Qu	Scheme	Marks	AO
4. (a)	[R = no. of red beads in Aliya's bracelet] $R \sim B(18, 0.14)$	B1	3.3
		(1)	
(b)(f)			
(D)(I)	P(R = 1) = 0.19403 awrt 0.194	B1	1.1b
(ii)	$P(R \ge 4) = 1 - P(R \le 3) = 1 - [0.76184]$	M1	3.4
	= 0.2381588 awrt <u>0.238</u>	A1	1.1b
		(3)	
(c)	Requires $p = 0.14$ to be constant so need a large number of beads in the		
	sack to ensure that removing 18 beads does not appreciably affect this	B1	3.5b
	probability, then it could be suitable.	(1)	
(d)	$H_1: n = 0.14$ $H_1: n \neq 0.14$	R1	2.5
	[X - number of red beads in the sample] X ~ B(75, 0.14)	M1	33
	$P(X \le 4) = 0.01506$ or if B(75, 0.14) seen awrt 0.02	A1	3.4
	$\{0.02 < 0.025 \text{ so significant } \underline{\text{or}} \text{ reject } H_0 \}$	A 1	2.21
	There is evidence that the proportion of red beads has changed	AI	2.20
		(4)	1 11
(e)	<i>p</i> -value is $2 \times 0.01506 = 0.030123 = awrt 0.03$	Blft	1.1b
		(1)	
		(10 marks	5)
	Notes		
(a)	B1 for B(18, 0.14) accept in words e.g. <u>binomial</u> with $n = 18$ and $p = 0.1$	<u>4</u>	
$(\mathbf{L})(\mathbf{C})$	D1 for example 0.104		
(D)(I) (ii)	B1 10f dwft 0.194 M1 for interpreting "at least 4" Need 1 – P($R \le 3$) and 1 – $n[0 < n < 1]$ F	P(R-3) = 0	233 OK
(11)	A1 for awrt 0.238	(n - 3) = 0	.235 OK
(c)	B1 for mention of <u>large number of beads</u> and need for $p = 0.14$ to be con	<u>stant</u> for it t	o be
	suitable. Do NOT accept e.g. "events are independent"		
(d)	B1 for both hypotheses correct with use of p or π M1 for selecting a suitable model; sight or correct use of P(75, 0, 14)		
	May be implied by sight of 0.015 or better or $[P(X > 4) =]$ 0.9849.	. i.e. 0.985	or better
	1 st A1 for use of the correct model awrt 0.015 (accept awrt 0.02 following	a correct ex	xpression)
	Allow 1st A1 for awrt 0.985 only if correct comparison with 0.975	is seen.	-
	Sight of B(75, 0.14) and P($X \le 4$) = awrt 0.02 scores M1A1		
	<u>No sight of B(75, 0.14) but sight of awrt 0.015 scores M1(\Rightarrow)A1[C</u>	ondone $P(X)$	= 4) =]
	2 AT (uep on MIAI) for a correct conclusion in context mentioning pi	oportion , " "el	neu anu nanged"
	If there is a statement about H_0 or significance it must be compatib	le.	langea
NB	May see CR i.e. $X \leq 4$ (mark when prob seen) and $X \geq 18$ (prob = 0.0140	б) Ignore u	ipper
	limit		
	NB for information $P(X = 4) = 0.0104$ and can only score M1A0A	A0 if B(75, 0).14) seen
(n)	Bift for swrt 0.03 Allow ft of their probability in (d) provided at least 200	fused	
(6)	NB an answer of 0.02 in (d) leading to 0.04 in (e) is B0	1 4554	
SC	Use of CR will give significance level of $0.01506+0.01406=0$.	029 score	B1 no ft

Qu	Scheme	Marks	AO	
3 (a)	Let $N =$ the number of games Naasir wins $N \sim B(15, \frac{1}{3})$	M1	3.3	
(i)	P(N=2) = 0.059946 awrt 0.0599	A1	1.1b	
(ii)	$P(N > 5) = 1 - P(N \le 5) = 0.38162$ awrt	A1	1.1b	
	0.382	(2)		
(h)	II in a lational	(3) B1	2.5	
(0)	$\Pi_0: p = \frac{1}{3}$ $\Pi_1: p > \frac{1}{3}$		2.5	
	Let $X =$ the number of games Naasir wins $X \sim B(32, \frac{1}{3})$	MI	3.3	
	$P(X \ge 16) = 1 - P(X \le 15) = 0.03765$ (< 0.05)	Al	3.4	
	[Significant result so reject H_0 (the null model) and conclude:] There is evidence to support Nassir's claim (o, e)	A1	3.5a	
	There is evidence to support reash is claim (0.c.)	(4)		
		(7 mark	(s)	
	Notes			
(a)	M1 for selecting a binomial model with correct n and p			
	Award for sight of B(15, $\frac{1}{3}$) (o.e. e.g. in words) or implied by	1 correct	t	
	answer			
	$2^{nd} \Delta 1$ for awrt 0.0599 (from a calculator). Allow 0.05995			
(b)	B1 for correctly stating both hypotheses in terms of p or π			
	Accept $p = 0.3$ or any exact equivalent. $H_1: p \ge \frac{1}{3}$ is B	0		
	M1 for selecting a suitable model to use for the test.			
	Award for sight of B(32, $\frac{1}{3}$) (o.e. e.g. in words) or implied by 0.03765			
	Can also allow M1 for $P(X \le 15) = 0.962$ or better or $P(X \le 14)$	= 0.922	or	
	better 1 [§] A 1 for use of the model to colculate on appropriate probabil	itu uning	oolo	
	Sight of $P(X \ge 16)$ and answer awrt 0.0377	ity using	calc.	
ALT	CR May use CR so award 1^{st} A1 for CR of $X \ge 16$ must have	ve seen so	me	
	probabilities though: 1 of $P(X \le 15) = 0.9623$ or $P(X \le 14) = 0$).9224 or		
	0.9223			
	2 nd A1 for conclusion in context that there is support for Naasir	's claim		
	Must mention "Naasir" or "his" and "claim" or "method	d" (o.e.)		
	or e.g. probability of winning a game is $> \frac{1}{3}$ or has included	reased		
	Dependent on M1 and 1 st A1 but can ignore hypotheses	but see be	elow	
	If you see $P(X \ge 16) = 0.0376$ followed by a correct contextual	ised conc	lusion	
~~~	then please award A0A1			
SC	Use of 0.3 for $\frac{1}{3}$			
	If used 0.3 instead of $\frac{1}{3}$ in (a) and score M0A0A0 can condone	use of 0.3	in (b)	
	$1^{\text{st}} \text{ A1 ft needs } P(X \ge 16) = 0.0138$			
	or CR of $X \ge 15$ and sight of 1 of $P(X \ge 15) = 0.0327$ or $P(X \ge 15) = 0.0327$	$K \ge 14) =$	=	
	0.0694			

Question	Scheme	Marks	AOs
<b>3(a)</b>	(Discrete) uniform (distribution)	B1	1.2
		(1)	
(b)	B(28, 0.2)	B1	3.3
(i)	$P(X \ge 7) = 1 - P(X \le 6) [= 1 - 0.6784]$	M1	3.4
	awrt <u>0.322</u>	A1	1.1b
(ii)	P(4 ≤ X < 8) = P(X ≤ 7) – P(X ≤ 3) [= 0.818 – 0.160]	M1	3.1b
	awrt <u>0.658</u>	A1	1.1b
		(5)	
(6 marks)			
	Notes		
<b>(a)</b>	Continuous uniform is B0		
(b)	<ul> <li>B1: for identifying correct model, B(28, 0.2)</li> <li>allow B, bin or binomial</li> <li>may be implied by one correct answer or sight one correct probability i.e.</li> <li>awrt 0.678, awrt 0.818 or awrt 0.160</li> <li>B(0.2, 28) is B0 unless it is used correctly.</li> </ul>		
(i)	M1: Writing or using $1 - P(X \le 6)$ or $1 - P(X < 7)$ A1: awrt 0.322 (correct answer only scores M1A1)		
(ii)	M1: Writing or using $P(X \le 7) - P(X \le 3)$ or $P(X < 8) - P(X < 4)$ or $P(X = 4) + P(X = 5) + P(X = 6) + P(X = 6)$ Condone $P(4)$ as $P(X = 4)$ , etc.	X = 7)	

Question	Scheme	Marks	AOs
<b>5</b> (a)	The alternative hypothesis should be $H_1$ : $p > 0.15$	B1	2.5
	The calculation of the test statistic should be $P(X \ge 8)$ [= 0.0698]	B1	2.3
		(2)	
(b)	These will affect the conclusion (as the null hypothesis should not be rejected) since $P(X \ge 8) [= 0.0698]$ is greater than 0.05	B1	2.4
		(1)	
(c)	$P(X \le 8) = 0.9722 > 0.95 \text{ or } P(X \ge 9) = 0.0277 < 0.05$	M1	2.1
	CR: $\{X \ge 9\}$	A1	1.1b
		(2)	
(d)	awrt <u>0.0278</u>	B1ft	1.1b
		(1)	
		(	6 marks)
	Notes		
(a)	<ul> <li>B1: Identifying that ≥ should be &gt; in the alternative hypothes</li> <li>B1: Identifying that P(X=8) should be P(X ≥ 8)</li> <li>Stating P(X=8) is incorrect on its own is insufficient</li> <li>Check for errors identified and corrected next to the question</li> </ul>	is tion	
(b)	B1: Will affect conclusion and correct supporting reason		
(c)	M1: For use of tables to find probability associated with criti or $P(X \ge 9)$ with B(30, 0.15) (may be implied by either correct 0.97 or awrt 0.03) or by the correct CR] A1: $[30\ge]X\ge 9$ o.e. e.g. $X>8$ Allow '9 or more' or 'CR $\ge 9$ '	cal value [ et probabili	$P(X \le 8)$ ty awrt
(d)	<b>B1ft:</b> awrt 0.0278 (allow awrt 2.78%) or correct ft their one-tailed upper CR from B(30, 0.15) to 3s.ft	<b>B1ft:</b> awrt 0.0278 (allow awrt 2.78%) or correct ft their one-tailed upper CR from B(30, 0.15) to 3s.f.	

Que	stion	Scheme	Marks	AOs
5	(a)	Let <i>C</i> = the number of successful calls. $C \square B\left(9, \frac{1}{6}\right)$	M1	3.3
		$P(C \ge 3) = 1 - P(C \le 2) = 0.1782$ awrt 0.178	A1	1.1b
			(2)	
(b)		Let X = the number of occasions when at least 3 calls are successful. $P(X=1) = 5 \times ("0.1782") \times ("0.8217")^{4}$	M1	1.1b
		= 0.4061 <b>awrt 0.406</b>	A1	1.1b
			(2)	
	( <b>c</b> )	$H_0: p = \frac{1}{6}$ $H_1: p > \frac{1}{6}$	B1	2.5
		Let <i>R</i> = the number of successful calls $R \square B\left(35, \frac{1}{6}\right)$	M1	3.3
		$P(R \ge 11) = 1 - P(R \le 10) = 0.02$	A1	3.4
		There is sufficient evidence to support that <b>Rowan</b> has more successful sales calls than Afrika.	Al	2.2b
			(4)	
			(8	marks)
<b>5</b> ()	3/11	Notes		
<b>5(a)</b>		For selecting the right model		
	AI:	awrt 0.1/8		
(b)	M1:	For $5 \times ("\operatorname{their}(a)") \times ("1 - \operatorname{their}(a)")$		
	A1:	awrt 0.406		
(c)	B1:	for correctly stating both hypotheses in terms of p or $\pi$ Accept $p = 0.16$		
	M1:	For selecting a suitable model. May be implied by a correct probability or	CR	
	A1: Correct probability statement and answer of 0.02 or better (0.02318) (CR $R \ge 11$ and either P( $R \le 9$ ) = 0.9450 or P( $R \le 10$ ) = 0.9768 or 1 - P( $R \le 10$ ) = 0.0		0232)	
	A1: Dependent on M1A1 but can ignore hypotheses. For conclusion in context supporting Rowan's belief / Rowan is a better sales person			g
		Do not accept Rowan can reject H ₀		

Question	Scheme	Marks	AOs
5(a)	$P(X \ge 16) = 1 - P(X \le 15)$	M1	1.1b
	= 1 - 0.949077 = awrt <u>0.0509</u>	A1	1.1b
		(2)	
(b)	$H_0: p = 0.3$ $H_1: p \neq 0.3$ (Both correct in terms of p or $\pi$ )	B1	2.5
		(1)	
(c)	$[Y \sim B(20, 0.3)]$ sight of $P(Y \le 2) = 0.0355$ or $P(Y \le 9) = 0.9520$	M1	2.1
	Critical region is $\{Y \leq 2\}$ or (o.e.)	A1	1.1b
	$\{ Y \ge 10 \} \tag{o.e.}$	A1	1.1b
		(3)	
(d)	[0.0355 + (1 - 0.9520)] = 0.0835 or <u>8.35%</u>	B1ft	1.1b
		(1)	
(e)	(Assuming that the 20 customers represent a random sample then) 12 is in the CR so the manager's suspicion is supported	B1ft	3.2a
		(1)	
(f)	e.g. (e) requires the 20 customers to be a random sample or independent and the members of the scout group may invalidate this so binomial distribution would not be valid (and conclusion in (e) is probably not valid)	B1	3.5a
		(1)	
		(9 n	narks)

Question Number		Schen	ıe	Marks
2(a)	Only 2	outcomes Heads and Tails oe		
	Consta	nt probability of <b>spinning</b> a <b>Head</b> /	Tail oe	
	Coin is	spun a fixed number of times oe		
	Each sp	oin of the coin is independent oe		B1 B1
				(2)
(b)	$T \sim B(6)$	5, 0.5)		
	$P(T \le 5)$	$-P(T \le 4) = 0.9844 - 0.8906$	or $6\left(\frac{1}{2}\right)^5\left(\frac{1}{2}\right)$ oe	M1
		$= 0.09375 \text{ or } \frac{3}{32} \text{ oe}$	awrt 0.0938	A1
				(2)
(c)	P(T=4	$(5,6) = 1 - P(T \le 3)$		M1
		= 1 - 0.6563		
		$= 0.3437$ or $\frac{11}{1}$	awrt 0.344	A1
		32		
	D(U-2)	P(4,5,c) = 1 $P(11,c,2)$		(2)
(d)	P(H = 2)	$5,4,5,6) = 1 - P(H \le 2)$		BIMId
		= 1 - 0.8306		
		$= 0.1694 \text{ or } \frac{347}{3}$	awrt 0.169	A1
		2048		
		Note	~	
(a)	B1 A c	Note prrect statement – does not need to	be in context	1 otal 9
(a)	BIA Se	econd correct statement in context	include coin or heads or tails(do not al	low H and T )
	or spins	s/flip oe.		
	1	1	(1	$)^{6}$
(b)	M1 [wr	iting or using B(6, 0.5) <b>and</b> writin	g or using $P(T \le 5) - P(T \le 4)$ ] or $[6] -\frac{1}{2}$	-   oe]
(c)	M1 for	realising they need find $P(T = 4, 5)$	or 6) eg $1 - P(T \le 3)$ or $P(T \ge 4)$	
		writing/using B(6, 0.25) and		
(d)	B1	$P(H \ge 3)$ oe	writing/using B(6, 0.75) and P( $T \leq 2$	3)
			dep on B1	
	M1d	dep on B1 for $1 - P(H < 2)$	$(0.25)^6 + 6(0.75)(0.25)^5$	
	witu		$(1, 2, 2, 3)^{4}$	$(0, 75)^3 (0, 75)^3$
			+15(0.75)(0.25)+20(0.25)	(0.75)(0.25)
	A1	awrt 0.169	awrt 0.169	
	NB	Only accept correct use of H and	T in the probability statement unless t	heir variable is
	NR	awrt 0 169 with no incorrect wor	king gains B1M1A1	

## June 2017 WST02 STATISTICS 2 Mark Scheme

Question	Scheme	Marks
1.(a)	$X \sim \operatorname{Po}(\frac{1}{4})$	B1
	$P(X=0) = e^{-\frac{1}{4}} = 0.778800$ awrt <u>0.779</u>	B1
		(2)
(b)	$[(P(X > 1))^3] = (1 - (0.7788)^3 = 0.010823$	Μ1 Δ1
(0)	$[(1(X \ge 1))]$ $(1 \ 0.7700)$ $0.010025$ $awit 0.0100$	(2)
	V D/7 0 7700 )	D10
(C)	$P(Y = 5) = 7C5 (0.7788)^{5} (1 - 0.7788)^{2} = 0.294386$ awrt <b>0.294</b>	M1 A1
		(3)
(4)		D1
(u)	H ₀ : $\mu = 8$ or $\lambda = 0.25$ H ₁ : $\mu < 8$ or $\lambda < 0.25$	ы (1)
		(1)
(e)	$W \sim Po(8)$	B1
	$P(W \le 3) = 0.0424 \ (< 0.05)$ $P(W \le 4) = 0.0006 \ (> 0.05)$	MI
	$\Gamma(W \ge 4) = 0.0990 (> 0.03)$ Largest possible value of f is 3	A1
		(3)
	Notos	Total 11
(a)	$1^{\text{st}}$ B1 for writing or using Po( $\frac{1}{2}$ ) May be implied by a correct answer or by awrt	0 78
(b)	M1 for $(1-0.779)^3 \text{ or } (1-\text{'their (a)'})^3$	
(c)	B1ft for writing or using B(7, 'their a'). May be implied by M1 scored.	
	M1 for a correct binomial expression for P(Y = 5) (ft their value of p). Allow $\begin{pmatrix} 7 \\ 2 \end{pmatrix}$	etc or 21
	(2)	
	May be implied by the correct answer but if $p \neq 0.779$ of better we must see e	expression
ALT	They may use $W \sim B(7, "1 - \text{their (a)"})$ for B1ft then $P(W=2)$ for the M1	
(d)	B1 for both hypotheses correct. Must use $\lambda$ or $\mu$ for either 8 or 0.25 [Use of $\leq$	≤ is B0]
	If (d) is blank but correct hypotheses are seen in (e) can award retrospectively	BUT if
	hypotheses are given in (d) and (e) award this mark for answer in (d).	
(e)	B1 for writing Po(8) can be awarded if seen in (d) (may be implied e.g. by scorin	g M1)
	M1 for using Po(8) to find a lower-tail critical region	0)
	Need to see one of the given probability statements or implied by Po(8) and $f$	= 3 seen.
	A1 for $[f] = 3$ but allow $f \le 3$ Correct answer only scores $3/3$	

Question Number	Scheme	Marks
<b>3.</b> (a)	$P(X \le 7) = 0.8883 \text{ or } P(X \le 8) = 0.9644 \text{ or } P(X \ge 8) = 0.1117 \text{ or } P(X \ge 9) = 0.0356$	M1
	Critical Region is $X \ge 9$ (o.e.)	A1
(b) (c)	(1 - 0.9644=) 0.0356 [NB Calculator gives: 0.03557486] Reject H ₀ /Significant <u>or</u> value of <i>p</i> is > 0.45	(2) B1cao (1) B1ft
		(1)
(d)(1) (ii)	Conclusion would not change as $H_0$ would still be rejected	BI B1
(II)	Conclusion would change as 110 would not be rejected	DI
		(2)
		[6]
	Notes	
(a)	M1 for one of these 4 probabilities - may be implied by a correct critical region A1 for $X \ge 9$ (allow $X > 8$ ) (o.e.) e.g. [9, 12], {9, 10, 11, 12} etc Ans. only 2/2 NB Must be $X \ge 9$ for A1, do not award for just seeing P( $X \ge 9$ )	
(b)	B1 for 0.0356 or better	
(c)	B1f ft their critical region in (a) Must say "reject" and "H ₀ " No contradictory state Just saying "9 is not in the critical region" is <u>not</u> enough Allow a restart i.e. calculating $P(X \ge 9) = 0.0356 < 0.05$ so significant	ements
	If they score B0 in (c) then score B0B0 in (d)	
( <b>d</b> )	In (c) they reject $H_0$ In (c) they accept $H_0$	
(i)	B1 for "No", "no change", "significant" etc B0 whatever they say	
(ii)	B1 for "Yes", "do not reject $H_0$ " etc B1 for "no change" or "do not reje	ct H ₀ " etc
CR	(i) NB new CR is $X \ge 9$ but can treat any incorrect mention of CR as ISW (ii) NB new CR is $X \ge 10$ but can treat any incorrect mention of CR as ISW	

Question Number	Scheme	Marks
5. (a)(i)	$H_0: p = 0.35$ $H_1: p \neq 0.35$	B1
(ii)	B(15,0.35)	M1
	$CR  X \le 1 \cup X \ge 10 \qquad (Allow any letter)$	A1A1
		(4)
(b)	8 is not in CR	M1
	There is evidence that the Company's <u>claim</u> is true	A1ft
		(2)
(c)	0.0142 + 0.0124 = 0.0266	B1
		(1)
		[7]
	Notes	
(a) (i)	B1 both hypotheses correct. Must mention $p$ (or $\pi$ ). Words only is B0	
(ii)	M1 Writing B(15,0.35) May be implied by e.g. $P(X \le 1) = 0.0142$ or $P(X \le 9)$	) = 0.9876
	1 st A1 $X \le 1$ (accept $X < 2$ ) Allow $0 \le X \le 1$ but P( $X \le 1$ ) is A0	
	$2^{nd} A1  X \ge 10 \text{ (accept } X > 9) \text{ Allow } 10 \le X \le 15 \text{ but } P(X \ge 10) \text{ is } A0$	
	Either correct answer will imply M1	
(b)	M1 for a reason that matches their CR. "Interpret" their CR of $P(X \ge 10)$ as	$X \ge 10$ etc
	Allow calculation of $P(X \ge 8) = 1 - 0.8868 = 0.1132$ and "not sig" comm	nent
	Do not allow contradictory remarks e.g. 8 is not in CR so significant (thi	s gets M0)
	A1ft for a conclusion correct for their CR in context	
	Must mention "claim" or "peas" and "germinating"	
	NB A correct contextual claim on its own scores M1A1	
(c)	B1 for 0.0266 or awrt 0.0266 (calc gives 0.02662196)	

Question Number	Scheme	Marks
6.	Let $X =$ the number of seeds that germinate	
	Let Y = the number of seeds that don't germinate. $x_{obs} = 66$ , $y_{obs} = 9$	
	$H_0: p = 0.96$ , $H_1: p < 0.96$ or $H_0: p = 0.04$ , $H_1: p > 0.04$ or $H_0: \lambda = 3$ , $H_1: \lambda > 3$	B1 B1
	{ $Y \sim Bin(75, 0.04)$ approximates to } $Y \sim Po(3)$	B1
	$P(Y \ge 9) = 1 - P(Y \le 8)$ or $P(Y \le 7) = 0.9881 \implies P(Y \ge 8) = 0.0119$ $P(Y \le 8) = 0.9962$	M1
	=1-0.9962	
	$= 0.0038$ CR: $Y \ge 9$	Al
	{0.0038 < 0.01}	
	Reject $H_0$ or significant or 9 lies in the CR	dM1
	<ul> <li>Either</li> <li>There is evidence that the <u>producer</u> has <u>overstated</u> the <u>probability/percentage/proportion/number</u> of bean <u>seeds</u> that <u>germinate</u>.</li> </ul>	
	• <u>Producer's claim is not true</u> .	
	• There is evidence that the producer has understated the	
	probability/percentage/proportion/number/ of bean seeds that don't germinate.	A1 cso
		[7]
		7
	Notes	
	<b>1</b> st <b>B1</b> for $H_0: p = 0.96$ or $H_0: p = 0.04$ or $H_0: 7 = 3$	
	<b>2nd B1</b> for $H_0: p = 0.96$ and $H_1: p < 0.96$	
	or $H_0: p = 0.04$ and $H_1: p > 0.04$	
	or $H_0: / = 3$ and $H_1: / > 3$	
	<b>3rd B1</b> Po(3) seen or implied	
	<b>1</b> st MI1 for writing or using $1 - P(Y \le 8)$ or giving $P(Y \le 7) = 0.9881$ or $P(Y \ge 8) = 0.0119$ for (mean balance invalued by marked bility = 0.0028 an example of CD)	r a CR method
	(may be implied by probability = 0.0038 or correct CR) 1 st A1 for 0.0038 or CB: $Y > 9$	
	<b>2nd M1</b> Dependent on the 1 st M1. For a correct statement i.e. significant/reject $H_0/9$ is in C1	2
	Follow through their probability/CR and their $H_1$	
	May be implied by a correct contextual statement.	
	Ignore comparison of probability with the significance level.	
	$2^{nd}$ Alcso fully correct solution and correct contextual statement	
	B1 B1Correct hypotheses (same mark scheme as above)B0N(72, 2.88)	
	M1 $\frac{\pm (66.5 - 72)}{\sqrt{2.88}} (= \pm 3.24)$	
	$\sqrt{2.00}$	
	dM1A0cso (same mark scheme as above)	

Question Number	Scheme	Marks
2(a)	List of all the customers (who eat in the restaurant)	B1 (1)
(b)	<b><u>Customer(s)</u></b> (who ate in the restaurant)	B1 (1)
(c)	Advantage: more/total accuracy, unbiased	B1
(d)	Disadvantage: time consuming to obtain data and analyse it, expensive, difficult to ensure entire population is included Let $X =$ the number of customers who would like more choice on the menu.	B1 (2)
	$H_0: p = 0.3$ $H_1: p > 0.3$	B1
	<i>X</i> ~B(50,0.3)	M1
	$P(X \ge 20) = 1 - P(X \le 19)$ or $CR P(X \le 20) = 0.9522$	M1
	$= 1 - 0.9152$ $P(X \ge 21) = 0.0478$	
	$= 0.0848 \qquad \qquad X \ge 21$	Al
	Do not reject $H_0/$ not significant/20 is not in critical region	M1
	The percentage of <u>customers</u> who would like more <u>choice</u> on the menu is not more than Bill believes. or	
	There is no evidence to reject <u>Bill's belief</u> .	A 1
		Alcso
		(6)
		Total (10)
	INOTES	
(a)	<ul><li>B1 Need the idea of list/register/database and 'customer(s)'</li><li>Do not allow customer's opinions.</li><li>'All' may be implied. Do not allow a partial list e.g. 'A list of 50 customers'</li></ul>	
(b)	B1 customer(s)	
(c)	If not labelled, assume the response refers to a census. $1^{st}$ B1 is for the advantage and $2^{nd}$ B1 is for the disadvantage.	
(d)	B1 need both hypotheses with $p$ M1 using B(50,0.3) M1 for 1 $P(X \le 10)$ or	
	Min for $1 - P(X \le 19)$ of $P(X \le 20) = 0.0522$ or $P(X \ge 21) = 0.0478$ loading to a critical region $X \ge k$	V V V
	$P(X \le 20) = 0.9522$ of $P(X \ge 21) = 0.0478$ leading to a <b>critical region</b> $X > k$ (A) awrt 0.0848 or critical region $X > 21$ or $X > 20$	$\Lambda \leq \kappa$
	M1 a correct conclusion for their probability. May be implied by a correct contextual conclusion for their hypotheses and a fully correct solution with seen. Must mention 'customers' and 'choice' or 'Bill' and 'belief'.	onclusion. h no errors
	NB P( <i>X</i> =20) can score B1M1M0A0M0A0 NB normal approximation gives 0.082(457) and loses all A marks	