

# Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Core Mathematics 1 (6663/01)



#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2016 Publications Code 6663\_01\_1606\_MS All the material in this publication is copyright © Pearson Education Ltd 2016

#### General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

#### PEARSON EDEXCEL GCE MATHEMATICS

#### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- **\*** The answer is printed on the paper or ag- answer given
- \_ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

## **General Principles for Core Mathematics Marking**

(But note that specific mark schemes may sometimes override these general principles).

## Method mark for solving 3 term quadratic:

## 1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where  $|pq| = |c|$ , leading to  $x = \dots$ 

 $(ax^2+bx+c) = (mx+p)(nx+q)$ , where pq = |c| and |mn| = |a|, leading to x = ...

## 2. Formula

Attempt to use the correct formula (with values for a, b and c).

## 3. Completing the square

Solving 
$$x^2 + bx + c = 0$$
:  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ ,  $q \neq 0$ , leading to  $x = \dots$ 

#### Method marks for differentiation and integration:

#### 1. Differentiation

Power of at least one term decreased by 1. ( $x^n \rightarrow x^{n-1}$ )

## 2. Integration

Power of at least one term increased by 1. ( $x^n \rightarrow x^{n+1}$ )

## Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

### Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

| Question<br>Number | Scheme Notes                                                 |                                                                                                                                                                                                                                                                                                                                                 |                |  |
|--------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| 1                  |                                                              | $\int (2x^4 - \frac{4}{\sqrt{x}} + 3) \mathrm{d}x$                                                                                                                                                                                                                                                                                              |                |  |
|                    | $\frac{2}{5}x^5 - \frac{4}{\frac{1}{2}}x^{\frac{1}{2}} + 3x$ | M1: $x^n \to x^{n+1}$ . One power increased by 1 but not for just + c.<br>This could be for $3 \to 3x$ or for $x^n \to x^{n+1}$ on what they think<br>$\frac{1}{\sqrt{x}}$ is as a power of x.<br>A1: One of these 3 terms correct.<br>Allow un-simplified e.g. $\frac{2x^{4+1}}{4+1}$ , $-\frac{4x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}$ , $3x^1$ | M1A1A1         |  |
|                    |                                                              | A1: Two of these 3 terms correct.<br>Allow un-simplified e.g. $\frac{2x^{4+1}}{4+1}$ , $-\frac{4x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}$ , $3x^1$                                                                                                                                                                                                   |                |  |
|                    | $=\frac{2}{5}x^5 - 8x^{\frac{1}{2}} + 3x + c$                | Complete fully correct simplified expression appearing allon one line with constant.Allow 0.4 for $\frac{2}{5}$ .Do not allow $3x^1$ for $3x$ Allow $\sqrt{x}$ or $x^{0.5}$ for $x^{\frac{1}{2}}$                                                                                                                                               | Al             |  |
|                    | Ignore any spurious inte                                     | gral signs and ignore subsequent working following a fully                                                                                                                                                                                                                                                                                      |                |  |
|                    |                                                              | correct answer.                                                                                                                                                                                                                                                                                                                                 | E 4 3          |  |
|                    |                                                              |                                                                                                                                                                                                                                                                                                                                                 | [4]<br>4 marks |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                 | Notes                                                                                                                                                  | Marks   |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
| 2                  | $9^{3x+1} = \text{ for example}$ $3^{2(3x+1)} \text{ or } (3^2)^{3x+1} \text{ or } (3^{(3x+1)})^2 \text{ or } 3^{3x+1} \times 3^{3x+1}$ $\text{ or } (3\times3)^{3x+1} \text{ or } 3^2 \times (3^2)^{3x} \text{ or } (9^{\frac{1}{2}})^y \text{ or } 9^{\frac{1}{2}y}$ | Expresses $9^{3x+1}$ correctly as a power of 3 or<br>expresses $3^y$ correctly as a power of 9 or<br>expresses <i>y</i> correctly in terms of <i>x</i> | M1      |  |  |
|                    | or $y = 2(3x+1)$                                                                                                                                                                                                                                                       | (This mark is <u>not</u> for just $3^2 = 9$ )                                                                                                          |         |  |  |
|                    | = $3^{6x+2}$ or $y = 6x + 2$ or $a = 6, b = 2$                                                                                                                                                                                                                         | Cao (isw if necessary)                                                                                                                                 | A1      |  |  |
|                    | Providing there is no incorrect work, allow sight of $6x + 2$ to score both marks                                                                                                                                                                                      |                                                                                                                                                        |         |  |  |
|                    | Correct answer only implies both marks                                                                                                                                                                                                                                 |                                                                                                                                                        |         |  |  |
|                    | Special case: $3^{6x+1}$ only scores M1A0                                                                                                                                                                                                                              |                                                                                                                                                        |         |  |  |
|                    |                                                                                                                                                                                                                                                                        |                                                                                                                                                        | [2]     |  |  |
|                    | Alternative u                                                                                                                                                                                                                                                          | ising logs                                                                                                                                             |         |  |  |
|                    | $9^{3x+1} = 3^{y} \Longrightarrow \log 9^{3x+1} = \log 3^{y}$                                                                                                                                                                                                          |                                                                                                                                                        |         |  |  |
|                    | $(3x+1)\log 9 = y\log 3$                                                                                                                                                                                                                                               | Use power law correctly on both sides                                                                                                                  | M1      |  |  |
|                    | $y = \frac{\log 9}{\log 3} (3x+1)$                                                                                                                                                                                                                                     |                                                                                                                                                        |         |  |  |
|                    | y = 6x + 2                                                                                                                                                                                                                                                             | cao                                                                                                                                                    | A1      |  |  |
|                    |                                                                                                                                                                                                                                                                        |                                                                                                                                                        | 2 marks |  |  |

| Question        | Scheme                                                                                                                                                                                                               | Notes                                                                                                                                                                                                                                                                                                                                                                             | Ma   | rks  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| Number<br>3.(a) |                                                                                                                                                                                                                      | $\sqrt{50} = 5\sqrt{2}$ or $\sqrt{18} = 3\sqrt{2}$ and the other term                                                                                                                                                                                                                                                                                                             |      |      |
| 5.(u)           | $\sqrt{50} - \sqrt{18} = 5\sqrt{2} - 3\sqrt{2}$                                                                                                                                                                      | in the form $k\sqrt{2}$ . This mark may be implied<br>by the correct answer $2\sqrt{2}$                                                                                                                                                                                                                                                                                           | M1   |      |
| -               | $= 2\sqrt{2}$                                                                                                                                                                                                        | Or $a = 2$                                                                                                                                                                                                                                                                                                                                                                        | A1   |      |
|                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                   |      | [2]  |
| (b)<br>WAY 1    | $\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$                                                                                                                                          | Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.                                                                                                                                                                                                                                                | M1   |      |
|                 | $=\frac{12\sqrt{3}}{"2"\sqrt{2}}\times\frac{\sqrt{2}}{\sqrt{2}}=\frac{12\sqrt{6}}{4}$                                                                                                                                | Rationalises the denominator by a correct<br>method e.g. multiplies numerator and<br>denominator by $k\sqrt{2}$ to obtain a multiple of<br>$\sqrt{6}$ . Note that multiplying numerator and<br>denominator by $2\sqrt{2}$ or $-2\sqrt{2}$ is quite<br>common and is acceptable for this mark. May<br>be implied by a correct answer.<br><b>This is dependent on the first M1.</b> | dM1  |      |
|                 | $= 3\sqrt{6}$ or $b = 3, c = 6$                                                                                                                                                                                      | Cao and cso                                                                                                                                                                                                                                                                                                                                                                       | A1   |      |
|                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                   |      | [3]  |
| (b)<br>WAY 2    | $\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} \times \frac{\sqrt{50} + \sqrt{18}}{\sqrt{50} + \sqrt{18}}$<br>or<br>$\frac{12\sqrt{3}}{5\sqrt{2} - 3\sqrt{2}} \times \frac{5\sqrt{2} + 3\sqrt{2}}{5\sqrt{2} + 3\sqrt{2}}$ | For rationalising the denominator by a correct method i.e. multiplying numerator and denominator by $k\left(\sqrt{50} + \sqrt{18}\right)$                                                                                                                                                                                                                                         | M1   |      |
|                 | $\frac{60\sqrt{6}+36\sqrt{6}}{50-18}$                                                                                                                                                                                | For replacing numerator by $\alpha \sqrt{6} + \beta \sqrt{6}$ .<br>This is dependent on the first M1 and there is<br>no need to consider the denominator for this<br>mark.                                                                                                                                                                                                        | dM1  |      |
|                 | $= 3\sqrt{6}$ or $b = 3, c = 6$                                                                                                                                                                                      | Cao and cso                                                                                                                                                                                                                                                                                                                                                                       | A1   |      |
|                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                   |      | [3]  |
| (b)<br>WAY 3    | $\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$                                                                                                                                          | Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.                                                                                                                                                                                                                                                | M1   |      |
|                 | $=\frac{12\sqrt{3}}{2\sqrt{2}}=\frac{6\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{108}}{\sqrt{2}}=\sqrt{54}=\sqrt{9}\sqrt{6}$                                                                                                    | Cancels to obtain a multiple of $\sqrt{6}$ . This is dependent on the first M1.                                                                                                                                                                                                                                                                                                   | dM1  |      |
|                 | $= 3\sqrt{6}$ Or $b = 3, c = 6$                                                                                                                                                                                      | Cao and cso                                                                                                                                                                                                                                                                                                                                                                       | A1   |      |
| (b)             |                                                                                                                                                                                                                      | Uses port (a) by replacing denominator by their                                                                                                                                                                                                                                                                                                                                   |      | [3]  |
| (b)<br>WAY 4    | $\frac{12\sqrt{3}}{\sqrt{50} - \sqrt{18}} = \frac{12\sqrt{3}}{"2"\sqrt{2}}$                                                                                                                                          | Uses part (a) by replacing denominator by their $a\sqrt{2}$ where <i>a</i> is numeric. This is all that is required for this mark.                                                                                                                                                                                                                                                | M1   |      |
|                 | $\left(\frac{12\sqrt{3}}{"2"\sqrt{2}}\right)^2 = \frac{432}{8}$                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                   |      |      |
|                 | $\sqrt{54} = \sqrt{9}\sqrt{6}$                                                                                                                                                                                       | Obtains a multiple of $\sqrt{6}$ . This is dependent<br>on the first M1.                                                                                                                                                                                                                                                                                                          | dM1  |      |
|                 | $= 3\sqrt{6}$ Or $b = 3, c = 6$                                                                                                                                                                                      | Cao and cso (do not allow $\pm 3\sqrt{6}$ )                                                                                                                                                                                                                                                                                                                                       | A1   |      |
|                 |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                   | 5 ma | arks |

| www.yesterdaysmathsexam.com |
|-----------------------------|
|-----------------------------|

| Question<br>Number | Scheme                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks   |
|--------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                    | Note original points are. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| 4.(a)              | (-2, 12)                  | Similar shape to given figure passing<br>through the origin. A cubic shape with a<br>maximum in the second quadrant and a<br>minimum in the $4^{th}$ quadrant.<br>There must be evidence of a change in at<br>least one of the y-coordinates<br>(inconsistent changes in the y-coordinates<br>are acceptable) but <b>not the </b> <i>x</i> <b>-</b><br><b>coordinates</b> .                                                                                                                                                           | B1      |
|                    | (3, -24)                  | Maximum at $(-2, 12)$ and minimum at $(3, -24)$ with coordinates written the right way round. Condone missing brackets. The coordinates may appear on the sketch, or separately in the text (not necessarily referenced as <i>A</i> and <i>B</i> ). If they are on the sketch, the <i>x</i> and <i>y</i> coordinates can be positioned correctly on the axes rather than given as coordinate pairs. In cases of ambiguity, the sketch has precedence. The origin does not need to be labelled. Nor do the <i>x</i> and <i>y</i> axes. | B1      |
|                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [2]     |
| (b)                | Ť                         | A positive cubic which does not pass<br>through the origin with a maximum to the<br>left of the y-axis and a minimum to the<br>right of the y-axis.                                                                                                                                                                                                                                                                                                                                                                                   | M1      |
|                    | (-2, 0)                   | Maximum at $(-2, 0)$ and minimum at $(3, -12)$ . Condone missing brackets. For the max allow just -2 or $(0, -2)$ if marked in the correct place. If the coordinates are in the text, they must appear as $(-2, 0)$ and must not contradict the sketch. The curve must <b>touch</b> the <i>x</i> -axis at $(-2, 0)$ . For the min allow coordinates as shown or 3 and -12 to be marked in the correct places on the axes. In cases of ambiguity, the sketch has precedence.                                                           | Al      |
|                    | (3, -12)                  | Crosses y-axis at $(0, -4)$ . Allow just<br>-4 (not +4) and allow (-4, 0) if marked in<br>the correct place. If the coordinates are in<br>the text, they must appear as $(0, -4)$ and<br>must not contradict the sketch.<br>In cases of ambiguity, the sketch has<br>precedence.                                                                                                                                                                                                                                                      | Al      |
|                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [3]     |
|                    |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 marks |

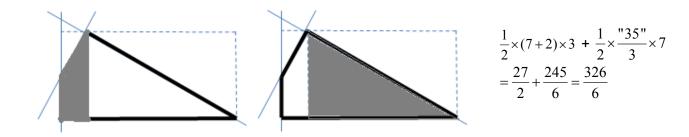
| Scheme                                                                                               | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| WA                                                                                                   | Y 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| y = -4x - 1                                                                                          | Attempts to makes <i>y</i> the subject of the linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $\rightarrow (-4\pi - 1)^2 + 5\pi^2 + 2\pi - 0$                                                      | equation and substitutes into the other equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| $\Rightarrow (-4x-1) + 5x + 2x = 0$                                                                  | Allow slips e.g. substituting $y = -4x + 1$ etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $21x^2 + 10x + 1 = 0$                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $(7x+1)(3x+1) = 0 \Longrightarrow (x=) -\frac{1}{7}, -\frac{1}{3}$                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dM1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      | $(x=)-\frac{6}{42}, -\frac{14}{42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      | M1: Substitutes to find at least one <i>y</i> value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      | (Allow substitution into their rearranged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      | equation above but not into an equation that has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 3 - 3 - 1                                                                                            | not been seen earlier). You may need to check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $y = -\frac{1}{7}, \frac{1}{3}$                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      | A1: $y = -\frac{3}{7}, \frac{1}{3}$ (two correct exact answers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      | Allow exact equivalents e.g. $y = -\frac{18}{42}, \frac{14}{42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Coordinates do no                                                                                    | t need to be paired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| answers for x and possibly for y. In these case                                                      | es, if it is not already lost, deduct the final A1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $x = -\frac{1}{4}y - \frac{1}{4}$                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| $\Rightarrow y^2 + 5(-\frac{1}{4}y - \frac{1}{4})^2 + 2(-\frac{1}{4}y - \frac{1}{4}) = 0$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $\frac{21}{v^2} + \frac{1}{v} - \frac{3}{v^2} = 0$ (21 $v^2 + 2v - 3 = 0$ )                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 16 + 8 + 16 = 0 (21y + 2y + 5 = 0)                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $(7y+3)(3y-1)=0 \Longrightarrow (y=)-\frac{3}{7}, \frac{1}{3}$                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JM1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                      | mark.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $dM1 \Lambda 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $(7y+3)(3y-1)=0 \Longrightarrow (y=)-\frac{2}{7}, \frac{1}{3}$                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dM1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $(7y+3)(3y-1)=0 \Longrightarrow (y=)-\frac{1}{7}, \frac{1}{3}$                                       | A1: $(y = ) - \frac{3}{7}, \frac{1}{3}$ (two separate correct exact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dM1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $(7y+3)(3y-1)=0 \Longrightarrow (y=)-\frac{2}{7}, \frac{1}{3}$                                       | A1: $(y = ) - \frac{3}{7}, \frac{1}{3}$ (two separate correct exact answers). Allow exact equivalents e.g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dM1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $(7y+3)(3y-1)=0 \Longrightarrow (y=)-\frac{2}{7}, \frac{1}{3}$                                       | A1: $(y = ) - \frac{3}{7}, \frac{1}{3}$ (two separate correct exact<br>answers). Allow exact equivalents e.g.<br>$(y = ) - \frac{18}{42}, \frac{14}{42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dM1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $(7y+3)(3y-1)=0 \Longrightarrow (y=)-\frac{2}{7}, \frac{1}{3}$                                       | A1: $(y = ) - \frac{3}{7}, \frac{1}{3}$ (two separate correct exact<br>answers). Allow exact equivalents e.g.<br>$(y = ) - \frac{18}{42}, \frac{14}{42}$<br>M1: Substitutes to find at least one <i>x</i> value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dM1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| $(7y+3)(3y-1)=0 \Longrightarrow (y=)-\frac{1}{7}, \frac{1}{3}$                                       | A1: $(y = ) - \frac{3}{7}, \frac{1}{3}$ (two separate correct exact<br>answers). Allow exact equivalents e.g.<br>$(y = ) - \frac{18}{42}, \frac{14}{42}$<br>M1: Substitutes to find at least one <i>x</i> value<br>(Allow substitution into their rearranged                                                                                                                                                                                                                                                                                                                                                                                                                                      | dM1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                      | A1: $(y = ) - \frac{3}{7}$ , $\frac{1}{3}$ (two separate correct exact<br>answers). Allow exact equivalents e.g.<br>$(y = ) - \frac{18}{42}$ , $\frac{14}{42}$<br>M1: Substitutes to find at least one <i>x</i> value<br>(Allow substitution into their rearranged<br>equation above but not into an equation that has                                                                                                                                                                                                                                                                                                                                                                            | dM1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                      | A1: $(y = ) - \frac{3}{7}$ , $\frac{1}{3}$ (two separate correct exact<br>answers). Allow exact equivalents e.g.<br>$(y = ) - \frac{18}{42}$ , $\frac{14}{42}$<br>M1: Substitutes to find at least one <i>x</i> value<br>(Allow substitution into their rearranged<br>equation above but not into an equation that has<br>not been seen earlier). You may need to check                                                                                                                                                                                                                                                                                                                           | M1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| $(7y+3)(3y-1)=0 \Rightarrow (y=)-\frac{2}{7}, \frac{1}{3}$ $x = -\frac{1}{7}, -\frac{1}{3}$          | A1: $(y = ) - \frac{3}{7}$ , $\frac{1}{3}$ (two separate correct exact<br>answers). Allow exact equivalents e.g.<br>$(y = ) - \frac{18}{42}$ , $\frac{14}{42}$<br>M1: Substitutes to find at least one <i>x</i> value<br>(Allow substitution into their rearranged<br>equation above but not into an equation that has                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      | A1: $(y = ) - \frac{3}{7}$ , $\frac{1}{3}$ (two separate correct exact<br>answers). Allow exact equivalents e.g.<br>$(y = ) - \frac{18}{42}$ , $\frac{14}{42}$<br>M1: Substitutes to find at least one <i>x</i> value<br>(Allow substitution into their rearranged<br>equation above but not into an equation that has<br>not been seen earlier). You may need to check<br>here if there is no working and <i>y</i> values are<br>incorrect.                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      | A1: $(y = ) - \frac{3}{7}$ , $\frac{1}{3}$ (two separate correct exact<br>answers). Allow exact equivalents e.g.<br>$(y = ) - \frac{18}{42}$ , $\frac{14}{42}$<br>M1: Substitutes to find at least one <i>x</i> value<br>(Allow substitution into their rearranged<br>equation above but not into an equation that has<br>not been seen earlier). You may need to check<br>here if there is no working and <i>y</i> values are<br>incorrect.<br>A1: $x = -\frac{1}{7}$ , $-\frac{1}{3}$ (two correct exact answers)                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $x = -\frac{1}{7}, -\frac{1}{3}$                                                                     | A1: $(y = ) - \frac{3}{7}$ , $\frac{1}{3}$ (two separate correct exact<br>answers). Allow exact equivalents e.g.<br>$(y = ) - \frac{18}{42}$ , $\frac{14}{42}$<br>M1: Substitutes to find at least one <i>x</i> value<br>(Allow substitution into their rearranged<br>equation above but not into an equation that has<br>not been seen earlier). You may need to check<br>here if there is no working and <i>y</i> values are<br>incorrect.<br>A1: $x = -\frac{1}{7}$ , $-\frac{1}{3}$ (two correct exact answers)<br>Allow exact equivalents e.g. $x = -\frac{6}{42}$ , $-\frac{14}{42}$                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $x = -\frac{1}{7}, -\frac{1}{3}$ Coordinates do no                                                   | A1: $(y = ) - \frac{3}{7}$ , $\frac{1}{3}$ (two separate correct exact<br>answers). Allow exact equivalents e.g.<br>$(y = ) - \frac{18}{42}$ , $\frac{14}{42}$<br>M1: Substitutes to find at least one <i>x</i> value<br>(Allow substitution into their rearranged<br>equation above but not into an equation that has<br>not been seen earlier). You may need to check<br>here if there is no working and <i>y</i> values are<br>incorrect.<br>A1: $x = -\frac{1}{7}$ , $-\frac{1}{3}$ (two correct exact answers)<br>Allow exact equivalents e.g. $x = -\frac{6}{42}$ , $-\frac{14}{42}$<br><b>t need to be paired</b>                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $x = -\frac{1}{7}, -\frac{1}{3}$ Coordinates do no Note that if the linear equation is explicitly re | A1: $(y = ) - \frac{3}{7}$ , $\frac{1}{3}$ (two separate correct exact<br>answers). Allow exact equivalents e.g.<br>$(y = ) - \frac{18}{42}$ , $\frac{14}{42}$<br>M1: Substitutes to find at least one <i>x</i> value<br>(Allow substitution into their rearranged<br>equation above but not into an equation that has<br>not been seen earlier). You may need to check<br>here if there is no working and <i>y</i> values are<br>incorrect.<br>A1: $x = -\frac{1}{7}$ , $-\frac{1}{3}$ (two correct exact answers)<br>Allow exact equivalents e.g. $x = -\frac{6}{42}$ , $-\frac{14}{42}$<br><b>t need to be paired</b><br><b>arranged to <math>x = (y + 1)/4</math>, this gives the correct</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $x = -\frac{1}{7}, -\frac{1}{3}$ Coordinates do no Note that if the linear equation is explicitly re | A1: $(y = ) - \frac{3}{7}$ , $\frac{1}{3}$ (two separate correct exact<br>answers). Allow exact equivalents e.g.<br>$(y = ) - \frac{18}{42}$ , $\frac{14}{42}$<br>M1: Substitutes to find at least one <i>x</i> value<br>(Allow substitution into their rearranged<br>equation above but not into an equation that has<br>not been seen earlier). You may need to check<br>here if there is no working and <i>y</i> values are<br>incorrect.<br>A1: $x = -\frac{1}{7}$ , $-\frac{1}{3}$ (two correct exact answers)<br>Allow exact equivalents e.g. $x = -\frac{6}{42}$ , $-\frac{14}{42}$<br><b>t need to be paired</b>                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                      | WA<br>y = -4x - 1<br>$\Rightarrow (-4x - 1)^2 + 5x^2 + 2x = 0$<br>$21x^2 + 10x + 1 = 0$<br>$(7x+1)(3x+1) = 0 \Rightarrow (x=) -\frac{1}{7}, -\frac{1}{3}$<br>$y = -\frac{3}{7}, \frac{1}{3}$<br>Coordinates do no<br>Note that if the linear equation is explicitly r<br>answers for x and possibly for y. In these case<br>WA<br>$x = -\frac{1}{4}y - \frac{1}{4}$<br>$\Rightarrow y^2 + 5(-\frac{1}{4}y - \frac{1}{4})^2 + 2(-\frac{1}{4}y - \frac{1}{4}) = 0$<br>$\frac{21}{16}y^2 + \frac{1}{8}y - \frac{3}{16} = 0 (21y^2 + 2y - 3 = 0)$                                                                                                                                                     | WAY 1WAY 1Attempts to makes y the subject of the linear<br>equation and substitutes into the other equation.<br>Allow slips e.g. substituting $y = -4x + 1$ etc.<br>Correct 3 term quadratic (terms do not need to<br>be all on the same side).<br>The "= 0" may be implied by subsequent work.<br>dM1: Solves a 3 term quadratic by the usual<br>rules (see general guidance) to give at least one<br>value for x. Dependent on the first method<br>mark.<br>All: $(x = ) - \frac{1}{7}, -\frac{1}{3}$ $y = -\frac{3}{7}, \frac{1}{3}$ M1: Substitutes to find at least one y value<br>(Allow substitutes into their rearranged<br>equation above but not into an equation that has<br>not been seen earlier). You may need to check<br>here if there is no working and x values are<br>incorrect.Note that if the linear equation is explicitly rearranged to $y = 4x + 1$ , this gives the correct<br>answers for x and possibly for y. In these cases, if it is not already lost, deduct the final A1.WAY 2x = $-\frac{1}{4}y - \frac{1}{4}$ Attempts to makes x the subject of the linear<br>equation above but not into an equation that has<br>not been seen earlier). You may need to check<br>here if there is no working and x values are<br>incorrect.Allow exact equivalents e.g. $y = -\frac{18}{42}, \frac{14}{42}$ Note that if the linear equation is explicitly rearranged to $y = 4x + 1$ , this gives the correct<br>answers for x and possibly for y. In these cases, if it is not already lost, deduct the final A1.WAY 2Coordinates do not need to be pairedNote that if the linear equation is explicitly rearranged to $y = 4x + 1$ , this gives the correct<br>answers for x and possibly for y. In these cases, if |  |

| Question<br>Number | Scheme                                                        | Notes                                                                                                                                                                                           | Marks   |
|--------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                    | $a_1 = 4, \ a_{n+1} = 5 - k$                                  | $a_n, n1$                                                                                                                                                                                       |         |
| <b>6.</b> (a)      | $a_2 = 5 - ka_1 = 5 - 4k$<br>$a_3 = 5 - ka_2 = 5 - k(5 - 4k)$ | M1: Uses the recurrence relation correctly<br>at least once. This may be implied by<br>$a_2 = 5-4k$ or by the use of<br>$a_3 = 5-k$ (their $a_2$ )<br>A1: Two correct expressions – need not be | M1A1    |
|                    |                                                               | simplified but must be seen in (a).<br>Allow $a_2 = 5-k4$ and $a_3 = 5-5k+k^24$                                                                                                                 |         |
| _                  |                                                               | Isw if necessary for <i>a</i> <sub>3</sub> .                                                                                                                                                    |         |
|                    |                                                               |                                                                                                                                                                                                 | [2]     |
| (b)                | $\sum_{r=1}^{3} (1) = 1 + 1 + 1$                              | Finds 1+1+1 or 3 somewhere in their<br>solution (may be implied by e.g. $5 + 6 - 4k$<br>$+ 6 - 5k + 4k^2$ ). Note that<br>$5 + 6 - 4k + 6 - 5k + 4k^2$ would score B1<br>and the M1 below.      | B1      |
|                    | $\sum_{r=1}^{3} a_r = 4 + 5 - 4k'' + 5 - 5k + 4k^2''$         | Adds 4 to their $a_2$ and their $a_3$ where $a_2$<br>and $a_3$ are functions of k. The statement as<br>shown is sufficient.                                                                     | M1      |
|                    | $\sum_{r=1}^{3} (1+a_r) = 17 - 9k + 4k^2$                     | Cao but condone '= 0' after the expression                                                                                                                                                      | A1      |
|                    | Allow full marks in (b) for a                                 | correct answer only                                                                                                                                                                             |         |
|                    |                                                               |                                                                                                                                                                                                 | [3]     |
| (c)                | 500                                                           | cao                                                                                                                                                                                             | B1      |
|                    |                                                               |                                                                                                                                                                                                 | [1]     |
|                    |                                                               |                                                                                                                                                                                                 | 6 marks |

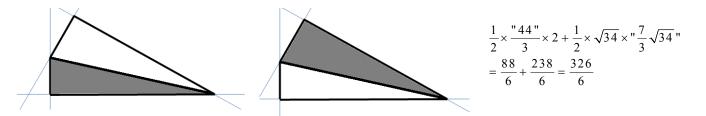
| Question<br>Number | Scheme                                                                                                                                                                     | Notes                                                                                                                                                                                                                                                                                                                                           | Marks    |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 7.                 | $y = 3x^2 + 6x^2$                                                                                                                                                          | $\frac{1}{3} + \frac{2x^3 - 7}{3\sqrt{x}}$                                                                                                                                                                                                                                                                                                      |          |
|                    | $\frac{2x^3 - 7}{3\sqrt{x}} = \frac{2x^3}{3\sqrt{x}} - \frac{7}{3\sqrt{x}} = \frac{2}{3}x^{\frac{5}{2}} - \frac{7}{3}x^{-\frac{1}{2}}$                                     | Attempts to split the fraction into 2 terms<br>and obtains either $\alpha x^{\frac{5}{2}}$ or $\beta x^{-\frac{1}{2}}$ . This may<br>be implied by a correct power of x in their<br>differentiation of one of these terms. But<br>beware of $\beta x^{-\frac{1}{2}}$ coming from<br>$\frac{2x^3 - 7}{3\sqrt{x}} = 2x^3 - 7 + 3x^{-\frac{1}{2}}$ | M1       |
|                    | $x^n  ightarrow x^{n-1}$                                                                                                                                                   | Differentiates by reducing power by one for any of their powers of $x$                                                                                                                                                                                                                                                                          | M1       |
|                    |                                                                                                                                                                            | A1: 6x. Do not accept $6x^1$ . Depends on second M mark only. Award when first seen and isw.                                                                                                                                                                                                                                                    |          |
|                    |                                                                                                                                                                            | A1: $2x^{-\frac{2}{3}}$ . Must be simplified so do not                                                                                                                                                                                                                                                                                          |          |
|                    | $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 6x + 2x^{-\frac{2}{3}} + \frac{5}{3}x^{\frac{3}{2}} + \frac{7}{6}x^{-\frac{3}{2}}$                                         | accept e.g. $\frac{2}{1}x^{-\frac{2}{3}}$ but allow $\frac{2}{\sqrt[3]{x^2}}$ . Depends<br>on second M mark only. Award when first<br>seen and isw.                                                                                                                                                                                             |          |
|                    |                                                                                                                                                                            | A1: $\frac{5}{3}x^{\frac{3}{2}}$ . Must be simplified but allow e.g.                                                                                                                                                                                                                                                                            | A1A1A1A1 |
|                    |                                                                                                                                                                            | $1\frac{2}{3}x^{1.5}$ or e.g. $\frac{5}{3}\sqrt{x^3}$ . Award when first seen and isw.                                                                                                                                                                                                                                                          |          |
|                    |                                                                                                                                                                            | A1: $\frac{7}{6}x^{-\frac{3}{2}}$ . Must be simplified but allow e.g.                                                                                                                                                                                                                                                                           |          |
|                    |                                                                                                                                                                            | $1\frac{1}{6}x^{-1\frac{1}{2}}$ or e.g. $\frac{7}{6\sqrt{x^3}}$ . Award when first seen and isw.                                                                                                                                                                                                                                                |          |
|                    | In an otherwise <u>fully correct solution</u> , penalis                                                                                                                    | e the presence of + c by deducting the final                                                                                                                                                                                                                                                                                                    |          |
|                    | Al                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                 | [6]      |
|                    | Use of Quotient Rule: First M1 and f                                                                                                                                       | inal A1A1 (Other marks as above)                                                                                                                                                                                                                                                                                                                | .~]      |
|                    | $\frac{d\left(\frac{2x^{3}-7}{3\sqrt{x}}\right)}{dx} = \frac{3\sqrt{x}\left(6x^{2}\right) - \left(2x^{3}-7\right)\frac{3}{2}x^{-\frac{1}{2}}}{\left(3\sqrt{x}\right)^{2}}$ | Uses <u>correct</u> quotient rule                                                                                                                                                                                                                                                                                                               | M1       |
|                    | $=\frac{10x^{\frac{1}{2}}+7x^{-\frac{1}{2}}}{6x}$                                                                                                                          | A1: Correct first term of numerator and<br>correct denominator<br>A1: All correct as simplified as shown                                                                                                                                                                                                                                        | A1A1     |
|                    | So $\frac{dy}{dx} = 6x + 2x^{-\frac{2}{3}} + \frac{10x^{\frac{5}{2}}}{10x^{\frac{5}{2}}}$                                                                                  | $\frac{+7x^{-\frac{1}{2}}}{6}$ scores full marks                                                                                                                                                                                                                                                                                                |          |
|                    | d <i>x</i>                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                 | 6 marks  |

|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                       | 8 marks |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------|--|--|
|                      | Allow working in terms of $x$ in (b) but the an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | swer must be in terms of <i>p</i> for the final A mark.                                 | [4]     |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{1}{2} > p > 4\frac{1}{2}$ scores M0A0                                            |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $p > \frac{1}{2}, p < 4\frac{1}{2}$ scores M1A0                                         |         |  |  |
|                      | Allow equivalent values e.g. $\frac{36}{8}$ for $4\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | allow $p > \frac{1}{2}$ and $p < 4\frac{1}{2}$ and $4\frac{1}{2} > p > \frac{1}{2}$ but | 1411/11 |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1: Allow $p \in (\frac{1}{2}, 4\frac{1}{2})$ or just $(\frac{1}{2}, 4\frac{1}{2})$ and | M1A1    |  |  |
|                      | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lower Limit $\leq p \leq \text{Upper Limit of e.g.}$                                    |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1: Chooses 'inside' region i.e.<br>Lower Limit $ Upper Limit or e.g.$                  |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | complete the square.                                                                    |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sqrt{256}$ for 16 and allow e.g. $\frac{5}{2} \pm 2$ if they                          |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sqrt{256}$ for 16 and allow $25^{-5} \pm 2$ if they                                   |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | formula allow $\frac{20\pm16}{8}$ for this mark but not                                 |         |  |  |
|                      | $p = \frac{9}{2},  \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                       | A1      |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.5, $\frac{36}{8}$ , 0.5 etc. If they use the quadratic                                |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $p < \frac{1}{2}, p < \frac{1}{2}$ . Anow equivalent values e.g.                        |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $p < \frac{9}{2}, p < \frac{1}{2}$ . Allow equivalent values e.g.                       |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | values for p. See general guidance.Both correct. May be implied by e.g.                 |         |  |  |
| (b)                  | $(2p-9)(2p-1)=0 \Longrightarrow p=$ to obtain $p=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Attempt to solve the <b>given</b> quadratic to find 2                                   | M1      |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                   | [4]     |  |  |
|                      | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | been seen at some stage before the last line.                                           |         |  |  |
|                      | $4p^2 - 20p + 9 < 0 *$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Allow $0 > 4p^2 - 20p + 9$ ) but this < 0 must                                         | A1*     |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dependent on both method marks.Obtains printed answer with no errors seen               |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | use of $b^2 - 4ac$ . There must be no x's or y's.                                       |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | it is part of the quadratic formula only look for                                       |         |  |  |
|                      | $b^2 - 4ac = (10p - 9)^2 - 4(2p)(8p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $b^2 < 4ac$ or as $b^2 > 4ac$ or as $\sqrt{b^2 - 4ac}$ etc. If                          |         |  |  |
|                      | $b^{2} - 4ac = (-6p - 3)^{2} - 4(2p)(4p + 7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | could be as part of the quadratic formula or as                                         | ddM1    |  |  |
|                      | E.g. $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$ | $a = \pm 2p$ , $b = \pm (10p \pm 9)$ and $c = \pm 8p$ . This                            |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $c = \pm (4p \pm 7)$ or for the quadratic in y,                                         |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | where $a = \pm 2p$ , $b = \pm (-6p \pm 3)$ and                                          |         |  |  |
|                      | The terms do not need to be conecte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Attempts to use $b^2 - 4ac$ with their <i>a</i> , <i>b</i> and <i>c</i>                 |         |  |  |
|                      | Moves all the terms to one side allowing sign errors only. Ignore $> 0$ , $< 0$ , $= 0$ etc. <b>The terms do not need to be collected. Dependent on the first method mark.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6px + 4p - 3x + 7                                                                       |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |         |  |  |
|                      | $2p\left(\frac{y+7}{2}\right)^2 - 6p\left(\frac{y+7}{2}\right) + 4p - y(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(=0),  2py^2 + (10p-9)y + 8p(=0)$                                                      | dM1     |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,, , , , , , , , , , ,                                                                  |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{\text{amples}}{2} = 0,  -2px^2 + 6px - 4p + 3x - 7(=0)$                          |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and substitutes into the given quadratic                                                |         |  |  |
|                      | $y = 2p\left(\frac{y+7}{3}\right)^2 - 6p\left(\frac{y+7}{3}\right) + 4p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or Rearranges $y = 3x - 7$ to make x the subject                                        |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the given linear expression using $<, >, =, \neq$ (May be implied)                      | M1      |  |  |
|                      | 2px $0px + p = 5x$ /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Compares the given quadratic expression with                                            |         |  |  |
| Number <b>8.</b> (a) | $2px^2 - 6px + 4p'' = "3x - 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Either:                                                                                 |         |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |         |  |  |

| Question<br>Number | Scheme                                                                                                                      | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Marks     |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
| <b>9.</b> (a)      | John; arithmetic series,                                                                                                    | a = 60, d = 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |  |  |
|                    | $60 + 75 + 90 = 225^*$ or                                                                                                   | Finds and adds the first 3 terms or uses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |  |  |
|                    | $S_3 = \frac{3}{2} (120 + (3-1)(15)) = 225 *$                                                                               | sum of 3 terms of an AP and obtains the printed answer, with no errors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1 *      |  |  |
| -                  |                                                                                                                             | <u>:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |  |  |
|                    |                                                                                                                             | tic series, $a = 60$ , $d = 15$ .<br>Finds and adds the first 3 terms or uses<br>sum of 3 terms of an AP and obtains the<br>printed answer, with no errors.<br>Beware:<br>so so look out for $60 + (12 - 1) \times 15 = 225$ . This is B0.<br>M1: Uses $60 + (n - 1)15$ with $n = 8$ or 9<br>A1: $(\pounds)180$<br>Listing:<br>elect the 8 <sup>th</sup> or 9 <sup>th</sup> term (allow arithmetic slips)<br>A1: $(\pounds)180$<br>Uses correct formula for sum of <i>n</i> terms<br>with $a = 60$ and $d = 15$ (must be a correct<br>formula but ignore the value they use for<br><i>n</i> or could be in terms of <i>n</i> )<br>Correct numerical expression<br>A2: $(\pounds)1710$<br>Uses correct formula for sum of <i>n</i> terms<br>with $a = 60$ , $d = 15$ and puts = $3375$<br>Correct three term quadratic. E.g.<br>$6750 = 105n + 15n^2$ , $3375 = \frac{15}{2}n^2 + \frac{105}{2}n$<br>This may be implied by equations such as<br>$6750 = 15n(n + 7)$ or $3375 = \frac{15}{2}(n^2 + 7n)$<br>Achieves the printed answer with no<br>errors but must see the 450 or 450 in<br>factorised form i.e. an intermediate step.<br>M1: Attempts to solve the given quadratic<br>or states $n = 18$<br>M | [1]       |  |  |
| (b)                | $t_9 = 60 + (n-1)15 = (\pounds)180$                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1 A1     |  |  |
| -                  | M1: Uses $a = 60$ and $d = 15$ to select the 8 <sup>th</sup> or 9 <sup>th</sup> term (allow arithmetic slips)<br>A1: (£)180 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |  |  |
| _                  | (Special case (£)165 on                                                                                                     | ly scoles MITAO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [2]       |  |  |
|                    | $n_{(120)}$ (110)                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |  |  |
| (c)                | $S_{n} = \frac{n}{2} (120 + (n-1)(15))$<br>or<br>$S_{n} = \frac{n}{2} (60 + 60 + (n-1)(15))$                                | with $a = 60$ and $d = 15$ (must be a correct formula but ignore the value they use for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1        |  |  |
|                    | $S_n = \frac{12}{2} (120 + (12 - 1)(15))$                                                                                   | Correct numerical expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1        |  |  |
|                    | $=(\pm)1710$                                                                                                                | cao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A1        |  |  |
| -                  | M1: Uses $a = 60$ and $d = 15$ and finds the sum of at least 12 terms (allow arithmetic slips)<br>A2: (£)1710               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |  |  |
| ( <b>d</b> )       | $3375 = \frac{n}{2} (120 + (n-1)(15))$                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [3]<br>M1 |  |  |
|                    | $6750 = 15n(8 + (n - 1)) \Rightarrow 15n^{2} + 105n = 6750$                                                                 | 6750 = $105n + 15n^2$ , $3375 = \frac{15}{2}n^2 + \frac{105}{2}n$<br>This may be implied by equations such as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1        |  |  |
|                    | $n^2 + 7n = 25 \times 18$ *                                                                                                 | errors but must see the 450 or 450 in factorised form or e.g. 6750, 3375 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1*       |  |  |
|                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [3]       |  |  |
| (e)                | $n = 18 \Longrightarrow \text{Aged} 27$                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1 A1     |  |  |
|                    | Age = 27 only scores both marks (                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |  |  |
|                    | Note that (e) is not hence so allow valid atten                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         |  |  |
|                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [2]       |  |  |
|                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 marks  |  |  |


#### www.yesterdaysmathsexam.com

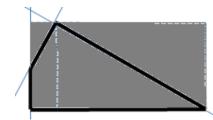
| n              | 1  | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9    |
|----------------|----|-----|-----|-----|-----|-----|-----|-----|------|
| $u_n$          | 60 | 75  | 90  | 105 | 120 | 135 | 150 | 165 | 180  |
| $\mathbf{S}_n$ | 60 | 135 | 225 | 330 | 450 | 585 | 735 | 900 | 1080 |
| Age            | 10 | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18   |


| n               | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   |
|-----------------|------|------|------|------|------|------|------|------|------|
| $\mathcal{U}_n$ | 195  | 210  | 225  | 240  | 255  | 270  | 285  | 300  | 315  |
| $\mathbf{S}_n$  | 1275 | 1485 | 1710 | 1950 | 2205 | 2475 | 2760 | 3060 | 3375 |
| Age             | 19   | 20   | 21   | 22   | 23   | 24   | 25   | 26   | 27   |

| Question<br>Number | Sche                                                                               | eme                                                                                              | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | Marks  |
|--------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------|
| <b>10.(a)</b>      | $l_1$ : passes through                                                             | $(0, 2)$ and $(3, 7)$ $l_2$ : g                                                                  | oes through (3, 7) and is pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rpendicular to $l_1$                                                                                          |        |
|                    | Gradient of $l_1$                                                                  | is $\frac{7-2}{3-0} \left(=\frac{5}{3}\right)$                                                   | $m(l_1) = \frac{7-2}{3-0}$ . Allow un-sin<br>May be implied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nplified.                                                                                                     | B1     |
|                    | $m(l_2) = -1$                                                                      | $\div$ their $\frac{5}{3}$                                                                       | Correct application of perperule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ndicular gradient                                                                                             | M1     |
|                    | y - 7 = "-<br>01<br>$y = "-\frac{3}{5}"x + c, \ 7 = "-$                            | -                                                                                                | M1: Uses $y - 7 = m(x-3)$<br>gradient or uses $y = mx + c$<br>their <b>changed</b> gradient to fin<br>A1ft: Correct ft equation for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | with (3, 7) and<br>and a value for <i>c</i><br>their perpendicular                                            | M1A1ft |
|                    | 3x + 5y -                                                                          | - 44 = 0                                                                                         | gradient ( <b>this is dependent</b><br>Any positive or negative inte<br>be seen in (a) and must inclu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eger multiple. Must                                                                                           | A1     |
|                    |                                                                                    |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               | [5]    |
|                    |                                                                                    | 44                                                                                               | M1: Puts $y = 0$ and finds a vequation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               |        |
| (b)                | When $y = 0$ $x = \frac{44}{3}$                                                    | A1: $x = \frac{44}{3} \left( \text{ or } 14\frac{2}{3} \text{ or } 14.0 \right)$                 | $\binom{1}{6}$ or exact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1 A1                                                                                                         |        |
| (0)                |                                                                                    | 2 5 44 6 1                                                                                       | equivalent. $(y = 0 \text{ not neede})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |        |
|                    |                                                                                    |                                                                                                  | ly leading to the correct ans<br>as (0, 44/3) but allow recove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                               |        |
|                    |                                                                                    | ite coordinates written                                                                          | as (0, 44/3) but anow recove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | xy m (c)                                                                                                      | [2]    |
| (c)                |                                                                                    |                                                                                                  | APPROACH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                               |        |
|                    | one rectangle. The cor<br>formula used for a tra<br><b>Note that the first thr</b> | rect pair of 'base' and 'l<br>pezium. If Pythagoras is<br>correct end<br>ee marks apply to their | of the triangles or one of the<br>neight' must be used for a tria<br>required, then it must be used<br>coordinates.<br>r calculated coordinates e.g.<br>nust be correct e.g. (0, 2) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ngle and the correct<br>d correctly with the<br><b>their</b> $\frac{44}{3}$ , $\frac{44}{5}$ , $-\frac{6}{5}$ | M1     |
|                    |                                                                                    | al <b>expression</b> for the are                                                                 | a of one triangle or one trap<br>dinates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                               | A1ft   |
|                    | numerical expressions f                                                            | ect areas together correct<br>or areas have been incom                                           | the second secon | bining them, then this                                                                                        | dM1    |
|                    | Correct numerical exp                                                              | ression for the area of <i>O</i><br>this mark i.e. n                                             | <i>RQP</i> . The expressions must to follow through.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | be fully correct for                                                                                          | A1     |
|                    | Correct                                                                            | exact area e.g. $54\frac{1}{3}, \frac{163}{3}$                                                   | $\frac{326}{6}$ , 54.3 or any exact equiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | valent                                                                                                        | A1     |
|                    | Shape                                                                              | Vertices                                                                                         | Numerical Expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Exact Area                                                                                                    |        |
|                    | Triangle                                                                           | TRQ                                                                                              | $\frac{\frac{1}{2} \times 7 \times \left(\frac{44}{3} - 3\right)}{\frac{1}{2} \times \frac{6}{5} \times 2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{245}{6}$                                                                                               |        |
|                    | Triangle                                                                           | SPO                                                                                              | $\frac{1}{2} \times \frac{6}{5} \times 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{6}{5}$                                                                                                 |        |
|                    | Triangle                                                                           | PWQ                                                                                              | $\frac{\frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3}{\frac{1}{2} \times (7 - 2) \times 3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{51}{5}$                                                                                                |        |
|                    | Triangle                                                                           | PVQ                                                                                              | $\frac{1}{2} \times (7-2) \times 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{15}{2}$                                                                                                |        |


|     | Triangle                                  | VWQ                                             | $\frac{1}{2} \times \left(\frac{44}{5} - 7\right) \times 3$                                                                          | $\frac{27}{10}$                              |        |
|-----|-------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------|
|     | Triangle                                  | QUR                                             | $\frac{\frac{1}{2} \times \left(\frac{44}{3} - 3\right) \times 7}{\frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}}$ | $\frac{245}{6}$                              |        |
|     | Triangle                                  | PQR                                             | $\frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}$                                                                   | $\frac{119}{3}$                              |        |
|     | Triangle                                  | PNQ                                             | $\frac{\frac{1}{2} \times \frac{34}{3} \times 5}{\frac{1}{2} \times 2 \times 3}$                                                     | $     \frac{119}{3}     \frac{85}{3}     3 $ |        |
|     | Triangle                                  | OPQ                                             | $\frac{1}{2} \times 2 \times 3$                                                                                                      | 3                                            |        |
|     | Triangle                                  | OQR                                             | $\frac{\frac{1}{2} \times \frac{44}{3} \times 7}{\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}}$                               | $\frac{154}{3}$                              |        |
|     | Triangle                                  | OWR                                             | $\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}$                                                                                | $\frac{968}{15}$                             |        |
|     | Triangle                                  | SQR                                             | $\frac{1}{2} \times \left(\frac{44}{3} + \frac{6}{5}\right) \times 7$                                                                | $\frac{833}{15}$                             |        |
|     | Triangle                                  | OPR                                             | $\frac{1}{2} \times \frac{44}{3} \times 2$                                                                                           | $\frac{\frac{44}{3}}{\frac{27}{2}}$          |        |
|     | Trapezium                                 | OPQT                                            | $\frac{1}{2}(2+7) \times 3$                                                                                                          | $\frac{27}{2}$                               |        |
|     | Trapezium                                 | OPNR                                            | $\frac{1}{2} \times \left(\frac{34}{3} + \frac{44}{3}\right) \times 2$                                                               | 26                                           |        |
|     | Trapezium                                 | OVQR                                            | $\frac{1}{2} \times \left(3 + \frac{44}{3}\right) \times 7$                                                                          | $\frac{371}{6}$                              |        |
|     |                                           |                                                 | MPLES                                                                                                                                |                                              |        |
| (c) |                                           | W                                               | AY 1                                                                                                                                 |                                              |        |
|     | $OPQT = \frac{1}{2}$                      | $(2+7) \times 3$                                | M1: Correct method for <i>OPQT</i> or <i>TRQ</i>                                                                                     |                                              |        |
|     | $TRQ = \frac{1}{2} \times 7$              | r                                               | A1ft: $OPQT = \frac{1}{2}(2+7) \times 3$<br>$TRQ = \frac{1}{2} \times 7 \times \left(\frac{44}{3} - 3\right)$                        | or                                           | M1A1ft |
|     | $\frac{1}{2}(2+7) \times 3 + \frac{1}{2}$ | $\times 7 \times \left(\frac{44}{3} - 3\right)$ | dM1: Correct numerical cor<br>that have been calculated co<br>A1: <b>Fully Correct</b> numerica<br>area <i>ORQP</i>                  | rrectly                                      | dM1A1  |
|     | 54                                        | $\frac{1}{3}$                                   | Any exact equivalent e.g. $\frac{1}{2}$                                                                                              | $\frac{63}{3}, \frac{326}{6}, 54.3$          | A1     |

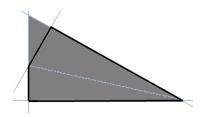


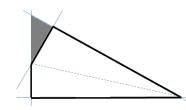

| W                                                                                                             | VAY 2                                                                                                                                                           |        |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $PQR = \frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}$                                      | M1: Correct method for <i>PQR</i> or <i>OPR</i>                                                                                                                 |        |
| or                                                                                                            | A1ft: $PQR = \frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34}$ or                                                                               | M1A1ft |
| $OPR = \frac{1}{2} \times \frac{44}{3} \times 2$                                                              | $OPR = \frac{1}{2} \times \frac{44}{3} \times 2$                                                                                                                |        |
| $\frac{1}{2} \times \sqrt{34} \times \frac{7}{3} \times \sqrt{34} + \frac{1}{2} \times \frac{44}{3} \times 2$ | dM1: Correct numerical combination of areas<br>that have been calculated correctly<br>A1: <b>Fully Correct</b> numerical expression for the<br>area <i>ORQP</i> | dM1A1  |
| 54 <u>1</u>                                                                                                   | Any exact equivalent e.g. $\frac{163}{3}$ , $\frac{326}{6}$ , 54.3                                                                                              | A1     |




| W                                                                                      | /AY 3                                                                                                                                                           |        |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $SQR = \frac{1}{2} \times 7 \times \frac{238}{15}$                                     | M1: Correct method for SQR or SPO                                                                                                                               |        |
| 2 15<br>or                                                                             | A1ft: $SQR = \frac{1}{2} \times 7 \times \frac{238}{15}$ or                                                                                                     | M1A1ft |
| $SPO = \frac{1}{2} \times \frac{6}{5} \times 2$                                        | $SPO = \frac{1}{2} \times \frac{6}{5} \times 2$                                                                                                                 |        |
| $\frac{1}{2} \times 7 \times \frac{238}{15} - \frac{1}{2} \times \frac{6}{5} \times 2$ | dM1: Correct numerical combination of areas<br>that have been calculated correctly<br>A1: <b>Fully Correct</b> numerical expression for the<br>area <i>ORQP</i> | dM1A1  |
| 54 <u>1</u> 3                                                                          | Any exact equivalent e.g. $\frac{163}{3}$ , $\frac{326}{6}$ , 54.3                                                                                              | A1     |

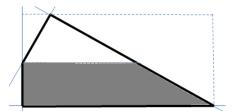



| WAY 4                                                                                                  |                                                                                                                                                                 |        |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $PVQ = \frac{1}{2} \times 5 \times 3$                                                                  | M1: Correct method for PVQ or QUR                                                                                                                               |        |
| or                                                                                                     | A1ft: $PVQ = \frac{1}{2} \times 5 \times 3$                                                                                                                     | M1A1ft |
| $QUR = \frac{1}{2} \times 7 \times \frac{35}{3}$                                                       | or $QUR = \frac{1}{2} \times 7 \times \frac{35}{3}$                                                                                                             |        |
| $OVUR7 \times \frac{44}{3} - \frac{1}{2} \times 5 \times 3 - \frac{1}{2} \times 7 \times \frac{35}{3}$ | dM1: Correct numerical combination of areas<br>that have been calculated correctly<br>A1: <b>Fully Correct</b> numerical expression for<br>the area <i>ORQP</i> | dM1A1  |
| 54 <del>1</del> 3                                                                                      | Any exact equivalent e.g. $\frac{163}{3}$ , $\frac{326}{6}$ , 54.3                                                                                              | A1     |





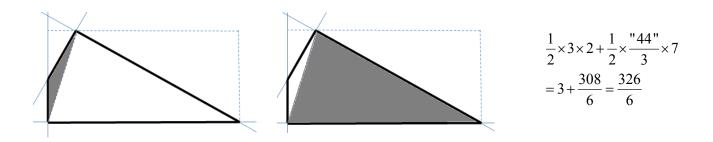

$$7 \times \frac{"44"}{3} - \frac{1}{2} \times 5 \times 3 - \frac{1}{2} \times \frac{"35"}{3} \times 7$$
$$= \frac{308}{3} - \frac{15}{2} - \frac{245}{6} = \frac{326}{6}$$


| WA                                                                                                                | AY 5                                                                                                                                                            |        |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $OWR = \frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}$                                                       | M1: Correct method for OWR or PWQ                                                                                                                               |        |
| $PWQ = \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$                                                 | A1ft: $OWR = \frac{1}{2} \times \frac{44}{3} \times \frac{44}{5}$ or<br>$PWQ = \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$                       | M1A1ft |
| $\frac{1}{2} \times \frac{44}{3} \times \frac{44}{5} - \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$ | dM1: Correct numerical combination of areas<br>that have been calculated correctly<br>A1: <b>Fully Correct</b> numerical expression for<br>the area <i>ORQP</i> | dM1A1  |
| 54 <u>1</u>                                                                                                       | Any exact equivalent e.g. $\frac{163}{3}$ , $\frac{326}{6}$ , 54.3                                                                                              | A1     |



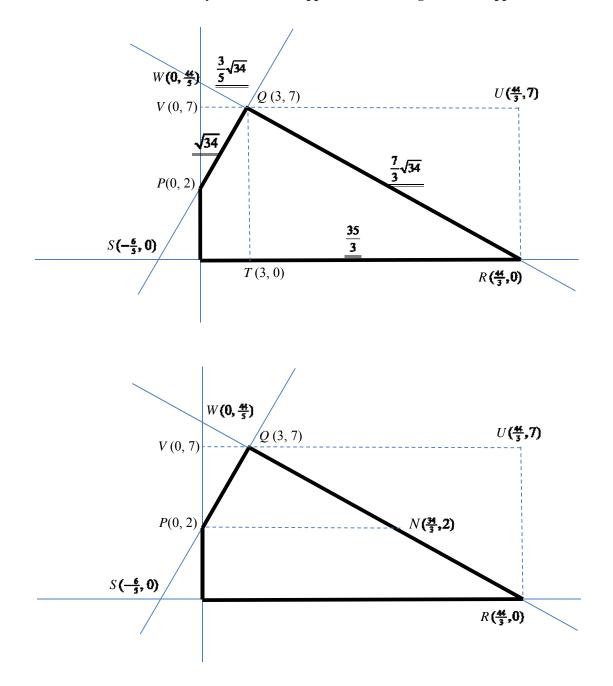


$$\frac{1}{2} \times \frac{"44"}{5} \times \frac{"44"}{3} - \frac{1}{2} \times \left(\frac{44}{5} - 2\right) \times 3$$
$$= \frac{968}{15} - \frac{51}{5} = \frac{163}{3}$$


| WA                                                                                                                | Y 6                                                                                                                                                             |        |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1 (34 44)                                                                                                         | M1: Correct method for OPNR or PNQ                                                                                                                              |        |
| $OPNR = \frac{1}{2} \times \left(\frac{34}{3} + \frac{44}{3}\right) \times 2$ or                                  | A1ft: $OPNR = \frac{1}{2} \times \left(\frac{34}{3} + \frac{44}{3}\right) \times 2$                                                                             | M1A1ft |
| $PNQ = \frac{1}{2} \times \frac{34}{3} \times 5$                                                                  | or<br>$PNQ = \frac{1}{2} \times \frac{34}{3} \times 5$                                                                                                          |        |
| $\frac{1}{2} \times \left(\frac{34}{3} + \frac{44}{3}\right) \times 2 + \frac{1}{2} \times \frac{34}{3} \times 5$ | dM1: Correct numerical combination of areas<br>that have been calculated correctly<br>A1: <b>Fully Correct</b> numerical expression for<br>the area <i>ORQP</i> | dM1A1  |
| 54 <del>1</del> 3                                                                                                 | Any exact equivalent e.g. $\frac{163}{3}$ , $\frac{326}{6}$ , 54.3                                                                                              | A1     |






$$\frac{1}{2} \times \left(\frac{"34"}{3} + \frac{"44"}{3}\right) \times 2 + \frac{1}{2} \times \frac{"34"}{3} \times 5$$
$$= \frac{156}{6} + \frac{170}{6} = \frac{326}{6}$$

| WA                                                                         | XY 7                                                                                                                                                            |        |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                                                            | M1: Correct method for <i>OPQ</i> or <i>OQR</i>                                                                                                                 |        |
| $OPQ = \frac{1}{2} \times 3 \times 2$ or                                   | A1ft: $OPQ = \frac{1}{2} \times 3 \times 2$                                                                                                                     | M1A1ft |
| $OQR = \frac{1}{2} \times \frac{44}{3} \times 7$                           | or<br>$OQR = \frac{1}{2} \times \frac{44}{3} \times 7$                                                                                                          |        |
| $\frac{1}{2} \times 3 \times 2 + \frac{1}{2} \times \frac{44}{3} \times 7$ | dM1: Correct numerical combination of areas<br>that have been calculated correctly<br>A1: <b>Fully Correct</b> numerical expression for<br>the area <i>ORQP</i> | dM1A1  |
| $54\frac{1}{3}$                                                            | Any exact equivalent e.g. $\frac{163}{3}, \frac{326}{6}, 54.3$                                                                                                  | A1     |



| WA                                                                                            | Y 8                                                                                                                                                                                                                                                          |        |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $\frac{1}{2} \begin{vmatrix} 0 & \frac{44}{3} & 3 & 0 & 0 \\ 0 & 0 & 7 & 2 & 0 \end{vmatrix}$ | M1: Uses the vertices of the quadrilateral to<br>form a determinant $\begin{vmatrix} 0 & \frac{44}{3} & 3 & 0 & 0 \\ 0 & 0 & 7 & 2 & 0 \end{vmatrix}$<br>A1ft: $\frac{1}{2} \begin{vmatrix} 0 & \frac{44}{3} & 3 & 0 & 0 \\ 0 & 0 & 7 & 2 & 0 \end{vmatrix}$ | M1A1ft |
| $\frac{1}{2}\left(\frac{44}{3}\times7+3\times2\right)$                                        | dM1: Fully correct determinant method with no<br>errors<br>A1: Fully Correct numerical expression for<br>the area <i>ORQP</i>                                                                                                                                | dM1A1  |
| 54 <u>1</u>                                                                                   | Any exact equivalent e.g. $\frac{163}{3}$ , $\frac{326}{6}$ , 54.3                                                                                                                                                                                           | Al     |

There will be other ways but the same approach to marking should be applied.



| Question<br>Number | Scheme                                                                                                                                                                     |                                                                                                                                                                                                                                                                               | Marks    |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 11. (a)            | $y = 2x^3 + kx^2$                                                                                                                                                          | $x^{2}+5x+6$                                                                                                                                                                                                                                                                  |          |
|                    | $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 6x^2 + 2kx + 5$                                                                                                            | M1: $x^n \rightarrow x^{n-1}$ for one of the terms including<br>$6 \rightarrow 0$<br>A1: Correct derivative                                                                                                                                                                   | M1 A1    |
|                    |                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                             | [2]      |
| (b)                | Gradient of given line is $\frac{17}{2}$                                                                                                                                   | Uses or states $\frac{17}{2}$ or equivalent e.g. 8.5.<br>Must be stated or used in (b) and not just<br>seen as part of $y = \frac{17}{2}x + \frac{1}{2}$ .                                                                                                                    | B1       |
|                    | $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=-2} = 6\left(-2\right)^2 + 2k\left(-2\right) + 5$                                                                         | Substitutes $x = -2$ into their derivative ( <b>not the curve</b> )                                                                                                                                                                                                           | M1       |
|                    | $"24 - 4k + 5" = "\frac{17}{2}" \Longrightarrow k = \frac{41}{8}$                                                                                                          | dM1: Puts their expression = their $\frac{17}{2}$<br>(Allow BOD for 17 or -17 but <b>not</b> the<br>normal gradient) and solves to obtain a<br>value for <i>k</i> . <b>Dependent on the previous</b><br><b>method mark</b> .<br>A1: $\frac{41}{8}$ or $5\frac{1}{8}$ or 5.125 | dM1 A1   |
|                    | Note                                                                                                                                                                       | <u>e:</u>                                                                                                                                                                                                                                                                     |          |
|                    | $6x^2 + 2kx + 5 = \frac{17}{2}x + \frac{1}{2}$ scores no marks on its<br>substitute $x = -2$ into the lhs. If they rearrange this                                          | equation and then substitute $x = -2$ , this scores                                                                                                                                                                                                                           |          |
|                    | no mai                                                                                                                                                                     | rks.                                                                                                                                                                                                                                                                          | [4]      |
| (c)                | $y = -16 + 4k - 10 + 6 = 4"k" - 20 = \frac{1}{2}$                                                                                                                          | M1: Substitutes $x = -2$ and their numerical k<br>into $y =$<br>A1: $y = \frac{1}{2}$                                                                                                                                                                                         | M1 A1    |
|                    | Allow the marks for part (c                                                                                                                                                | ) to be scored in part (b).                                                                                                                                                                                                                                                   |          |
| ( <b>d</b> )       | $y - "\frac{1}{2}" = "\frac{17}{2}" (x - 2) \Longrightarrow -17x + 2y - 35 = 0$<br>or<br>$y = "\frac{17}{2}" x + c \Longrightarrow c = \Longrightarrow -17x + 2y - 35 = 0$ | M1: Correct attempt at linear equation with<br>their 8.5 gradient (not the normal gradient)<br>using $x = -2$ and their $\frac{1}{2}$                                                                                                                                         | [2]      |
|                    | $0r 2y - 17x = 1 + 34 \implies -17x + 2y - 35 = 0$                                                                                                                         | A1: cao (allow any integer multiple)                                                                                                                                                                                                                                          |          |
|                    |                                                                                                                                                                            |                                                                                                                                                                                                                                                                               | [2]      |
|                    |                                                                                                                                                                            |                                                                                                                                                                                                                                                                               | 10 marks |