edexcel

Mark Scheme (Results)

 June 2011GCE Core Mathematics C1 (6663) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Examiners' Report that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA027654
All the material in this publication is copyright
© Edexcel Ltd 2011
advancing learning, changing lives

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol Will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $\boldsymbol{*}$ The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

June 2011
 Core Mathematics C1 6663 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$5 \quad$ (or ± 5)	B1 (1)
(b)	$\begin{aligned} & 25^{-\frac{3}{2}}=\frac{1}{25^{\frac{3}{2}}} \text { or } 25^{\frac{3}{2}}=125 \text { or better } \\ & \frac{1}{125} \text { or } 0.008 \quad\left(\text { or } \pm \frac{1}{125}\right. \text {) } \end{aligned}$	M1 A1
	Notes (a) Give B 1 for 5 or ± 5 Anything else is B0 (including just -5) (b) M: Requires reciprocal OR $25^{\frac{3}{2}}=125$ Accept $\frac{1}{5^{3}}, \frac{1}{\sqrt{15625}}, \frac{1}{25 \times 5}, \frac{1}{25 \sqrt{25}}, \frac{1}{\sqrt{25^{3}}}$ for M1 Correct answer with no working (or notation errors in working) scores both marks M1A0 for $-\frac{1}{125}$ without $+\frac{1}{125}$	i.e. M1 A1

advancing learning, changing lives

Question Number	Scheme ${ }^{\text {a }}$ Marks
2. (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=10 x^{4}-3 x^{-4} \quad$ or $10 x^{4}-\frac{3}{x^{4}}$ M1 A1 A1
(b)	$\begin{array}{r} \left(\int=\right) \frac{2 x^{6}}{6}+7 x+\frac{x^{-2}}{-2}=\frac{x^{6}}{3}+7 x-\frac{x^{-2}}{2}+C \end{array}$
	Notes (a) M1: Attempt to differentiate $x^{n} \rightarrow x^{n-1}$ (for any of the 3 terms) i.e. $a x^{4}$ or $a x^{-4}$, where a is any non-zero constant or the 7 differentiated to give 0 is sufficient evidence for M1 $1^{\text {st }} \mathrm{A} 1$: One correct (non-zero) term, possibly unsimplified. $2^{\text {nd }}$ A1: Fully correct simplified answer. (b) M1: Attempt to integrate $x^{n} \rightarrow x^{n+1}$ (i.e. $a x^{6}$ or $a x$ or $a x^{-2}$, where a is any non-zero constant). $1{ }^{\text {st }} \mathrm{A} 1$: Two correct terms, possibly unsimplified. $2^{\text {nd }} \mathrm{A}$: All three terms correct and simplified. Allow correct equivalents to printed answer, e.g. $\frac{x^{6}}{3}+7 x-\frac{1}{2 x^{2}}$ or $\frac{1}{3} x^{6}+7 x-\frac{1}{2} x^{-2}$ Allow $\frac{1 x^{6}}{3}$ or $7 x^{1}$ $\mathrm{B} 1:+C$ appearing at any stage in part (b) (independent of previous work)

advancing learning, changing lives

Question Number	Scheme \quad Marks
3.	Mid-point of $P Q$ is $(4,3)$ B 1 $P Q: m=\frac{0-6}{9-(-1)},\left(=-\frac{3}{5}\right)$ B 1 Gradient perpendicular to $P Q=-\frac{1}{m} \quad\left(=\frac{5}{3}\right)$ $y-3=\frac{5}{3}(x-4)$ M1 $5 x-3 y-11=0$ or $3 y-5 x+11=0$ or multiples e.g. $10 x-6 y-22=0$ M1
	Notes B1: correct midpoint. B1: correct numerical expression for gradient - need not be simplified $1^{\text {st }} \mathrm{M}$: Negative reciprocal of their numerical value for m $2^{\text {nd }} \mathrm{M}$: Equation of a line through their $(4,3)$ with any gradient except 0 or ∞. If the 4 and 3 are the wrong way round the $2^{\text {nd }} \mathrm{M}$ mark can still be given if a correct formula (e.g. $y-y_{1}=m\left(x-x_{1}\right)$) is seen, otherwise M0. If $(4,3)$ is substituted into $y=m x+c$ to find c, the $2^{\text {nd }} M$ mark is for attempting this. A1: Requires integer form with an = zero (see examples above)

advancing learning, changing lives

Question Number	Scheme	Marks
4.		M1 M1 A1 M1 A1 M1 A1 (7)
	Notes $1^{\text {st }} \mathrm{M}$: Squaring to give 3 or 4 terms (need a middle term) $2^{\text {nd }} \mathrm{M}$: Substitute to give quadratic in one variable (may have just two terms) $3^{\text {rd }} \mathrm{M}$: Attempt to solve a $\mathbf{3}$ term quadratic. $4^{\text {th }} \mathrm{M}$: Attempt to find at least one y value (or x value). (The second variable) This will be by substitution or by starting again. If y solutions are given as x values, or vice-versa, penalise accuracy, so that it to score M1 M1A1 M1 A0 M1 A0. "Non-algebraic" solutions: No working, and only one correct solution pair found (e.g. $x=5, y=-3$): M0 M0 A0 M1 A0 M1 A No working, and both correct solution pairs found, but not demonstrated: M0 M0 A0 M1 A1 M1 A Both correct solution pairs found, and demonstrated: Full marks are possible review)	is possible 0 1 send to

advancing learning, changing lives

Question Number	Scheme	Marks
5. (a)	$\left(a_{2}=\right) 5 k+3$	B1
(b)	$\begin{align*} \left(a_{3}\right. & =) 5(5 k+3)+3 \\ & =25 k+18 \tag{*} \end{align*}$	M1 A1 cso (2)
(c) (i) (ii)	$\begin{aligned} & a_{4}=5(25 k+18)+3 \quad(=125 k+93) \\ & \begin{aligned} \sum_{r=1}^{4} a_{r} & =k+(5 k+3)+(25 k+18)+(125 k+93) \\ & =156 k+114 \\ & =6(26 k+19) \quad \text { (or explain each term is divisible by } 6) \end{aligned} \end{aligned}$	(4)
	Notes (a) $5 k+3$ must be seen in (a) to gain the mark (b) $1^{\text {st }} \mathrm{M}$: Substitutes their a_{2} into $5 a_{2}+3$ - note the answer is given so w be seen. (c) $1^{\text {st }}$ M1: Substitutes their a_{3} into $5 a_{3}+3$ or uses $125 k+93$ $2^{\text {nd }} \mathrm{M} 1$: for their sum $k+a_{2}+a_{3}+a_{4}$ - must see evidence of four ter signs and must not be sum of AP $1^{\text {st }} \mathrm{A} 1$: All correct so far $2^{\text {nd }}$ A1ft: Limited ft - previous answer must be divisible by 6 (eg $156 k+42$). This is dependent on second M mark in (c) Allow $\frac{156 k+114}{6}=26 k+19$ without explanation. No conclusion is needed.	orking must ms with plus

advancing learning, changing lives

Question Number	Scheme	Marks
6. (a)	$p=\frac{1}{2}, q=2 \quad$ or $\quad 6 x^{\frac{1}{2}}, 3 x^{2}$	B1, B1
(b)	$\begin{aligned} & \frac{6 x^{\frac{3}{2}}}{(3 / 2)}+\frac{3 x^{3}}{3} \quad\left(=4 x^{\frac{3}{2}}+x^{3}\right) \\ & x=4, y=90: 32+64+C=90 \Rightarrow C=-6 \\ & y=4 x^{\frac{3}{2}}+x^{3}+\text { "their }-6 " \end{aligned}$	M1 A1ft M1 A1 A1 (5)
	Notes	
	(a) Accept any equivalent answers, e.g. $p=0.5, q=4 / 2$ (b) $1^{\text {st }} \mathrm{M}$: Attempt to integrate $x^{n} \rightarrow x^{n+1}$ (for either term) $1^{\text {st }} \mathrm{A}$: ft their p and q, but terms need not be simplified ($+C$ not required for this mark) $2^{\text {nd }} \mathrm{M}$: Using $x=4$ and $y=90$ to form an equation in C. $2^{\text {nd }}$ A: cao $3^{\text {rd }} \mathrm{A}$: answer as shown with simplified correct coefficients and powers - but follow through their value for C If there is a 'restart' in part (b) it can be marked independently of part (a), but marks for part (a) cannot be scored for work seen in (b). Numerator and denominator integrated separately: First M mark cannot be awarded so only mark available is second M mark. So 1 out of 5 marks.	

advancing learning, changing lives

Question Number	Scheme	Marks
7. (a)	Discriminant: $b^{2}-4 a c=(k+3)^{2}-4 k$ or equivalent	M1 A1 (2)
(b)	$(k+3)^{2}-4 k=k^{2}+2 k+9=(k+1)^{2}+8$	M1 A1 (2)
(c)	For real roots, $b^{2}-4 a c \geq 0$ or $b^{2}-4 a c>0$ or $(k+1)^{2}+8>0$ $(k+1)^{2} \geq 0$ for all k, so $b^{2}-4 a c>0$, so roots are real for all k equiv.)	M1 A1 cso (2)
	Notes (a) M1: attempt to find discriminant - substitution is required If formula $b^{2}-4 a c$ is seen at least 2 of a, b and c must be correct If formula $b^{2}-4 a c$ is not seen all 3 of a, b and c must be correct Use of $b^{2}+4 a c$ is M0 A1: correct unsimplified (b) M1: Attempt at completion of square (see earlier notes) A1: both correct (no ft for this mark) (c) M1: States condition as on scheme or attempts to explain that their $(k+1)^{2}+8$ is greater than 0 A1: The final mark (A1cso) requires $(k+1)^{2} \geq 0$ and conclusion. We will allow $(k+1)^{2}>0$ (or word positive) also allow $b^{2}-4 a c \geq 0$ an	and conclusion.

advancing learning, changing lives

Question Number	Scheme	Marks
8. (a)	Shape \bigcup through $(0,0)$ $(3,0)$ $(1.5,-1)$	B1 B1 B1 (3)
(b)	 Shape $(0,0)$ and $(6,0)$ $(3,1)$	B1 B1 B1 (3)
(c)	Shape \bigcup, not through $(0,0)$Minimum in $4^{\text {th }}$ quadrant$(-p, 0)$ and $(6-p, 0)$ $(3-p,-1)$	M1 A1 B1 B1 (4)
Notes		
	(a) B1: U shaped parabola through origin B1: $(3,0)$ stated or 3 labelled on x axis B1: $(1.5,-1)$ or equivalent e.g. $(3 / 2,-1)$ (b) B1: Cap shaped parabola in any position B1: through origin (may not be labelled) and (6,0) stated or 6 labelled on x-axis B1: $(3,1)$ shown (c) M1: U shaped parabola not through origin A1: Minimum in $4^{\text {th }}$ quadrant (depends on M mark having been given) B1: Coordinates stated or shown on x axis B1: Coordinates stated Note: If values are taken for p, then it is possible to give M1A1B0B0 even if there are several attempts. (In this case all minima should be in fourth quadrant)	

advancing learning, changing lives

advancing learning, changing lives

Question Number	Scheme	Marks
10. (a)	 Shape (cubic in this orientation) Touching x-axis at $\mathbf{- 3}$ Crossing at $\mathbf{- 1}$ on x-axis Intersection at $\mathbf{9}$ on y-axis	B1 B1 B1 B1 (4)
(b)	$y=(x+1)\left(x^{2}+6 x+9\right)=x^{3}+7 x^{2}+15 x+9$ or equiv. (possibly unsimplified) Differentiates their polynomial correctly - may be unsimplified $\begin{equation*} \frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+14 x+15 \tag{*} \end{equation*}$	B1 M1 A1 cso (3)
(c)	$\begin{aligned} & \text { At } x=-5: \frac{\mathrm{d} y}{\mathrm{~d} x}=75-70+15=20 \\ & \text { At } x=-5: y=-16 \\ & \quad y-("-16 ")=" 20 "(x-(-5)) \quad \text { or } y=" 20 x "+c \text { with }(-5,-" 16 ") \\ & \text { used to find } c \\ & y=20 x+84 \end{aligned}$	B1 B1 M1 A1 (4)
(d)	$\begin{aligned} & \text { Parallel: } 3 x^{2}+14 x+15=" 20 " \\ & (3 x-1)(x+5)=0 \quad x=\ldots \\ & x=\frac{1}{3} \end{aligned}$	M1 M1 A1 (3) 14
	Notes (a) Crossing at -3 is B 0 . Touching at -1 is B 0 (b) M : This needs to be correct differentiation here A1: Fully correct simplified answer. (c) M: If the -5 and " -16 " are the wrong way round or - omitted the M mark c if a correct formula is seen, (e.g. $\left.y-y_{1}=m\left(x-x_{1}\right)\right)$ otherwise M0. m should be numerical and not 0 or infinity and should not have involve reciprocal. (d) $1^{\text {st }} \mathrm{M}$: Putting the derivative expression equal to their value for gradi $2^{\text {nd }} \mathrm{M}$: Attempt to solve quadratic (see notes) This may be implied by answer.	still be given negative correct

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA027654 J une 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

