

Mark Scheme (Results)

January 2017

Pearson Edexcel International A Level in Mechanics 2 (WME02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can touch with us usina the details contact page aet in on our us at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017 Publications Code WME02_01_1701_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

<u>'M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.

e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc. The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

<u>'A' marks</u>

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. MO A1 is impossible.

<u>'B' marks</u>

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.

N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.

- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
 - M(A) Taking moments about A.
 - N2L Newton's Second Law (Equation of Motion)
 - NEL Newton's Experimental Law (Newton's Law of Impact)
 - HL Hooke's Law
 - SHM Simple harmonic motion
 - PCLM Principle of conservation of linear momentum
 - RHS, LHS Right hand side, left hand side.

Question Number	Scheme	Marks	Notes
1. (a)	$F = \frac{11760}{10}$	B1	Seen or implied
	$R = F - 1200g\sin\alpha$	M1	Motion up the slope. Allow with <i>F</i> . Need all three terms but condone sign errors. Condone trig confusion
	$R = \frac{11760}{10} - 1200g \frac{1}{15}$	A1	Correct equation, correctly substituted.
	R = 390 (392)	A1	Max 3 s.f.
		(4)	
(b)	$F = \frac{50000}{V}$	B1	Seen or implied Could be scored after incorrect work on an energy equation to find <i>F</i>
	$F - 1200g\sin\alpha - 700 = 1200 \ge 1.5$	M1	Equation of motion. Must be using 700. Need all four terms but condone sign errors. Condone trig confusion
		A1	Equation in V or F (and α) with at most one error Their F
	$\frac{50000}{V} - 1200g \frac{1}{15} - 700 = 1200 \text{ x } 1.5$	A1	Correct equation in V
	Solve for V	DM1	Dependent on previous M
	V = 15 (15.2)	A1	Max 3 s.f.
		(6)	
		10	

NumberScheme2(a)Rectangle + Triangle(i) \overline{Prom}_{AB} 2 1 3 From AB a $4\frac{4}{3}a$ \overline{y} B1 \overline{Prom}_{AB} a $\frac{2}{3}a$ $\overline{2}$ \overline{AB} a $\frac{4}{3}a$ \overline{y} B1 \overline{Prom}_{AB} a $\frac{2}{3}a$ $\overline{2}$ \overline{AB} a $\frac{2}{3}a$ $\overline{2}$ \overline{AB} a $2 \operatorname{triangles}$ $\overline{B1}$ \overline{AB} $\overline{2}$ \overline{AB} $\overline{2}$ \overline{AB} $\overline{3}$ $2a$ $1.\frac{4}{3}a = 3\overline{y}$ $A1$ Moments about AB or a parallel all three terms and correct signs $\left(4a - \frac{2}{3}a = 3\overline{y}\right)$ \overline{a} $\overline{y} = \frac{10}{9}a$ \overline{a} \overline{a} $\overline{A1}$ \overline{Prom}_{AD} \overline{AD} $\frac{1}{2}a$ $\overline{A2}$ $\frac{4}{3}a$ \overline{AD} $\frac{1}{2}a$ $\overline{A2}$ $\overline{4}a$ $\overline{A2}$ $\overline{3}a$ $\overline{A1}$ \overline{Prom}_{AD} $\overline{A2}$ $\overline{3}a$ $\overline{A1}$ $\overline{A1}$ $\overline{A2}$ $\overline{3}a$ $\overline{A1}$ $\overline{A2}$ $\overline{A2}$ $\overline{3}a$ $\overline{A2}$ $\overline{3}a$ $\overline{A1}$ $\overline{A1}$ $\overline{A2}$ $\overline{3}a$ $\overline{A1}$ $\overline{A2}$ $\overline{A2}$ $\overline{3}a$ $\overline{A2}$ $\overline{3}a$ $\overline{A1}$ $\overline{A1}$ $\overline{A2}$ $\overline{3}a$ $\overline{A2}$ $\overline{3}a$ $\overline{A1}$ $\overline{A2}$ $\overline{A2}$ <th>loction</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Marks</th> <th></th> <th></th> <th></th> <th></th> <th></th>	loction						Marks					
2(a)Rectangle + Triangle rectangle Image ratioImage Ima		Scheme	9				IVIAI KS					
(i) $\frac{\boxed{Mass}{ratio} \boxed{2}{1} \boxed{1}{3}}{\boxed{From} a \boxed{4}{3} a \boxed{y}}$ B1 $\frac{\boxed{Mass}{ratio} \boxed{4}{1} \boxed{1}{1}$ $\frac{\boxed{From} a \boxed{4}{3} a \boxed{y}}{\boxed{From} a \boxed{2}{3} a}$ $\frac{4}{3} \boxed{2} \ triangles$ $\frac{\boxed{DAB} DBC}{\boxed{AB} \ DBC}$ $\frac{\boxed{DAB} DBC}{\boxed{AB} \ a} \boxed{2} \ triangles$ $\frac{\boxed{DAB} DBC}{\boxed{AB} \ a} \boxed{2} \ triangles$ $\frac{\boxed{DAB} DBC}{\boxed{AB} \ a} \boxed{2} \ triangles$ $\frac{\boxed{DAB} DBC}{\boxed{AB} \ a} \boxed{3} \ a$ $\frac{2a + 1.\frac{4}{3}a = 3\overline{y}}{\boxed{a} \ a} \ a$ $\frac{2a + 1.\frac{4}{3}a = 3\overline{y}}{\boxed{a} \ a} \ a$ $\frac{2a + 1.\frac{4}{3}a = 3\overline{y}}{\boxed{a} \ a} \ a$ $\frac{2a + 1.\frac{4}{3}a = 3\overline{y}}{\boxed{a} \ a} \ a$ $\frac{2a + 1.\frac{4}{3}a = 3\overline{y}}{\boxed{a} \ a} \ a$ $\frac{2a + 1.\frac{4}{3}a = 3\overline{x}}{\boxed{a} \ a} \ a$ $\frac{2a + 1.\frac{4}{3}a = 3\overline{x}}{\boxed{a} \ a} \ a$ $\frac{2a + 1.\frac{4}{3}a = 3\overline{x}}{\boxed{a} \ a} \ a$ $\frac{2a + 1.\frac{4}{3}a = 3\overline{x}}{\boxed{a} \ a} \ a$ $\frac{a}{2} \ a$ \frac{a}				le				Square	- Triangle			
(i) $\frac{ \operatorname{ratio} ^{2} 1 3}{ \operatorname{From} _{AB} a \frac{4}{3}a \overline{y} }$ B1 $\frac{ \operatorname{ratio} ^{4} 1 _{From} a \frac{2}{3}a _{AB} a \frac{2}{3}a _{AB} a \frac{2}{3}a _{AB} _{A} _{A} _{A} $			rectangle	triangle	lamina				square	triangle	lamina	
(i) $\frac{ \operatorname{ratio} }{ \operatorname{From} } = \frac{ \operatorname{a} }{ \operatorname{AB} } = \frac{ \operatorname{a} }{ \operatorname{a} } = \frac{ \operatorname{a} } = \frac{ \operatorname{a} }{ \operatorname{a} } = $			2	1	3				4	1	3	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(i) -		_		5	_	B1		•			_
$\frac{1}{2 \text{ triangles}}$ $\frac{1}$			а	$\frac{4}{-a}$	\overline{y}				а	$\frac{2}{-a}$	\overline{y}	
$\boxed{\begin{array}{c c c c c c c c c c c c c c c c c c c$		AD		3					1	3		
Image: Non-analytic conditionImage: Non-analytic conditionImage: Non-analytic condition $2a + 1.\frac{4}{3}a = 3\overline{y}$ M1Moments about AB or a parallel all three terms and correct signs $\left(4a - \frac{2}{3}a = 3\overline{y}\right)$ $\left(\frac{2a}{3} + \frac{8a}{3} = 3\overline{y}\right)$ $2a + 1.\frac{4}{3}a = 3\overline{y}$ M1Moments about AB or a parallel all three terms and correct signs $\left(4a - \frac{2}{3}a = 3\overline{y}\right)$ $\left(\frac{2a}{3} + \frac{8a}{3} = 3\overline{y}\right)$ $\Rightarrow \overline{y} = \frac{10}{9}a$ A1*Answer Given* Need some evidence e.g. $\frac{10}{3}a =$ (ii)Image: Non-analytic condition AD Image: Non-analytic condition \overline{AD} 2nd B1 on epen Award if seen anywhere in response to part (a).B1Image: Non-analytic condition AD $2.\frac{1}{2}a + 1.\frac{4}{3}a = 3\overline{x}$ M1Moments about AD or a parallel all 3 terms and correct signs. $\left(\frac{4a - 5}{3}a = 3\overline{x}\right)$ $a = \frac{7}{9}a$ A1Accept 0.778a or better(b)M(pivot), $kMga = 3Mg\frac{a}{9}$ or $M(A) : 3M \times \frac{10a}{9} = (3+k)Ma$ or $M(C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ M1Image: Non-analytic condition $M(C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ M1								2 triang		DPC	lamina	٦
Image: constraint of the second systemImage: constraint of the second systemImage: constraint of the second system $2a + 1.\frac{4}{3}a = 3\overline{y}$ M1Moments about AB or a parallel all three terms and correct signs $\left(4a - \frac{2}{3}a = 3\overline{y}\right)$ $\left(\frac{2a}{3} + \frac{8a}{3} = 3\overline{z}\right)$ $\Rightarrow \overline{y} = \frac{10}{9}a$ A1*Answer Given* Need some evidence e.g. $\frac{10}{3}a =$ (ii) $\overline{\frac{rectangle triangle lamina}{AD - \frac{1}{2}a - \frac{4}{3}a} \overline{x}}$ B1 $\overline{\frac{square triangle lamina}{AD - \frac{1}{3}a} \overline{\frac{4}{3}a}$ 2nd B1 on epen Award if seen anywhere in response to part (a).B1 $\overline{\frac{DAB - DBC - la}{AD - \frac{1}{3}a} \overline{\frac{4}{3}a}$ $2.\frac{1}{2}a + 1.\frac{4}{3}a = 3\overline{x}$ M1Moments about AD or a parallel all 3 terms and correct signs. $\left(4a - \frac{5}{3}a = 3\overline{x}\right)$ $\Rightarrow \overline{x} = \frac{7}{9}a$ A1Accept 0.778a or better (b) $M(pivot), kMga = 3Mg\frac{a}{9}$ or $M(A) : 3M \times \frac{10a}{9} = (3+k)Ma$ or $M(C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ M1 $M1$ from ABD) fusing position vectors they ne out the scalar equation.								Mass	DAD			-
From $2a \\ B$ $4a \\ 3$ $4a \\ 3$ $2a + 1.\frac{4}{3}a = 3\overline{y}$ M1Moments about AB or a parallel all three terms and correct signs $\left(4a - \frac{2}{3}a = 3\overline{y}\right) \left(\frac{2a}{3} + \frac{8a}{3} = 3\overline{y}\right)$ $\Rightarrow \overline{y} = \frac{10}{9}a$ A1*Answer Given* Need some evidence e.g. $\frac{10}{3}a =$ (ii) $\overline{rectangle triangle lamina}$ $AD \frac{1}{2}a \frac{4}{3}a \frac{1}{\overline{x}}$ B12nd B1 on epen Award if seen anywhere in response to part (a).B1 $2.\frac{1}{2}a + 1.\frac{4}{3}a = 3\overline{x}$ M1Moments about AD or a parallel all 3 terms and correct signs. $\left(4a - \frac{5}{3}a = 3\overline{x}\right)$ $a = \frac{7}{3}a$ A1 $b = \overline{x} = \frac{7}{9}a$ A1Accept 0.778a or better(b) $M(pivot), kMga = 3Mg\frac{a}{9}$ or $M(A) : 3M \times \frac{10a}{9} = (3+k)Ma$ or $M(C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ M1Moments equation in k Condone g omitted on both side Must be using $\frac{10a}{9}$ (i.e. distance AD (from AB)) If using position vectors they ne out the scalar equation.									1	2	3	
$2a + 1.\frac{4}{3}a = 3\overline{y}$ M1Moments about AB or a parallel all three terms and correct signs $\left(4a - \frac{2}{3}a = 3\overline{y}\right)$ $\left(\frac{2a}{3} + \frac{8a}{3} = 3\overline{y}\right)$ $\Rightarrow \overline{y} = \frac{10}{9}a$ A1*Answer Given* Need some evidence e.g. $\frac{10}{3}a =$ (ii) $\overline{rectangle}$ triangle lamina \overline{AD} B1 \overline{Prom} $\frac{1}{2}a$ $\frac{4}{3}a$ \overline{x} 2nd B1 on epen Award if seen anywhere in response to part (a).B1 \overline{From} $\frac{a}{3}$ $2.\frac{1}{2}a + 1.\frac{4}{3}a = 3\overline{x}$ M1Moments about AD or a parallel all \overline{AD} \overline{a} $2.\frac{1}{2}a + 1.\frac{4}{3}a = 3\overline{x}$ M1Moments about AD or a parallel all 3 terms and correct signs. $\left(4a - \frac{5}{3}a = 3\overline{x}\right)$ a $\overline{x} = \frac{7}{9}a$ A1Accept 0.778a or better (b) $M(pivot), kMga = 3Mg\frac{a}{9}$ or $M(A) : 3M \times \frac{10a}{9} = (3+k)Ma$ or $M(C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ M1									2 <i>a</i>	4 <i>a</i>	_	
$\frac{2u^{2} + 12 \cdot 3}{3} u^{2} - 5y^{2}}$ all three terms and correct signs $\left(4a - \frac{2}{3}a = 3\overline{y}\right) \left(\frac{2a}{3} + \frac{8a}{3} = 3\overline{y}\right)$ $\frac{2a}{3} + \frac{8a}{3} = 3\overline{y}$ $\frac{4a - \frac{2}{3}a = 3\overline{y}}{2a} \left(\frac{2a}{3} + \frac{8a}{3} = 3\overline{y}\right)$ $\frac{2a}{3} + \frac{8a}{3} = 3\overline{y}$ A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a = 3\overline{y}$ Need some evidence e.g. $\frac{10}{3}a = 3\overline{y}$ $\frac{1}{2a} + \frac{14}{3}a = 3\overline{x}$ A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a = 3\overline{y}$ $\frac{1}{2a} + \frac{14}{3}a = 3\overline{x}$ A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a = 3\overline{y}$ $\frac{1}{2a} + \frac{14}{3}a = 3\overline{x}$ A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a = 3\overline{y}$ $\frac{1}{2a} + \frac{14}{3}a = 3\overline{x}$ A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a = 3\overline{y}$ $\frac{1}{2a} + \frac{14}{3}a = 3\overline{x}$ A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a = 3\overline{y}$ $\frac{1}{2a} + \frac{14}{3}a = 3\overline{x}$ A1 *Answer Given* M1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a = 3\overline{y}$ $\frac{1}{2a} + \frac{14}{3}a = 3\overline{x}$ A1 *Answer Given* M1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a = 3\overline{y}$ $\frac{1}{2a} + \frac{14}{3}a = 3\overline{x}$ A1 *Answer Given* M1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a = 3\overline{y}$ $\frac{1}{2a} + \frac{14}{3}a = 3\overline{x}$ A1 *Answer Given* M1 *Answer Given* M1 *Answer Given* A1 *Answ								AB	3	3	\overline{y}	
(ii) $\frac{1}{2} = \frac{10}{9}a$ (ii) $\frac{1}{2} = \frac{10}{9}a$ A1 (iii) $\frac{1}{2} = \frac{10}{9}a$ A1 (iv) $\frac{1}{2} = \frac{10}{9}a$ A1 (iv) $\frac{1}{2} = \frac{10}{9}a$ A1 (iv) $\frac{1}{2} = \frac{10}{9}a$ A1 (iv) $\frac{1}{2} = \frac{10}{3}a = \frac{10}{3}$		2a +	$1 \frac{4}{9} a = 3$	$\overline{\overline{v}}$]	M1	Momen	ts about AB	or a paral	lel axis. N	eed
$\Rightarrow \overline{y} = \frac{10}{9}a$ A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a =$ (ii) $\frac{\overline{y} = \frac{10}{9}a}{AD} = \frac{1}{2}a = \frac{4}{3}a = \overline{x}$ A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a =$ (ii) $\frac{\overline{y} = \frac{10}{9}a}{AD} = \frac{1}{2}a = \frac{4}{3}a = \overline{x}$ A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a =$ $\frac{10}{3}a = \frac{1}{3}a$ A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a =$ $\frac{10}{3}a = \frac{1}{3}a$ A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a =$ $\frac{10}{3}a = \frac{1}{3}a$ A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a =$ $\frac{1}{3}a = \frac{1}{3}a$ A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a =$ *Answer Given* * Need some evidence e.g. $\frac{10}{3}a =$ * $\frac{1}{3}a = \frac{1}{3}a$ * * * * * * * * * * * * * * * * * * *	-		1.3 <i>u</i> c	, <u>,</u>				all three	e terms and	correct sig	ns	
$\Rightarrow \overline{y} = \frac{10}{9}a$ A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a =$ (ii) $\frac{\overline{rectangle triangle lamina}}{\overline{AD} \frac{1}{2}a \frac{4}{3}a \overline{x}}$ 2nd B1 on epen Award if seen anywhere in response to part (a). 2. $\frac{1}{2}a + 1.\frac{4}{3}a = 3\overline{x}$ M1 Moments about AD or a parallel all 3 terms and correct signs. $\left(4a - \frac{5}{3}a = 3\overline{x}\right) \left(\frac{a}{3} + 2a = 3\overline{x}\right)$ $\Rightarrow \overline{x} = \frac{7}{9}a$ A1 A1 *Answer Given* Need some evidence e.g. $\frac{10}{3}a =$ $\frac{1}{AD}a = \frac{1}{3}a$ $\frac{1}{A}a = \frac{1}{3}a$								$\left \left(4a - \frac{2}{2} \right) \right $	$\left(a=3\overline{v}\right)$	$\frac{2a}{2a} + \frac{8a}{2} =$	$=3\overline{v}$	
(ii) Need some evidence e.g. $\frac{10}{3}a =$ (ii) $\frac{1}{2}a + \frac{4}{3}a + \frac{1}{x}$ 2nd B1 on epen Award if seen anywhere in response to part (a). 2. $\frac{1}{2}a + 1.\frac{4}{3}a = 3\overline{x}$ M1 $\frac{1}{2}a + 1.\frac{4}{3}a = 3\overline{x}$ M1 M1 M0ments about AD or a parallel all 3 terms and correct signs. $\left(4a - \frac{5}{3}a = 3\overline{x}\right) \left(\frac{a}{3} + 2a = 3\overline{x}\right)$ $\Rightarrow \overline{x} = \frac{7}{9}a$ A1 Accept 0.778a or better (b) M(pivot), $kMga = 3Mg\frac{a}{9}$ or M(A): $3M \times \frac{10a}{9} = (3+k)Ma$ or M(C): $3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ A1 M1 M1 M2 M2 M2 M1 M2 M2 M3 M3 M3 M3 M4 M3 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4									/ `	3 3)	
(ii) Need some evidence e.g. $\frac{10}{3}a =$ (ii) $\frac{1}{Prom} \frac{1}{2}a \frac{4}{3}a \frac{1}{x}$ 2nd B1 on epen Award if seen anywhere in response to part (a). 2. $\frac{1}{2}a + 1.\frac{4}{3}a = 3\overline{x}$ M1 $\frac{2.\frac{1}{2}a + 1.\frac{4}{3}a = 3\overline{x}}{3\overline{x}}$ M1 Moments about AD or a parallel all 3 terms and correct signs. $\left(4a - \frac{5}{3}a = 3\overline{x}\right) \left(\frac{a}{3} + 2a = 3\overline{x}\right)$ $\Rightarrow \overline{x} = \frac{7}{9}a$ A1 M1 M1 M1 M1 M2 M1 M1 M2 M1 M2 M1 M2 M1 M2 M2 M2 M3 M2 M3 M3 M3 M3 M4 M3 M4 M3 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4		\Rightarrow	$\overline{y} = \frac{10}{9}a$			4	A1			10		
$\frac{ \mathbf{rectangle} }{ \mathbf{rectangle} } \frac{ \mathbf{raingle} }{ \mathbf{raingle} } \frac{ \mathbf{raingle} }{ \mathbf{raingle} } \frac{ \mathbf{raingle} $								Need so	ome evidenc	xe e.g. $\frac{10}{3}a$	$=3\overline{y}$	
$\frac{ \mathbf{rectangle triangle lamina }}{ \mathbf{A}D \frac{1}{2}a \frac{4}{3}a \overline{x} }$ 2nd B1 on epen Award if seen anywhere in response to part (a). $\frac{ \mathbf{A}D ^2}{ \mathbf{A}D \frac{4}{3}a =3\overline{x}}$ M1 $\frac{ \mathbf{A}D \frac{1}{3}a \frac{4}{3}a =3\overline{x}}{ \mathbf{A}D \frac{1}{3}a =3\overline{x}}$ M1 $\frac{ \mathbf{A}D \frac{1}{3}a =3\overline{x}}{ \mathbf{A}D \frac{1}{3}a =3\overline{x}}$ M1 $\frac{ \mathbf{A}D \frac{1}{3}a =3\overline{x}}{ \mathbf{A}D \frac{1}{3}a =3\overline{x}}$ M1 $\frac{ \mathbf{A}D \frac{1}{3}a =3\overline{x}}{ \mathbf{A}D \frac{1}{3}a =3\overline{x}}$ (b) $\frac{ \mathbf{A} =3\overline{x}}{ \mathbf{A} =3\overline{x}}$ A1 $\frac{ \mathbf{A} =3\overline{x}}$ A1 $\frac{ \mathbf{A} =3\overline{x}}$ A1 $\frac{ \mathbf{A} =3\overline{x}}$ A1 $ $	(ii)]	B1		square	triangle	lamina	
$\frac{ AD }{2} = \frac{2}{3} = \frac{3}{3} = \frac{1}{3}$ $2nd B1 \text{ on epen}$ Award if seen anywhere in response to part (a). $\frac{ AD }{ AD } = \frac{2}{3} = \frac{ AD }{ AD } = $			-	triangle	lamina			From			_	
$\frac{1}{2 \text{ nd B1 on epen}}{\text{Award if seen anywhere in response to part (a).}}$ $\frac{1}{2 \text{ nd B1 on epen}}{\text{Award if seen anywhere in response to part (a).}}$ $\frac{1}{2 \text{ nd B1 on epen}}{\text{AD}}$ $\frac{1}{3}$			$\frac{1}{-a}$	$\frac{4}{-a}$	\overline{x}			AD	а	$\frac{-a}{3}$	\overline{x}	
Image: 2nd B1 on epen Award if seen anywhere in response to part (a).From AD $\frac{a}{3}$ a $2.\frac{1}{2}a + 1.\frac{4}{3}a = 3\overline{x}$ M1Moments about AD or a parallel all 3 terms and correct signs. $\left(\frac{4a-\frac{5}{3}a=3\overline{x}\right)$ $\left(\frac{a}{3}+2a=3\overline{x}\right)$ \Rightarrow $\overline{x} = \frac{7}{9}a$ A1Accept 0.778a or better(b) $M(\text{pivot}), \ kMga = 3Mg\frac{a}{9}$ or $M(A) : 3M \times \frac{10a}{9} = (3+k)Ma$ or $M(C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ M1Form equation in k Condone g omitted on both side AD (from AB)) If using position vectors they ne out the scalar equation.		AD	2	3							1	-
Award if seen anywhere in response to part (a).If form AD $\frac{a}{3}$ a $2.\frac{1}{2}a + 1.\frac{4}{3}a = 3\overline{x}$ M1Moments about AD or a parallel all 3 terms and correct signs. $\left(\frac{4a-\frac{5}{3}a=3\overline{x}}{(4a-\frac{5}{3}a=3\overline{x})}\right)\left(\frac{a}{3}+2a=3\overline{x}\right)$ $\Rightarrow \overline{x} = \frac{7}{9}a$ A1Accept 0.778a or better(b) M (pivot), $kMga = 3Mg\frac{a}{9}$ or $M(A) : 3M \times \frac{10a}{9} = (3+k)Ma$ or $M(C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ M1M1Form equation in k Condone g omitted on both side Must be using $\frac{10a}{9}$ (i.e. distance AD (from AB)) If using position vectors they ne out the scalar equation.	2	2nd B1 c	on epen					English		DBC	lamina	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				ere in respo	onse to part	(a).			$\frac{a}{2}$	а	\overline{x}	
$2 \cdot \frac{1}{2}u + 1 \cdot \frac{1}{3}u^{2} - 3x$ all 3 terms and correct signs. $\left(4a - \frac{5}{3}a = 3\overline{x}\right) \left(\frac{a}{3} + 2a = 3\overline{x}\right)$ $\implies \overline{x} = \frac{7}{9}a$ A1 Accept 0.778 <i>a</i> or better (6) (b) $M(\text{pivot}), kMga = 3Mg\frac{a}{9} \text{ or}$ $M(A) : 3M \times \frac{10a}{9} = (3+k)Ma \text{ or}$ $M(C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ A1 Accept 0.778 <i>a</i> or better (6) M1 Born equation in <i>k</i> Condone <i>g</i> omitted on both side Must be using $\frac{10a}{9}$ (i.e. distance AD (from <i>AB</i>)) If using position vectors they ne out the scalar equation.		- 1					M1		-) or a paral	lal avic N	lood
(b) $M(\text{pivot}), kMga = 3Mg\frac{a}{9} \text{ or } M(A) : 3M \times \frac{10a}{9} = (3+k)Ma \text{ or } M(C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $(c) = \frac{10a}{9} = (3+k)Ma \text{ or } M(C) = 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $(c) = \frac{10a}{9} = (3+k)Ma \text{ or } M(C) = \frac{10a}{9} + kM \times 2a = (3+k)Ma$ $(c) = \frac{10a}{9} + kM \times 2a = (3+k)Ma$ $(c) = \frac{10a}{9} + kM \times 2a = (3+k)Ma$ $(c) = \frac{10a}{9} + kM \times 2a = (3+k)Ma$	4	$2.\frac{1}{2}a + 1.\frac{4}{3}a = 3x$				1111			-	101 ax15. IV	ieeu	
$\Rightarrow \overline{x} = \frac{7}{9}a$ A1 Accept 0.778 <i>a</i> or better (6) (b) $M(\text{pivot}), \ kMga = 3Mg\frac{a}{9} \text{ or}$ $M(A) : 3M \times \frac{10a}{9} = (3+k)Ma \text{ or}$ $M(C): 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ (6) M1 Form equation in <i>k</i> Condone <i>g</i> omitted on both side Must be using $\frac{10a}{9}$ (i.e. distance AD (from <i>AB</i>)) If using position vectors they ne out the scalar equation.								-	_)			
(b) $M(\text{pivot}), kMga = 3Mg\frac{a}{9} \text{or}$ $M(A) : 3M \times \frac{10a}{9} = (3+k)Ma \text{or}$ $M(C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ (6) M1 M1 M1 M1 M1 M1 M1 M1 M1 M1								$\begin{vmatrix} 4a3 \end{vmatrix}$	a = 3x	$\frac{-+2a}{3} = 3$	$\left\{ x \right\}$	
(b) $M(\text{pivot}), kMga = 3Mg\frac{a}{9} \text{ or } M(A) : 3M \times \frac{10a}{9} = (3+k)Ma \text{ or } M(C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ (6) M1 Form equation in k Condone g omitted on both side M1 M2 M1 M2 M1 Condone g omitted on both side M1 M1 M2 M1 M2		$\Rightarrow \bar{x}$	$\overline{c} = \frac{7}{2}a$				A1	Accept	0.778 <i>a</i> or l	better		
(b) $M(\text{pivot}), kMga = 3Mg\frac{a}{9} \text{ or}$ $M(A) : 3M \times \frac{10a}{9} = (3+k)Ma \text{ or}$ $M(C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ M1 Form equation in k Condone g omitted on both side Must be using $\frac{10a}{9}$ (i.e. distance AD (from AB)) If using position vectors they ne out the scalar equation.			9				(6)					
$M \text{ (pivot)}, kMga = 3Mg \frac{1}{9} \text{ or}$ $M (A) : 3M \times \frac{10a}{9} = (3+k)Ma \text{ or}$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $M (C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$	(b)						<u>\</u> -/	Form ed	quation in k			
$M(A) : 3M \times \frac{10a}{9} = (3+k)Ma \text{ or}$ $M(C) : 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ Must be using $-\frac{10a}{9}$ (i.e. distance AD (from AB)) If using position vectors they ne out the scalar equation.	1	M(nivo	nt) <i>kMaa</i>	$-3Ma\frac{a}{2}$	or		M1	Condon	e g omitted	on both si	des.	
$M(A): 3M \times \frac{100}{9} = (3+k)Ma \text{ or}$ $M(C): 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ $AD \text{ (from } AB\text{))}$ If using position vectors they ne out the scalar equation.				,				Must be	e using $\frac{10a}{10a}$	(i.e. dista	nces alons	<u>r</u>
$M(C): 3M \times \frac{8a}{9} + kM \times 2a = (3+k)Ma$ If using position vectors they ne out the scalar equation.	1	M(A)	$: 3M \times \frac{10a}{3}$	=(3+k)M	la or				/			
$M(C): 3M \times \frac{3N}{9} + kM \times 2a = (3+k)Ma$ out the scalar equation.			-					•	, ,	otors thay	nood to n	ak
	1	M(C):	$3M \times \frac{8a}{2} +$	$kM \times 2a =$	(3+k)Ma	ı		-	-	-	need to pi	UN
$kMga = 3Mg\frac{a}{0}$ (in the context distribution (i) without g)							A1		-) (with or	
y		$kMga = 3Mg\frac{a}{9}$						-		_ (
$k = \frac{1}{2}$ A1 Accept equivalent fractions or 0		$k = \frac{1}{2}$				A1		equivalent f	fractions of	r 0.333 oi	ſ	
3 0000		3				(2)	better					
(3) 9						(
							,					

Question Number	Scheme	Marks	Notes
3.	v = (2t - 3)(t - 2) = 0	M1	Solve for $v = 0$
	$t = \frac{3}{2}$ or 2	A1	Both values
			The first two marks could be implied by the use of 2 and $\frac{3}{2}$ as limits in the integration
	$\int 2t^2 - 7t + 6dt$	M1	Use of $s = \int v dt$
	$=\frac{2}{3}t^{3}-\frac{7}{2}t^{2}+6t(+C)$	A1	Correct integration
	$s = \int_{0}^{\frac{3}{2}} v \mathrm{d}t - \int_{\frac{3}{2}}^{2} v \mathrm{d}t + \int_{2}^{3} v \mathrm{d}t$	M1	Correct strategy for distance. Accept equivalent e.g. $s = \int_{0}^{3} v dt + 2 \left \int_{\frac{3}{2}}^{2} v dt \right $
	$= \left[\frac{2}{3}t^{3} - \frac{7}{2}t^{2} + 6t\right]_{0}^{\frac{3}{2}}$ $- \left[\frac{2}{3}t^{3} - \frac{7}{2}t^{2} + 6t\right]_{\frac{3}{2}}^{2}$ $+ \left[\frac{2}{3}t^{3} - \frac{7}{2}t^{2} + 6t\right]_{2}^{3}$		$=\frac{27}{8} + \frac{1}{24} + \frac{7}{6}$
	$=\frac{55}{12}$	A1	4.6 or better from correct working
		6	

NB Marks changed - 3rd M1 is shown as A1 on epen.

Question Number	Scheme	Marks	Notes
4. (a)	$(-6\mathbf{i}+8\mathbf{j})=0.2[\mathbf{v}-(20\mathbf{i}-16\mathbf{j})]$	M1	Impulse momentum equation Condone subtraction in wrong order
		A1	Correctly substituted equation
	$\mathbf{v} = \left(-10\mathbf{i} + 24\mathbf{j}\right)$	A1	
	$ \mathbf{v} = \sqrt{(-10)^2 + 24^2}$	M1	Correct use of Pythagoras theorem
	$= 26 \text{ ms}^{-1}$	A1	From cwo
		(5)	
(b)	$\tan\alpha = \frac{16}{20} \tan\beta = \frac{24}{10}$	M1	Use trig to find two relevant angles
	$\alpha = 38.7^{\circ} \beta = 67.4^{\circ} (51.3^{\circ}, 22.6^{\circ})$	A1ft	Both correct - seen or implied Follow their v
			(0.674 or 0.897, 1.176 or 0.395 radians)
		DM1	Dependent on previous M1 Combine correctly to find the required angle e.g. $90^{\circ} + 38.7^{\circ} + 22.6^{\circ}$
	Angle is 151° or 209°	A1	Accept 151.3° or 208.7°
			(2.635 or 3.648 radians)
		(4)	
Alt(b)	$\begin{array}{c} -10\mathbf{i}+24\mathbf{j} \\ (26) \\ \end{array} \\ \begin{array}{c} -30\mathbf{i}+40\mathbf{j} \\ (50) \\ \end{array} \\ \begin{array}{c} (50) \\ \end{array} \\ \begin{array}{c} 20\mathbf{i}-16\mathbf{j} \\ (\sqrt{656} \end{array} \end{array}$		
	Correct triangle	M1	
	Cosine rule: $\cos \theta = \frac{676 + 656 - 2500}{2 \times 26 \times \sqrt{656}}$	DM1	Award marks in order on epen
		A1ft	Correct unsimplified. Follow their v
	$\theta = 151^{\circ}$	A1	
A =	~	(4)	
Alt(b)	Correct triangle Scalar product: $\cos \theta = \frac{-200 - 384}{26 \times \sqrt{656}}$	M1 DM1	Award marks in order on epen
		A1ft	Correct unsimplified. Follow their v
	$\theta = 151^{\circ}$	A1	<u>^</u>
		(4)	
		9	

		10	
		(3)	
	$1 \ge e > \frac{2}{3}$	A1	Need both ends
	For Q to catch P: $1.5ve > v$	M1	Correct inequality for their 1.5ve (could be implied by correct answer)
(b)	After impact with wall: 1.5ve	B1	
		(7)	
	$u_P = 8v$ and $u_Q = 4.5v$	A1	Both correct – from cwo Mark final answer – do not ISW
		A1	One correct
	Solve for u_p and u_Q	DM1	Dependent on both previous M marks
	$(12.5v = u_P + u_Q)$	A1ft	Correct unsimplified equation. Signs consistent with their CLM equation
	Impact law: $\frac{1.5v + v}{u_P + u_Q} = \frac{1}{5}$	M1	Must be used right way round. Accept with <i>e</i> not substituted.
	$\left(2.5v = 2u_P - 3v_Q\right)$	A1	Correct unsimplified equation
5(a)	$\text{CLM: } -2mv + 4.5mv = 2mu_P - 3mu_Q$	M1	Need all four terms & dimensionally correct. Condone sign errors.
Question Number	Scheme	Marks	Notes
Oursetiers		Marka	Netes

Solutions that have velocity of P and/or Q in wrong direction before or after the collision score max 5/7 in (a).

Question Number	Scheme	Marks	Notes
6.	W.D against <i>R</i> : 0.025 <i>R</i>	B1	Seen or implied
	W.D. against <i>R</i> = KE Loss + PE Loss	M1	Work-energy equation NB Q asks for work-energy. Need all relevant terms and no extras. Follow their WD Condone 2.5 for 0.025 1.5 for 1.525 is M0 - this is equivalent to leaving out a term in the work- energy equation.
	$0.025R = \frac{1}{2} \times 0.6 \times 22.4^2 + 0.6g \times (1.5 + 0.025)$	A1	At most one error Use of 2.5 for 0.025 is one error
		A1	Correct unsimplified. Follow their WD
	R = 6380 N	A1	Q asks for 3 s.f do not accept 6400
		5	
			Values you might see: KE = $150.528(J)$
			Distance to top $= 25.6(m)$
			Top to ground = $27.1(m)$
			Total distance from top $= 27.125(m)$
			v^2 at ground = 531.16 Change in GPE from top to stop =159.495(J)

NB The Q asks for work-energy. Full marks can be scored for a solution which eventually uses work-energy. A candidate who does additional work with *suvat* equations scores no marks until they form a work-energy equation.

NB If working from the max height to the lowest point then the work-energy equation need not show the zero value for KE. Non-zero KE in this instance is M0 for an additional term.

WD	h	Marks	
0.025 <i>R</i>	1.5+2.5	B1M1A1A0A0	One error 3/5
0.25 <i>R</i>	1.5 + 0.025	B0M1A1A1A0	One error 3/5
0.25 <i>R</i>	1.5+2.5	B0M1A1A0A0	Two errors 2/5

Question Number	Scheme	Marks	Notes
7(a)	$M(A) S.2a\cos 30^\circ = mga\sin 30^\circ$	M1	Correct number of terms. Terms must be dimensionally correct Condone trig confusion
		A1	At most one error Consistent trig confusion is one error
		A1	Correct unsimplified equation
	$S = \frac{mg\sqrt{3}}{6}$	A1	Accept exact equivalent Accept 0.289mg or better
	0	(4)	
(b)	R = mg; $F = S$	B1	Resolve vertically and horizontally - must be stated or shown on a diagram. (Used here if seen in (a))
	$\frac{mg\sqrt{3}}{6} \le \mu mg$	M1	Use of $F \le \mu R$ (not for $F = \mu R$ followed by a fudge of the inequality)
	$\sqrt{3}$	A1	*Answer Given* CSO
	$\frac{\sqrt{3}}{6} \le \mu$	(3)	
	$ \begin{array}{c} \downarrow\\kmg\\ \downarrow\\mg\\ \downarrow\\mg\\ \downarrow\\U\\ \downarrow\\mg\\ \downarrow\\U\\ \downarrow\\J\\ \downarrow\\J\\ \downarrow\\J\\ \downarrow\\J\\ \downarrow\\J\\ \downarrow\\J\\ \downarrow\\J$		
	$ \uparrow : U = mg + kmg = mg(1+k) $	B1	Or equation in U and k from a second moments equation.
	M(A): $T \times 2a \times \frac{\sqrt{3}}{2} = mga \times \frac{1}{2} + kmg2a \times \frac{1}{2}$ M(B): $mg \times \frac{a}{2} + \frac{U\sqrt{3}}{5} \times \sqrt{3}a = Ua$	M1	Need all three terms. Condone $\mu = \frac{\sqrt{3}}{6}$ Terms must be dimensionally correct. Condone trig confusion. Condone sign errors
	M(X): $kmga + mg \times \frac{a}{2} = \frac{U\sqrt{3}}{5} \times \sqrt{3}a$		(X is point of intersection of lines of action of T and U)
	M(corner): $aU = Ta\sqrt{3} + mg\frac{a}{2}$		
	$\Rightarrow 2T\cos 30^\circ = mg\sin 30^\circ + 2kmg\sin 30^\circ$	A1	Correct unsimplified moments equation
	$\Rightarrow \frac{3}{5}U = \frac{1}{2}mg + kmg$	A1	Correct equation in U (and k) μ correct if used
	$\Rightarrow \frac{3}{5}U = \frac{1}{2}mg + kmg$ $\Rightarrow \frac{3}{5}(1+k) = \frac{1}{2} + k$	DM1	Solve for <i>k</i> . Dependent on preceding M
	$k = \frac{1}{4}$	A1 (6)	
		13	

Question Number	Scheme	Marks	Notes
8(a)	Vertical motion : Use of $v = u + at$	M1	Correct equation in <i>U</i> , <i>t</i>
	$(\uparrow): -U = U - gt$	A1	
	Horizontal motion: Use of $s = ut$	M1	Second equation in U and their t e.g. $\frac{U^2}{2g} = U \times \frac{20}{U} - \frac{g}{2} \left(\frac{20}{U}\right)^2$
	$(\rightarrow): 3Ut = 120$	A1ft	Follow their <i>t</i> provided it matches the value of <i>s</i> used.
	$\Rightarrow U = 14$	A1	*Answer Given* Need to see supporting evidence e.g. correct linear equation or solution of quadratic in U^2 giving $U^2 = 20g$
		(5)	
(b)	$v = \sqrt{U^2 + (3U)^2}$	M1	Correct use of Pythagoras' theorem and $U = 14$
	$v = 14\sqrt{10} = 44 \text{ or } 44.3 \text{ m s}^{-1}$	A1	Max 3 s.f.
		(2)	
(c)	$\tan \alpha = \frac{1}{4} \Rightarrow \frac{V}{3U} = \frac{1}{4}$	M1	Use angle to find vertical component
	$\Rightarrow V = \frac{3}{4}U$	A1	$(10.5 (m s^{-1}))$
	Use of $v = u + at$ (\uparrow): $\pm \frac{3}{4}U = U - gt$	M1	Condone without ± Accept complete alternative routes via suvat.
		A1	Correct unsimplified (including \pm)
	$t_1 = \frac{U}{4g} = 0.36s$, $t_2 = \frac{7U}{4g} = 2.5s$	A1	One value correct Accept $\frac{7}{2g}$ and $\frac{49}{2g}$, but not $\frac{5}{14}$ decimals to max 3 s.f.
		A1	Both values correct Apply accuracy penalty only once
		(6)	
		13	

NB a candidate who misreads horizontal and vertical components gets $t = 4.64 \left(\frac{13u}{4g}\right)$ and $t = 3.93 \left(\frac{11u}{4g}\right)$. They can score 11/13. Deduct the first 2 A marks for the misread penalty. www.yesterdaysmathsexam.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom