General Principles for Mechanics Marking

Question Number	Scheme	Marks	3
1	$T\cos 70^{\circ} + R = 40g$	M1A1	
		M1A1	
	$T\cos 20^{\circ} = F$ $F = \frac{3}{4}R$	B1	
	Eliminate <i>R</i> and solve for <i>T</i>	DM 1	
	T = 250 N or 246 N	A1	
			7
	Notes		
1	First M1 for resolving vertically with usual rules (must be using either 20° or 70°) First A1 for a correct equation Second M1 for resolving horizontally with usual rules (must be using either 20° or 70°) Second A1 for a correct equation		
	B1 for $F = \frac{3}{4}R$ seen (could be on a diagram)		
	Third DM1 dependent on previous two M marks Third A1 for either 250 (N) or 246 (N)		
2a	$M(D)$, $(1080 \times 1) - (400 \times 2) = R_C \times 3.5$	M1 A1	
	$R_{c} = 80 \text{ (N)}$	A1	
	$M(C)$, $(1080 \times 2.5) + (400 \times 5.5) = R_D \times 3.5$	M1A1	
	$R_D = 1400 \text{ (N)}$	A1	(6)
	OR $(\uparrow) R_C + R_D = 1480$	M1A1	
2b	$R_C + (R_C + 520) = 1480$ OR $R_D + (R_D - 520) = 1480$	M1 A1	
	$M(D)$, $(1080 \times 1) - 400(x-4) = R_C \times 3.5$	M1 A1	(5)
	x = 2.5	711	11
	Notes		
2a	First M1 for a moments equation or a vertical resolution First A1 for a correct equation (R_C and/or R_D do NOT need to be substituted but if one is, it can be their value found from a previous equation)		

Question Number	Scheme	Marks	3
	Second A1 for $R_c = 80$ (N)		
	Second M1 for a moments equation or a vertical resolution		
	Third A1 for a correct equation (R_C and/or R_D do NOT need to be		
	substituted but if one is, it can be their value found from a previous		
	equation)		
	Fourth A1 for $R_D = 1400$ (N)		
	Enter marks for equations on ePEN, in the order they appear		
	First M1 for a moments equation or a vertical resolution		
2 b	First A1 for a correct equation (R_C and/or R_D do NOT need to be		
	substituted but if one is, it can be their value found from a previous		
	equation)		
	Second M1 for a moments equation or a vertical resolution		
	Second A1 for a correct equation (R_C and/or R_D do NOT need to be		
	substituted but if one is, it can be their value found from a previous		
	equation)		
	Third A1 for $x = 2.5$		
	Enter marks for equations on ePEN, in the order they appear		
	N.B. Equations may contain any or all of R_C , R_D or x for M marks but		
	must contain only one of R_C or R_D to earn the A mark.		
	N.B. If they assume that $R_D = 520$, they lose all the marks for part (b).		
	N.B If they start with $2R = 1480$ and then add or subtract (or both) 520 to their R value, M0.		
	N.B. If brackets are omitted in a moments equation e.g. $(520 + R_C).4$ is		
	written as $520 + R_C.4$, the M mark can be scored		
	written as 320 × 1(, the 111 mark can be sected		
3	8mu - 4mu = 5mv	M1A1	
	v = 0.8u	A1	
	For $P: -I = 4m(0.8u - 2u)$	M1 A1	
	I = 4.8 mu	A1	
	OR For Q : $I = m(0.8u + 4u)$	M1 A1	
	I = 4.8 mu	A1	
	Notos		6
	Notes First M1 for CLM with correct no of terms all dimensionally correct to give		
	First M1 for CLM with correct no. of terms, all dimensionally correct, to give an equation in <i>m</i> , <i>u</i> and their <i>v</i> only. Condone consistent <i>g</i> 's or cancelled <i>m</i> 's		
3	and sign errors.		
	(N.B. The CLM equation could be obtained by equating the magnitudes of the		
	impulses on each particle)		
	First A1 for a correct equation (they may have - 5mv)		
	Second A1 for $0.8u$ or $-0.8u$ (as appropriate)		
	Second M1 for using Impulse = Change in Momentum for either P or Q		
	(M0 if <i>clearly</i> adding momenta or if g is included or if different mass in the		
	two momentum terms) but condone sign errors.		

Question Number	Scheme	Marks
3.	A C D B $R + 2R = 12g + 3g$ M(A), $2Rx + 3R = 12g.4 + 3g.8$ $x = 5.7$	M1 A2 M1 A2 A1 7
	Notes First M1 for either a vertical resolution (with correct of terms) or a moments equation (all terms dim correct and correct no. of terms) First A1 and Second A1 for a correct equation in R (or S where $S = 2R$) only or R and x only or S and x only. (-1 each error, A1A0 or A0A0) Second M1 for either a vertical resolution (with correct of terms) or a moments equation (all terms dim correct and correct no. of terms) Third A1 and Fourth A1 for a correct equation in R (or S where $S = 2R$) only or R and x only or S and S only. (-1 each error, A1A0 or A0A0) Fifth A1 for S and S marks are for a vertical resolution, if it appears, second 3 marks are for a moments equation. If no vertical resolution, award marks as they appear for the (two) moments equation(s). (i) In a moments equation, if S and S are interchanged, treat as 1 error. (ii) Ignore diagram if it helps the candidate. (iii) If an equation is correct but contains both S and S are interchanged, treat as 1 error. (iv) Full marks possible if all S omitted. (v) For inconsistent omission of S , penalise each omission. S and S are interchanged, treat as 1 error. (iv) Full marks possible if all S omitted. (v) For inconsistent omission of S , penalise each omission.	
	N.B. If they use a different variable, other than x, for a length, with it <u>clearly</u> marked on the diagram, they can score all the marks for any moments equation.	

Question	Scheme	Marks	Notes
2.(a)	$M(C)140(a-2)+30(2a-2)=120 \times 4$ $M(G)50(a-2)+30a=120(6-a)$ $M(D)4\times50+30(2a-6)=140(6-a)$ $M(B)140a=120(a-6)+50(2a-2)$ $M(A)50\times2+120\times6=140a+30\times2a$	M1	Moments or alternative complete method to form an equation in <i>a</i> only. Dimensionally correct. Condone sign error(s) No missing/additional terms Condone a common factor of <i>g</i>
		A1	At most one error
	(200a = 820)	A1	Correct unsimplified equation in a
	a = 4.1	A1	
		(4)	
(b)	$(\uparrow), (2R = 170 =>) R = 85$	B1	Or a correct second moments equation in their <i>a</i> to achieve 2 equations in 2 unknowns
	$M(A)85 \times 2 + 85 \times x = 140 \times a + 30 \times 2a$ $M(C)$ $85(x-2) = 140 \times (a-2) + (2a-2) \times 30$ $M(G)85 \times (a-2) + 30 \times a = 85(x-a)$ $M(E)30(2a-x) + 85(x-2) = 140(x-a)$ $M(B)85 \times (2a-2) + 85(2a-x) = 140 \times a$	M1	Moments equation with equal reactions in a or their a . Dimensionally correct. No missing/additional terms. Condone sign error(s) Accept alternative complete method to form an equation in a different horizontal distance to E Condone incorrect R , $R \neq 120$, $R \neq 50$ Condone a common factor of g
		A1ft	At most one error Follow their a and their $R \neq 120, R \neq 50$
		A1ft	Correct unsimplified equation in AE Follow their a and their $R \neq 120, R \neq 50$
	$AE = \frac{130}{17}$ m (7.6 m or better)	A1	
			If they find a different x , e.g. $CE = 5.6$ and go no further, they score $4/5$.
		(5)	
		[9]	
			A candidate who has a common factor of <i>g</i> throughout can score 8/9

Question Number	Scheme	Marks	Notes
	0.6 m C 1.4 m	G	2 m
4.(a)	A 0.6 m C 1.4 m		
	S	30 g	50 g
	M(A) (30g x 2) + (50g x 4) = 0.6 S	M1	Moments equation. Requires all terms and dimensionally correct. Condone sign errors. Allow M1 if g missing
	$M(C)$ $(0.6 \times R) = (1.4 \times 30g) + (3.4 \times 50g)$ $M(G)$ $(2 \times R) = (1.4 \times S) + (2 \times 50g)$ $M(B)$ $(4 \times R) + (2 \times 30g) = (3.4 \times S)$	A1	Correct unsimplified equation
	$(\uparrow) R + 30g + 50g = S$ $(R + 784 = S)$	M1	Resolve vertically. Requires all 4 terms. Condone sign errors
		A1	Correct equation (with <i>R</i> or their <i>R</i>)
	NB: The second M1A1 can also be earned for a s	second mo	ments equation
	$R = 3460 \text{ or } 3500 \text{ or } \frac{1060g}{3} \text{ (N)} \text{ Not } 353.3g$	A1	One force correct
	$S = 4250$ or 4200 or $\frac{1300g}{3}$ (N) Not $433.3g$	A1	Both forces correct If both forces are given as decimal multiples of <i>g</i> mark this as an accuracy penalty A0A1
		(6)	
4.(b)	M(C) (30g x 1.4) + (Mg x 3.4) = 0.6 x 5000	M1	Use $R = 5000$ and complete method to form an equation in M or weight. Needs all terms present and dimensionally correct. Condone sign errors. Accept inequality. Use of R and S from (a) is M0
		A1	Correct equation in M (not weight) (implied by $M = 77.68$)
	M = 77 kg	A1	77.7 is A0 even is the penalty for over- specified answers has already been applied
		(3)	
4.(c)	The weight of the diver acts at a point.	B1	Accept "the mass of the diver is at a point".
		(1)	
		[10]	

Question Number	Scheme	Marks	Notes
6(a)		M1	Resolve vertically to form an equation in R_c or R_D .
			All terms required. Condone sign errors.
	2T + T = 6g + 15g	A1	Correct unsimplified equation $(R + \frac{1}{2}R = 6g + 15g)$
	2T = 14g = 137 N or 140 N	A1	
		(3)	
(b)		M1	Take moments - all terms must be present and of the correct structure. Form an equation with one unknown length.
	$M(A)$ 15g $AX + 6g \times 2 = (2T \times 1.5) + 4T = 7T$	A2	-1 each error. Follow their <i>T</i>
	$M(B) 15gd + 6g \times 2 = 2T \times 2.5$		NB: Use of the correct reactions the wrong way round is
	$M(c \text{ of m}) 2T \times 0.5 + 15gd = 2 \times T$		one error.
	M(C) 6g×0.5+15g(x-1.5)=T×2.5		$(15g \approx 147, 6g \approx 58.8, 12g \approx 117.6)$
		M1	Substitute for <i>T</i> and solve for <i>AX</i>
	$AX = \frac{37}{15} \text{ m} = 2.5 \text{ m (or better)}$	A1	2.46
		(5)	
	NB: If you see parts (a) and (b) merged, award the 8 nbM1 for the first moments equation bA2 for the equation correct aM1 for a second moments equation and an attempt to aA1 for the second equation correct aA1 for the reaction correct bM1 and bA1 as above		R_C
(c)	$M(C)$, 15g $YC = 6g \times 0.5$	M1	Requires both terms present and of the correct structure. No additional terms (Using $R_C = 21g$, $R_B = 0$)
		A1	Correct unsimplified equation
	YC = 0.2 m	A1	
	AY = 1.3 m	A1	
		(4)	See over for Alt (c)
		12	

Question Number	Scheme	Marks	Notes
4 (a)	(i) $M(D) 3R_C + 1 \times 3g = 2 \times 4g + 5 \times 2g$	M1	e.g.Take moments about D – requires all 4 terms of the correct form, but condone sign errors. 1x need not be seen
		A1	Correct unsimplified equation
	$R_C = 5g$ or $49 \mathrm{N}$	A1	
	(ii) $R(\uparrow) R_C + R_D = 4g + 2g + 3g$	M1	e.g.Resolve vertically to form an equation in R_C and R_D , requires all 5 terms
		A1	Correct unsimplified equation
	$R_D = 4g$ or 39 or 39.2N	A1 (6)	
Alt	$M(A) 3 \times 4g + 6 \times 3g = 2R_C + 5R_D (=30g)$	M1A1	Two equations – M1A1 for each
	$M(B) 3 \times 4g + 6 \times 2g = R_D + 4R_C (= 24g)$	M1A1	
	$M(C) 3R_D + 2 \times 2g = 1 \times 4g + 4 \times 3g$		
	M(centre) $3g \times 3 + R_C = 2R_D + 2g \times 3$		
	$R_C = 5g$ or 49 N, $R_D = 4g$ or 39 or 39.2 N	A1,A1	Solve simultaneously for R_C and R_D
(b)	$M(D) 3R_C + xg = 8g + 10g (3R_C = (18 - x)g)$	M1	First equation in x and R (or R_C and R_D) – correct terms required but condone sign slips.
	$R\left(\uparrow\right)R_C + R_D = 4g + 2g + xg$	M1	A second equation, correct terms required but condone sign slips.
	Alternatives: $M(B) 4R_C + R_D = 12g + 12g$		condone sign sups.
	$M(A): 2R_C + 5R_D = 6xg + 3 \times 4g$		
	$M(C): 2 \times 2g + 3R_D = 4xg + 1 \times 4g$		
	2(18-x)g = 3(6+x)g	DM1	Use $R_C = R_D$ and solve for x . (as far as $x =$) Dependent on the two previous M marks.
	x = 3.6	A1 (4) [10]	Dependent on the two previous in marks.

Question Number	Scheme	Marks
7a	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	N.B. If R_C and R_D reversed, can score max: M1A1(if vert res is used)M1A0DM1A0 Consistent omission of g in both parts of this question can score all of the marks.	
	Resolve vertically: $3R = 8g$	M1A1
	$M(C) : 8g(x-1) = 4 \times 2R$	M1A1
	$8gx = 8g + \frac{64g}{3} = \frac{88g}{3}$, $x = \frac{11}{3}$ Given Answer	DM1A1
	N.D. (Allow, D. instead of 2D. in either equation for M. mode)	(6)
	N.B. (Allow R_D instead of $2R_C$ in either equation for M mark)	
	SC: $M(G)$: $R(x-1) = 2R(5-x)$	M2 A2
	$x = \frac{11}{3}$ Given answer	DM 1 A1
7b	N.B. If they use a value for a reaction found in part (a) in their part (b), no marks for part (b) available.	(6)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Resolve vert: $R_F + kR_F = 11g$ (Allow R instead of kR for M mark))	M1A1
	(Allow R_D instead of kR_F for M mark)) $M(F) : (kR_F \times 3) + (3g \times 2) = 8g \times \frac{5}{3}$ (Allow R_D instead of kR_F for M mark)	M1A1
	$k = \frac{2}{7}$ oe, 0.29 or better	DM1A1
		(6) [12]

Question Number	Scheme	Marks
4a	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Moments about <i>D</i> : $20g \times 2 + 8g \times 4.5 = R_C \times 4.5$ OR Resolve: $R_C + R_D = 28g$	M1A1
(i)	$R_C = \frac{152}{9}g(=166 \text{ or } 170)$	A1
	Moments about C: $20g \times 2.5 = R_D \times 4.5$ OR Resolve: $R_C + R_D = 28g$	M1A1
(ii)	$R_D = \frac{100}{9}g(=109 \text{ or } 110)$	A1
4b	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Moments about A: $R \times 1.5 + 2R \times 6 = 20g \times 4 + 8g \times x$	M1A1
	Resolve: $3R = 28g$, $\left(R = \frac{28}{3}g(=91.5)\right)$ Substitute for R and solve for x : $\frac{27}{2} \times \frac{28}{3}g = 80g + 8g \times x$	M1A1
	126 = 80 + 8x, $8x = 46$, $x = 5.75$ (m)	A1
		(6)
4c	The weight of the package acts at point C (or E)	B1 (1) [13]
	Notes N.B. In both parts, enter marks on ePen for the <i>equations</i> as they appear BUT in part (a) second A1 is for R_C and fourth A1 is for R_D Remember to only penalise overaccuracy, after use of g, ONCE per whole question	

Question Number	Scheme	Marks
5(a)	T ₁ T ₂ 2.2 m A G B 40 N 120 N	
(i)	$M(B)$, $4T_1 = 120 \times 1.8 + 40(4 - x)$ $T_1 = 94 - 10x$	M1 A1 A1
(ii)	$M(A)$, $4T_2 = 120 \times 2.2 + 40x$ $T_2 = 66 + 10x$	M1 A1 A1 (6)
(b)	$94 - 10x \le 84$ $x \ge 1$ $66 + 10x \le 84$ $x \le 1.8$ $1 \le x \le 1.8$	M1 M1 A1 both CV A1 (4)
	NY 4	10
5(a)(i) (ii)	First M1 for a complete method to find an equation in T_A and x only. First A1 for a correct equation in T_A and x only. Second A1 for $94 - 10x$ Second M1 for a complete method to find an equation in T_B and x only. First A1 for a correct equation in T_B and x only. Second A1 for $66 + 10x$	
5(b)	First M1 for their $T_A \le 84$ or $= 84$ or < 84 to give equation or inequality in x only. (> 84 is M0) Second M1 for their $T_B \le 84$ or $= 84$ or < 84 to give equation or inequality in x only. (> 84 is M0) First A1 for both critical values of x , 1 and 1.8 SEEN. Second A1 $1 \le x \le 1.8$ or $1 \le x$ AND $x \le 1.8$ or $[1, 1.8]$	

6. (a)	x is greatest when rod is about to tip about B i.e. $R_A = 0$ (can be implied)	B1
	$M(B), \ 2W(x-2l) = W_{\frac{1}{2}}l$	M1 A1
	x = 2.25l	DM 1 A1 (5)
(b)	Use of $R_A = 2W$ in an equation	M1
	$M(B)$, $2W(2l-x)+W\frac{1}{2}l=2W.2l$	M1 A1 A1
	x = 0.25l	A1 (5)
	, v.=v.	10
	<u>NOTES</u>	
	Question 6(a) B1 for x greatest when $R_A = 0$ (usually implied in moments equation) or correct use of $R_A \ge 0$. First M1 for an equation in x and l ONLY (usually moments about B but could come from two equations). Allow if there is W (uncancelled) in each term. (M0 if R_A term included unless it subsequently becomes zero) First A1 for a correct equation –again allow even if W has not been cancelled. Second M1, dependent on previous M, for solving for x in terms of l . Second A1 for $x = 2.25l$. N.B. If ' l ' omitted consistently and then inserted at end award full marks. If not inserted then can score max B1M1A0M1A0	
	First M1 for use of $R_A = 2W$ in any equation (vertical resolution or moments) or for correct use of $R_A \le 2W$. Second M1 for an equation in x and l ONLY (usually moments about B but could come from two equations). Allow if there is W (uncancelled) in each term. A2 for the equation, again allow even if W has not been cancelled, -1 each error. Third A1 for $x = 0.25l$. N.B. If ' l ' omitted consistently and then inserted at end award full marks. If not inserted then can score max M1M1A0A0A0.	

www.yesterdaysmathsexam.com

Question Number	Scheme	Marks	
3.	$M(X)$, $25g(14-x) + 100g$. $12 = 2009 \times 6$ x = 12.8, $13 (m)$	M1 A1 A1 DM1 A1	
	NT o 4 o c	5	
3.	First M1 for producing an equation in a relevant unknown length <i>only</i> . Usual rules, correct no. of terms, dim correct. (If more than one equation is used, rules apply to <i>each</i> equation) First A2 for a correct equation; -1 each error (omission of <i>g</i> 's counts as one error) Second DM1, dependent, for solving for AG. Third A1 for 12.8, 13 oe. S.C. If they use <i>M</i> in their equation(s) and never find it or just assume a value for it e.g. 100, can score max M1A0A0M0A0		