

Please check the examination details below before entering your candidate information

Candidate surname

Other names

Centre Number

Candidate Number

|  |  |  |  |
|--|--|--|--|
|  |  |  |  |
|--|--|--|--|

|  |  |  |  |
|--|--|--|--|
|  |  |  |  |
|--|--|--|--|

**Pearson Edexcel Level 3 GCE****Thursday 23 May 2024**

Afternoon

**Paper  
reference****8MA0/22**

|  |  |
|--|--|
|  |  |
|--|--|

# **Mathematics**

## **Advanced Subsidiary**

### **PAPER 22: Mechanics**

**You must have:**

Mathematical Formulae and Statistical Tables (Green), calculator

Total Marks

**Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.**

**Instructions**

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided  
– *there may be more space than you need*.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Unless otherwise indicated, wherever a value of  $g$  is required, take  $g = 9.8 \text{ m s}^{-2}$  and give your answer to either 2 significant figures or 3 significant figures.

**Information**

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- The total mark for this part of the examination is 30. There are 4 questions.
- The marks for **each** question are shown in brackets  
– *use this as a guide as to how much time to spend on each question*.

**Advice**

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

**Turn over** ►

P72841A

©2024 Pearson Education Ltd.  
F:1/1/1/1/1/1/1/1/

P 7 2 8 4 1 A 0 1 1 2

**Pearson**

1.

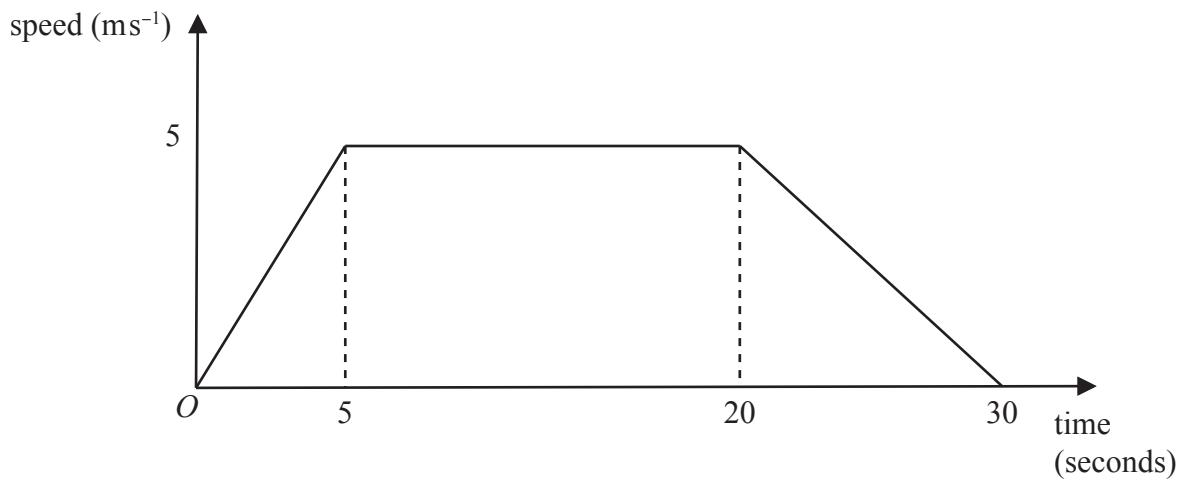



Figure 1

Figure 1 shows the speed-time graph for the journey of a car moving in a long queue of traffic on a straight horizontal road.

At time  $t = 0$ , the car is at rest at the point  $A$ .

The car then accelerates uniformly for 5 seconds until it reaches a speed of  $5\text{ ms}^{-1}$

For the next 15 seconds the car travels at a constant speed of  $5\text{ ms}^{-1}$

The car then decelerates uniformly until it comes to rest at the point  $B$ .

The total journey time is 30 seconds.

(a) Find the distance  $AB$ . (3)

(b) Sketch a distance-time graph for the journey of the car from  $A$  to  $B$ . (3)



### Question 1 continued

DO NOT WRITE IN THIS AREA

**DO NOT WRITE IN THIS AREA**

**DO NOT WRITE IN THIS AREA**

**(Total for Question 1 is 6 marks)**



P 7 2 8 4 1 A 0 3 1 2

2.

**In this question you must show all stages of your working.**

**Solutions relying on calculator technology are not acceptable.**

A particle is moving along a straight line.

At time  $t$  seconds,  $t > 0$ , the velocity of the particle is  $v \text{ ms}^{-1}$ , where

$$v = 2t - 7\sqrt{t} + 6$$

(a) Find the acceleration of the particle when  $t = 4$

(3)

When  $t = 1$  the particle is at the point  $X$ .

When  $t = 2$  the particle is at the point  $Y$ .

Given that the particle does not come to instantaneous rest in the interval  $1 < t < 2$

(b) show that  $XY = \frac{1}{3}(41 - 28\sqrt{2})$  metres.

(4)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA



## Question 2 continued

**DO NOT WRITE IN THIS AREA**

**DO NOT WRITE IN THIS AREA**

**DO NOT WRITE IN THIS AREA**

**(Total for Question 2 is 7 marks)**



P 7 2 8 4 1 A 0 5 1 2

3. [In this question,  $\mathbf{i}$  and  $\mathbf{j}$  are perpendicular unit vectors in a horizontal plane.]

A particle  $P$  is moving on a smooth horizontal surface under the action of two forces.

Given that

- the mass of  $P$  is 2 kg
- the two forces are  $(2\mathbf{i} + 4\mathbf{j})\text{N}$  and  $(c\mathbf{i} - 2\mathbf{j})\text{N}$ , where  $c$  is a constant
- the magnitude of the acceleration of  $P$  is  $\sqrt{5}\text{ m s}^{-2}$

find the two possible values of  $c$ .

(5)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA



### Question 3 continued

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

**(Total for Question 3 is 5 marks)**



4.

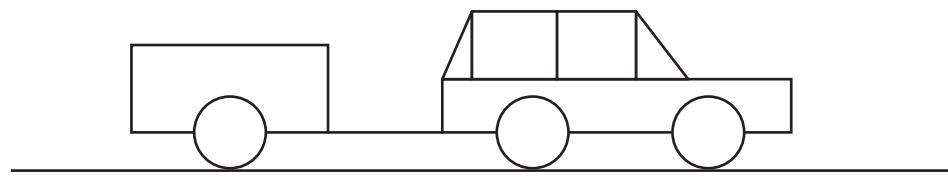



Figure 2

Figure 2 shows a car towing a trailer along a straight horizontal road.

The mass of the car is 800 kg and the mass of the trailer is 600 kg.

The trailer is attached to the car by a towbar which is parallel to the road and parallel to the direction of motion of the car and the trailer.

The towbar is modelled as a light rod.

The resistance to the motion of the car is modelled as a constant force of magnitude 400 N.

The resistance to the motion of the trailer is modelled as a constant force of magnitude  $R$  newtons.

The engine of the car is producing a constant driving force that is horizontal and of magnitude 1740 N.

The acceleration of the car is  $0.6 \text{ m s}^{-2}$  and the tension in the towbar is  $T$  newtons.

Using the model,

(a) show that  $R = 500$  (3)

(b) find the value of  $T$ . (3)

At the instant when the speed of the car and the trailer is  $12.5 \text{ m s}^{-1}$ , the towbar breaks.

The trailer moves a further distance  $d$  metres before coming to rest.

The resistance to the motion of the trailer is modelled as a constant force of magnitude 500 N.

Using the model,

(c) show that, after the towbar breaks, the deceleration of the trailer is  $\frac{5}{6} \text{ m s}^{-2}$  (1)

(d) find the value of  $d$ . (3)

In reality, the distance  $d$  metres is likely to be different from the answer found in part (d).

(e) Give two **different** reasons why this is the case. (2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA



### Question 4 continued

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

**DO NOT WRITE IN THIS AREA**



### Question 4 continued

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA



### Question 4 continued

**DO NOT WRITE IN THIS AREA**

DO NOT WRITE IN THIS AREA

**DO NOT WRITE IN THIS AREA**



### Question 4 continued

**DO NOT WRITE IN THIS AREA**

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

**(Total for Question 4 is 12 marks)**

## **TOTAL FOR MECHANICS IS 30 MARKS**

