person		
		Do not accept Rowan can reject H_{0}		

Question	Scheme	Marks	AOs
5(a)	$\mathrm{P}(X \geqslant 16)=1-\mathrm{P}(X \leqslant 15)$	M1	1.1b
	$=1-0.949077 \ldots=$ awrt $\underline{0.0509}$	A1	1.1b
		(2)	
(b)	$\mathrm{H}_{0}: p=0.3 \quad \mathrm{H}_{1}: p \neq 0.3 \quad$ (Both correct in terms of p or π)	B1	2.5
		(1)	
(c)	$\begin{aligned} & {[Y \sim \mathrm{~B}(20,0.3)] \text { sight of } \mathrm{P}(Y \leqslant 2)=0.0355} \\ & \text { or } \mathrm{P}(Y \leqslant 9)=0.9520 \end{aligned}$	M1	2.1
	Critical region is $\{Y \leqslant \mathbf{2}\}$ or (o.e.)	A1	1.1b
	$\{Y \geqslant \mathbf{1 0}\}$	A1	1.1b
		(3)	
(d)	$[0.0355+(1-0.9520)]=0.0835$ or $\underline{\mathbf{8 . 3 5 \%}}$	B1 ft	1.1b
		(1)	
(e)	(Assuming that the 20 customers represent a random sample then) 12 is in the CR so the manager's suspicion is supported	B1ft	3.2a
		(1)	
(f)	e.g. (e) requires the 20 customers to be a random sample or independent and the members of the scout group may invalidate this so binomial distribution would not be valid (and conclusion in (e) is probably not valid)	B1	3.5a
		(1)	
(9 marks)			

Question Number	Scheme			Marks
2(a)	Only 2 outcomes Heads and Tails oe			
	Constant probability of spinning a Head/Tail oe			
	Coin is spun a fixed number of times oe			
	Each spin of the coin is independent oe			B1 B1
				(2)
(b)	$T \sim \mathrm{~B}(6,0.5)$			
	$\mathrm{P}(T \leq 5)-\mathrm{P}(T \leq 4)=0.9844-0.8906$ or $6\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)$ oe			M1
	$=0.09375 \text { or } \frac{3}{32} \text { oe } \quad \text { awrt } 0.0938$			A1
				(2)
(c)	$\mathrm{P}(T=4,5,6)=1-\mathrm{P}(T \leq 3)$			M1
	$=1-0.6563$			
		$=0.3437$ or $\frac{11}{32}$	awrt 0.344	A1
				(2)
(d)	$\mathrm{P}(H=3,4,5,6)=1-\mathrm{P}(H \leq 2)$			B1M1d
	$=1-0.8306$			
	$=0.1694 \text { or } \frac{347}{2048}$		awrt 0.169	A1
				(3)
	Notes			Total 9
(a)	B1 A correct statement - does not need to be in context B1 A second correct statement in context include coin or heads or tails(do not allow H and T) or spins/flip oe.			
(b)	M1 [writing or using $\mathrm{B}(6,0.5)$ and writing or using $\mathrm{P}(T \leq 5)-\mathrm{P}(T \leq 4)$] or [6 $\left(\frac{1}{2}\right)^{6}$ oe]			
(c)	M1 for realising they need find $\mathrm{P}(T=4,5$ or 6$)$ eg $1-\mathrm{P}(T \leq 3)$ or $\mathrm{P}(T \geq 4)$			
(d)		writing/using $\mathrm{B}(6,0.25)$ and $\mathrm{P}(H \geq 3)$ oe	writing/using $\mathrm{B}(6,0.75)$ and $\mathrm{P}(T \leq 3)$	
		dep on B 1 for $1-\mathrm{P}(H \leq 2)$	$\begin{aligned} & \text { dep on B1 } \\ & \begin{aligned} (0.25)^{6}+6 & (0.75)(0.25)^{5} \\ \quad+ & 15(0.75)^{2}(0.25)^{4}+20(\end{aligned} \end{aligned}$	$0.75)^{3}(0.25)^{3}$
	A1 NB NB	Only accept correct use of H and T in the probability statement unless their variable is correctly defined awrt 0.169 with no incorrect working gains B1M1A1		

June 2017 WST02 STATISTICS 2
 Mark Scheme

Question Number	Scheme	Marks
6.	Let $X=$ the number of seeds that germinate	
	Let $Y=$ the number of seeds that don't germinate. $x_{\text {obs }}=66, y_{\text {obs }}=9$	
	$\mathrm{H}_{0}: p=0.96, \mathrm{H}_{1}: p<0.96$ or $\mathrm{H}_{0}: p=0.04, \mathrm{H}_{1}: p>0.04$ or $\mathrm{H}_{0}: \lambda=3, \mathrm{H}_{1}: \lambda>3$	B1 B1
	$\{Y \sim \operatorname{Bin}(75,0.04)$ approximates to $\} Y \sim \operatorname{Po}(3)$	B1
		M1
	$=1-0.9962$	
	$=0.0038 \quad$ CR: $Y \geqslant 9$	A1
	$\{0.0038<0.01\}$	
	Reject H_{0} or significant or 9 lies in the CR	dM1
	Either - There is evidence that the producer has overstated the probability/percentage/proportion/number of bean seeds that germinate. - Producer's claim is not true. - There is evidence that the producer has understated the probability/percentage/proportion/number/ of bean seeds that don't germinate.	A1 cso
		[7]
		7
	Notes	
	$\mathbf{1}^{\text {st }} \mathbf{B 1}$ for $\mathrm{H}_{0}: p=0.96$ or $\mathrm{H}_{0}: p=0.04$ or $\mathrm{H}_{0}: /=3$ $\mathbf{2}^{\text {nd }} \mathbf{B 1}$ for $\mathrm{H}_{0}: p=0.96$ and $\mathrm{H}_{1}: p<0.96$ or $\mathrm{H}_{0}: p=0.04$ and $\mathrm{H}_{1}: p>0.04$ or $\mathrm{H}_{0}: /=3$ and $\mathrm{H}_{1}: />3$ $\mathbf{3}^{\text {rd }} \mathbf{B 1} \quad \mathrm{Po}(3)$ seen or implied $\mathbf{1}^{\text {st }}$ M1 for writing or using $1-\mathrm{P}(Y \leqslant 8)$ or giving $\mathrm{P}(Y \leqslant 7)=0.9881$ or $\mathrm{P}(Y \geqslant 8)=0.0119$ for a CR method (may be implied by probability $=0.0038$ or correct CR) $\mathbf{1}^{\text {st }} \mathbf{A 1}$ for 0.0038 or CR: $Y \geqslant 9$ $\mathbf{2}^{\text {nd }} \mathbf{M 1}$ Dependent on the $1^{\text {st }}$ M1. For a correct statement i.e. significant/reject $\mathrm{H}_{0} / 9$ is in CR Follow through their probability/ CR and their H_{1} May be implied by a correct contextual statement. Ignore comparison of probability with the significance level. Do not allow non-contextual conflicting statements. $\mathbf{2}^{\text {nd }} \mathbf{A 1} \mathbf{c s o}$ fully correct solution and correct contextual statement	
	B1 B1 Correct hypotheses (same mark scheme as above) B0 $\mathrm{N}(72,2.88)$ M1 $\frac{ \pm(66.5-72)}{\sqrt{2.88}}(= \pm 3.24)$ A0 awrt 0.0006 dM1 A0cso (same mark scheme as above)	

Question Number	Scheme	Marks
2(a) (b) (c)	List of all the customers (who eat in the restaurant)	B1 (1)
	Customer(s) (who ate in the restaurant)	B1 (1)
	Advantage: more/total accuracy, unbiased	B1
	Disadvantage: time consuming to obtain data and analyse it, expensive, difficult to ensure entire population is included	B1 (2)
(d)	$\mathrm{H}_{0}: p=0.3 \quad \mathrm{H}_{1}: p>0.3$	B1
	$X \sim \mathrm{~B}(50,0.3)$	M1
	$\mathrm{P}(X \geqslant 20)=1-\mathrm{P}(X \leqslant 19) \quad$ or $\quad \mathrm{CR} \mathrm{P}(X \leqslant 20)=0.9522$	M1
	$=1-0.9152 \quad \mathrm{P}(X \geqslant 21)=0.0478$	
	$=0.0848 \quad X \geqslant 21$	A1
	Do not reject $\mathrm{H}_{0} /$ not significant $/ 20$ is not in critical region	M1
	The percentage of customers who would like more choice on the menu is not more than Bill believes. or There is no evidence to reject Bill's belief.	
		A1cso
		(6)
		Total (10)
Notes		
(a)	B1 Need the idea of list/register/database and 'customer(s)' Do not allow customer's opinions. 'All' may be implied. Do not allow a partial list e.g. 'A list of 50 customers'	
(b)	B1 customer(s)	
(c)	If not labelled, assume the response refers to a census. $1^{\text {st }} \mathrm{B} 1$ is for the advantage and $2^{\text {nd }} \mathrm{B} 1$ is for the disadvantage.	
(d)	B1 need both hypotheses with p	
	M1 for $1-\mathrm{P}(X \leqslant 19)$ or	
	M1 a correct conclusion for their probability. May be implied by a correct contextual conclusion. A1 a correct contextual conclusion for their hypotheses and a fully correct solution with no errors seen. Must mention 'customers' and 'choice' or 'Bill' and 'belief'.	
	NB P $(X=20)$ can score B1M1M0A0M0A0	

