edexcel

Mark Scheme (Results)

Summer 2012

GCE Core Mathematics C1 (6663) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA031950
All the material in this publication is copyright
© Pearson Education Ltd 2012

Summer 2012 6663 Core Mathematics C1 Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol \downarrow will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q) \text {, where }|p q|=|c| \text {, leading to } \mathrm{x}=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q) \text {, where }|p q|=|c| \text { and }|m n|=|a| \text {, leading to } \mathrm{x}=\ldots
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c), leading to $x=\ldots$
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Summer 2012
 6663 Core Mathematics C1 Mark Scheme

Question Number	Scheme ${ }_{\text {a }}$ Marks
1.	$\begin{aligned} \left\{\int\left(6 x^{2}+\frac{2}{x^{2}}+5\right) \mathrm{d} x\right\} & =\frac{6 x^{3}}{3}+\frac{2 x^{-1}}{-1}+5 x(+c) \\ & =2 x^{3}-2 x^{-1} ;+5 x+c \end{aligned}$
	Notes
	M1: for some attempt to integrate a term in $x: x^{n} \rightarrow x^{n+1}$ So seeing either $6 x^{2} \rightarrow \pm \lambda x^{3}$ or $\frac{2}{x^{2}} \rightarrow \pm \mu x^{-1}$ or $5 \rightarrow 5 x$ is M1. $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for a correct un-simplified x^{3} or $x^{-1}\left(\right.$ or $\left.\frac{1}{x}\right)$ term. $\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for both x^{3} and x^{-1} terms correct and simplified on the same line. Ie. $2 x^{3}-2 x^{-1}$ or $2 x^{3}-\frac{2}{x}$. $\mathbf{3}^{\text {rd }} \mathbf{A 1}$: for $+5 x+c$. Also allow $+5 x^{1}+c$. This needs to be written on the same line. Ignore the incorrect use of the integral sign in candidates' responses. Note: If a candidate scores M1A1A1A1 and their answer is NOT ON THE SAME LINE then withhold the final accuracy mark.

(a) M1: for a full correct interpretation of the fractional power. Note: $5 \times(32)^{3}$ is M0.

A1: for 8 only.
Note: Award M1A1 for writing down 8.
(b)

M1: For use of $\frac{1}{2}$ OR use of -1
Use of $\frac{1}{2}$: Candidate needs to demonstrate the they have rooted all three elements in their bracket.
Use of -1: Either Candidate has $\frac{1}{\text { Bracket }}$ or $\left(\frac{A x^{C}}{B}\right)$ becomes $\left(\frac{B}{A x^{C}}\right)$.
Allow M1 for...

- $\left(\frac{4}{25 x^{4}}\right)^{\frac{1}{2}}$ or $\left(\frac{5 x^{2}}{2}\right)^{-1}$ or $\frac{1}{\left(\frac{25 x^{4}}{4}\right)^{\frac{1}{2}}}$ or $\sqrt{\left(\frac{4}{25 x^{4}}\right)}$ or $\frac{1}{\sqrt{\left(\frac{25 x^{4}}{4}\right)}}$ or $\left(\frac{1}{\frac{25 x^{4}}{\frac{1}{4}}}\right)^{\frac{1}{2}}$ or $\frac{\frac{1}{5 x^{2}}}{\frac{1}{2}}$ or $\frac{\frac{1}{5} x^{-2}}{\frac{1}{2}}$
or $-\left(\frac{5 x^{2}}{2}\right)$ or $\left(\frac{-5 x^{-2}}{-2}\right)$ or $-\left(\frac{5 x^{-2}}{2}\right)$ or $\frac{5 x^{-2}}{2}$
- $\left(\frac{4}{25 x^{4}}\right)^{K}$ or $\left(\frac{5 x^{2}}{2}\right)^{C}$ where K, C are any powers including 1 .

A1: for either $\frac{2}{5 x^{2}}$ or $\frac{2}{5} x^{-2}$ or $0.4 x^{-2}$ or $\frac{0.4}{x^{2}}$.
Note: $\left(\sqrt{\left(\frac{25 x^{4}}{4}\right)}\right)^{-1}$ is not enough work by itself for the method mark.
Note: A final answer of $\frac{1}{\frac{5}{2} x^{2}}$ or $\frac{1}{2 \frac{1}{2} x^{2}}$ or $\frac{1}{2.5 x^{2}}$ is A0.
Note: Also allow $\pm \frac{2}{5 x^{2}}$ or $\pm \frac{2}{5} x^{-2}$ or $\pm 0.4 x^{-2}$ or $\pm \frac{0.4}{x^{2}}$ for A1.

Question Number	Scheme	Marks
3.	$\begin{array}{rlr} \left\{\frac{2}{\sqrt{12}-\sqrt{8}}\right\} & =\frac{2}{(\sqrt{12}-\sqrt{8})} \times \frac{(\sqrt{12}+\sqrt{8})}{(\sqrt{12}+\sqrt{8})} \\ & =\frac{\{2(\sqrt{12}+\sqrt{8})\}}{12-8} & \text { Writing this is sufficient for M1. } \\ & =\frac{2(2 \sqrt{3}+2 \sqrt{2})}{12-8} & \text { For 12-8. } \\ & =\sqrt{3}+\sqrt{2} & \text { This mark can be implied. } \end{array}$	M1 A1 B1 B1 A1 cso
	Notes	
	M1: for a correct method to rationalise the denominator. $\mathbf{1}^{\text {st }} \mathbf{A 1}: \quad(\sqrt{12}-\sqrt{8})(\sqrt{12}+\sqrt{8}) \rightarrow 12-8$ or $(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2}) \rightarrow 3-2$ $\mathbf{1}^{\text {st }} \mathbf{B 1}$: for $\sqrt{12}=2 \sqrt{3}$ or $\sqrt{48}=4 \sqrt{3}$ seen or implied in candidate's working. $2^{\text {nd }} \mathbf{B 1}$: for $\sqrt{8}=2 \sqrt{2}$ or $\sqrt{32}=4 \sqrt{2}$ seen or implied in candidate's working. $\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for $\sqrt{3}+\sqrt{2}$. Note: $\frac{\sqrt{3}+\sqrt{2}}{1}$ as a final answer is A0.	

Note: The first accuracy mark is dependent on the first method mark being awarded.
Note: $\frac{1}{2} \sqrt{12}+\frac{1}{2} \sqrt{8}=\sqrt{3}+\sqrt{2}$ with no intermediate working implies the B1B1 marks.
Note: $\sqrt{12}=\sqrt{4} \sqrt{3}$ or $\sqrt{8}=\sqrt{4} \sqrt{2}$ are not sufficient for the B1 marks.
Note: A candidate who writes down (by misread) $\sqrt{18}$ for $\sqrt{8}$ can potentially obtain M1A0B1B1A0, where the $2^{\text {nd }}$ B1 will be awarded for $\sqrt{18}=3 \sqrt{2}$ or $\sqrt{72}=6 \sqrt{2}$
Note: The final accuracy mark is for a correct solution only.

Alternative 1 solution

$$
\begin{aligned}
\left\{\frac{2}{\sqrt{12}-\sqrt{8}}\right\} & =\frac{2}{(2 \sqrt{3}-2 \sqrt{2})} & & \text { B1 B1 } \\
& =\frac{1}{(\sqrt{3}-\sqrt{2})} \times \frac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3}+\sqrt{2})} & & \text { M1 } \\
& =\frac{\{(\sqrt{3}+\sqrt{2})\}}{3-2} & & \text { A1 for } 3-2 \\
& =\sqrt{3}+\sqrt{2} & & \text { A1 }
\end{aligned}
$$

Please record the marks in the relevant places on the mark grid.

Alternative 2 solution

$\left\{\frac{2}{\sqrt{12}-\sqrt{8}}\right\}=\frac{2}{(2 \sqrt{3}-2 \sqrt{2})}=\frac{1}{(\sqrt{3}-\sqrt{2})}=\sqrt{3}+\sqrt{2}, \quad$ or $\quad \frac{2}{(2 \sqrt{3}-2 \sqrt{2})}=\sqrt{3}+\sqrt{2}$
with no incorrect working seen is awarded M1A1B1B1A1.

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \({ }^{\text {a }}\) Marks \\
\hline 4. (a)
(b) \& \[
\left.\left.\left.\begin{array}{rl}
\& y=5 x^{3}-6 x^{\frac{4}{3}}+2 x-3 \\
\left\{\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right\} \& 5(3) x^{2}-6\left(\frac{4}{3}\right) x^{\frac{1}{3}}+2
\end{array}\right\} \begin{array}{l}
=15 x^{2}-8 x^{\frac{1}{3}}+2
\end{array}\right\} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\right\} 30 x-\frac{8}{3} x^{-\frac{2}{3}} .
\] \\
\hline \& Notes \\
\hline (a)

(b) \& | M1: for an attempt to differentiate $x^{n} \rightarrow x^{n-1}$ to one of the first three terms of $y=5 x^{3}-6 x^{\frac{4}{3}}+2 x-3$. So seeing either $5 x^{3} \rightarrow \pm \lambda x^{2}$ or $-6 x^{\frac{4}{3}} \rightarrow \pm \mu x^{\frac{1}{3}}$ or $2 x \rightarrow 2$ is M1. |
| :--- |
| $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for $15 x^{2}$ only. |
| $2^{\text {nd }}$ A1: for $-8 x^{\frac{1}{3}}$ or $-8 \sqrt[3]{x}$ only. |
| $\mathbf{3}^{\text {rd }} \mathbf{A 1}:$ for $+2\left(+c\right.$ included in part (a) loses this mark). Note: $2 x^{0}$ is A0 unless simplified to 2. |
| M1: For differentiating $\frac{\mathrm{d} y}{\mathrm{~d} x}$ again to give either |
| - a correct follow through differentiation of their x^{2} term |
| - or for $\pm \alpha x^{\frac{1}{3}} \rightarrow \pm \beta x^{-\frac{2}{3}}$. |
| A1: for any correct expression on the same line (accept un-simplified coefficients). |
| For powers: $30 x^{2-1}-\frac{8}{3} x^{\frac{1}{3}-1}$ is A0, but writing powers as one term eg: $(15 \times 2 x)-\frac{8}{3} x^{-\frac{4}{6}}$ is ok for A1. |
| Note: Candidates leaving their answers as $\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=\right\} 15 x^{2}-\frac{24}{3} x^{\frac{1}{3}}+2$ and $\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\right) 30 x-\frac{24}{9} x^{-\frac{2}{3}}$ are awarded M1A1A0A1 in part (a) and M1A1 in part (b). |
| Be careful: $30 x-\frac{8}{3} x^{-\frac{1}{3}}$ will be A0. |
| Note: For an extra term appearing in part (b) on the same line, ie $30 x-\frac{8}{3} x^{-\frac{2}{3}}+2$ is M1A0 |
| Note: If a candidate writes in part (a) $15 x^{2}-8 x^{\frac{1}{3}}+2+c$ and in part (b) $30 x-\frac{8}{3} x^{-\frac{2}{3}}+c$ then award (a) M1A1A1A0 (b) M1A1 |

\hline
\end{tabular}

Question Number	Scheme	Marks
5. (a)	$a_{1}=3, a_{n+1}=2 a_{n}-c, \quad n \geq 1, c$ is a constant $\left\{a_{2}=\right\} 2 \times 3-c$ or $2(3)-c$ or $6-c$	B1 [1]
(b)	$\begin{gathered} \left\{a_{3}=\right\} 2 \times\left(" 6-c^{\prime}\right)-c \\ \left.=12-3 c \quad \mathbf{*}^{*}\right) \end{gathered}$	M1 A1 cso
(c)	$a_{4}=2 \times(" 12-3 c ")-c \quad\{=24-7 c\}$	[2] M1
	$\begin{aligned} & \left\{\sum_{i=1}^{4} a_{i}=\right\} 3+(6-c)+(12-3 c)+(24-7 c) \\ & " 45-11 c^{\prime} \geq 23 \quad \text { or } \quad 45-11 c "=23 \\ & c \leq 2 \text { or } 2 \geq c \end{aligned}$	M1 M1 A1 cso
		$\begin{array}{r} {[4]} \\ 7 \end{array}$
	Not	

Notes

(a) The answer to part (a) cannot be recovered from candidate's working in part (b) or part (c).

Once the candidate has achieved the correct result you can ignore subsequent working in this part.
(b) M1: For a correct substitution of their a_{2} which must include term(s) in \boldsymbol{c} into $2 a_{2}-c$ giving a result for a_{3} in terms of only c. Candidates must use correct bracketing for this mark.
A1: for correct solution only. No incorrect working/statements seen. (Note: the answer is given!)
(c)
$\mathbf{1}^{\text {st }} \mathbf{~ M 1 : ~ F o r ~ a ~ c o r r e c t ~ s u b s t i t u t i o n ~ o f ~} a_{3}$ which must include term(s) in \boldsymbol{c} into $2 a_{3}-c$ giving a result for a_{4} in terms of only c. Candidates must use correct bracketing (can be implied) for this mark.
$\mathbf{2}^{\text {nd }}$ M1: for an attempt to sum their a_{1}, a_{2}, a_{3} and a_{4} only.
$3^{\text {rd }}$ M1: for their sum (of 3 or 4 or 5 consecutive terms) $=$ or \geq or >23 to form a linear inequality or equation in c.
A1: for $c \leq 2$ or $2 \geq c$ from a correct solution only.

Beware: $-11 c \geq-22 \Rightarrow c \geq 2$ is A0.
Note: $45-11 c \geq 23 \Rightarrow-11 c \leq-22 \Rightarrow c \leq 2$ would be A0 cso.
Note: Applying either $S_{n}=\frac{n}{2}(2 a+(n-1) d)$ or $S_{n}=\frac{n}{2}(a+l)$ is $2^{\text {nd }}$ M0, $3^{\text {rd }}$ M0.
Note: If a candidate gives a numerical answer in part (a); they will then get M0A0 in part (b); but if they use the printed result of $a_{3}=12-3 c$ they could potentially get M0M1M1A0 in part (c)
Note: If a candidate only adds numerical values (not in terms of c) in part (c) then they could potentially get only M0M0M1A0.
Note: For the $3^{\text {rd }} \mathrm{M} 1$ candidates will usually sum a_{1}, a_{2}, a_{3} and a_{4} or a_{2}, a_{3} and a_{4} or a_{2}, a_{3}, a_{4} and a_{5} or $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{5}

(c) $\quad \mathbf{1}^{\text {st }} \mathbf{M 1}:$ for correct use of S_{m} formula with one of a or d correct.
$\mathbf{1}^{\text {st }} \mathbf{A 1}$: for a correct expression for S_{m}. Eg: $\frac{m}{2}(2(10)+(m-1)(10))$ or $\frac{m}{2} \times 10(m+1)$ or $5 m(m+1)$
$\mathbf{2}^{\text {nd }} \mathbf{M 1}$: for forming a suitable equation using 63 or 6300 and their S_{m}. Dependent on $\mathbf{1}^{\text {st }} \mathbf{M 1}$.
$2^{\text {nd }}$ A1cso: for reaching the printed result with no incorrect working seen.
Long multiplication is not necessary for the final accuracy mark.
Note: $\frac{m}{2}(2(10)+(m-1)(10))=630$ and not either 6300 or 63 is dM 0 .

Beware: Some candidates will try and fudge the result given on the question paper.

Notes for awarding $\mathbf{2}^{\text {nd }} \mathbf{A 1}$

Going from $m(m+1)=1260$ straight to $m(m+1)=35 \times 36$ is $2^{\text {nd }} \mathrm{A} 1$.
Going from $m(m+1)=$ some factor decomposition of 6300 straight to $m(m+1)=35 \times 36$ is $2^{\text {nd }} A 1$.
Going from $10 m(m+1)=12600$ straight to $m(m+1)=35 \times 36$ is $2^{\text {nd }} A 0$.
Going from $m(m+1)=\frac{6300}{5}$ straight to $m(m+1)=35 \times 36$ is $2^{\text {nd }} \mathrm{A} 0$.

Alternative: working in an different letter, say n or p.

M1A1: for $\frac{n}{2}(2(10)+(n-1)(10))$ (although mixing letters eg. $\frac{n}{2}(2(10)+(m-1)(10))$ is M0A0).
dM1: for 63 or $6300=\frac{n}{2}(2(10)+(n-1)(10))$
Leading to $6300=\frac{n}{2}(10)(n+1) \Rightarrow 1260=n(n+1) \Rightarrow 35 \times 36=n(n+1)$
The candidate then needs to write either $35 \times 36=m(m+1)$ or $m \equiv n$ or $m=n$ to gain the final A1.
(d)

B1: for 35 only.

Question Number	Scheme	Marks
7. (a)	$\begin{aligned} & P(4,-1) \text { lies on } C \text { where } \mathrm{f}^{\prime}(x)=\frac{1}{2} x-\frac{6}{\sqrt{x}}+3, x>0 \\ & \mathrm{f}^{\prime}(4)=\frac{1}{2}(4)-\frac{6}{\sqrt{4}}+3 ;=2 \\ & \text { T: } y--1=2(x-4) \\ & \text { T: } y=2 x-9 \end{aligned}$	M1; A1 dM1 A1
(b)	$\begin{aligned} & \mathrm{f}(x)=\frac{x^{1+1}}{2(2)}-\frac{6 x^{-\frac{1}{2}+1}}{\left(\frac{1}{2}\right)}+3 x(+c) \\ & \{\mathrm{f}(4)=-1 \Rightarrow\} \frac{16}{4}-12(2)+3(4)+c=-1 \\ & \{4-24+12+c=-1 \quad \Rightarrow c=7\} \end{aligned}$ or equivalent.	M1 A1 dM1 A1 cso
		8
	Notes	
(a)	$\mathbf{1}^{\text {st }}$ M1: for clear attempt at $\mathrm{f}^{\prime}(4)$. $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for obtaining 2 from $\mathrm{f}^{\prime}(4)$. $\mathbf{2}^{\text {nd }} \mathbf{d M 1}$: for $y--1=\left(\right.$ their $\left.\mathrm{f}^{\prime}(4)\right)(x-4)$ or $\frac{y--1}{x-4}=\left(\right.$ their $\left.\mathrm{f}^{\prime}(4)\right)$ or full method of $y=m x+c$, with $x=4, y=-1$ and their $\mathrm{f}^{\prime}(4)$ to find a value for c. Note: this method mark is dependent on the first method mark being awarded. $2^{\text {nd }}$ A1: for $y=2 x-9$ or $y=-9+2 x$ Note: This work needs to be contained in part (a) only. $\mathbf{1}^{\text {st }}$ M1: for a clear attempt to integrate $\mathrm{f}^{\prime}(x)$ with at least one correct application of $x^{n} \rightarrow x^{n+1} \text { on } \mathrm{f}^{\prime}(x)=\frac{1}{2} x-\frac{6}{\sqrt{x}}+3 .$ So seeing either $\frac{1}{2} x \rightarrow \pm \lambda x^{1+1}$ or $-\frac{6}{\sqrt{x}} \rightarrow \pm \mu x^{-\frac{1}{2}+1}$ or $3 \rightarrow 3 x^{0+1}$ is M1.	

$\mathbf{1}^{\text {st }} \mathbf{A 1}$: for correct un-simplified coefficients and powers (or equivalent) with or without $+c$.
$\mathbf{2}^{\text {nd }} \mathbf{d M 1}$: for use of $x=4$ and $y=-1$ in an integrated equation to form a linear equation in c equal to -1 .
ie: applying $\mathrm{f}(4)=-1$. This mark is dependent on the first method mark being awarded.
A1: For $\{f(x)=\} \frac{x^{2}}{2(2)}-\frac{6 x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}+3 x+7$ stated on one line where coefficients can be un-simplified or simplified, but must contain one term powers. Note this mark is for correct solution only.

Note: For a candidate attempting to find $f(x)$ in part (a)

If it is clear that they understand that they are finding $\mathrm{f}(x)$ in part (a); ie. by writing $\mathrm{f}(x)=\ldots$ or $y=\ldots$ then you can give credit for this working in part (b).

Alternative 3 to (a)

Negating $4 x-5-x^{2}$ gives $x^{2}-4 x+5$
So, $x^{2}-4 x+5=(x-2)^{2}-4+5 \quad\left\{=(x-2)^{2}+1\right\} \quad$ M1 for $\pm(\pm x \pm 2)^{2} \pm k+5$
then stating $p=-2$ is $\mathbf{1}^{\text {st }} \mathbf{A 1}$ and/or $q=-1$ is $\mathbf{2}^{\text {nd }} \mathbf{A 1}$.
or writing $-1-(x-2)^{2}$ is A1A1.

Special Case for part (a):

$q-(x+p)^{2}=q-\left(x^{2}+2 p x+p^{2}\right)=-x^{2}-2 p x+q-p^{2}=4 x-5-x^{2}$
$\Rightarrow-2 p x+q-p^{2}=4 x-5 \Rightarrow q-p^{2}+5=4 x+2 p x \Rightarrow q-p^{2}+5=x(4+2 p)$
$\Rightarrow x=\frac{q-p^{2}+5}{4+2 p} \Rightarrow p \neq-2$ scores Special Case M1A1A1 only once $p \neq-2$ achieved.
(b) M1: for correctly substituting any two of $a=-1, b=4, c=-5$ into $b^{2}-4 a c$ if this is quoted.

If $b^{2}-4 a c$ is not quoted then the substitution must be correct.
Substitution into $b^{2}<4 a c$ or $b^{2}=4 a c$ or $b^{2}>4 a c$ is M0.
A1: for -4 only.
If they write $-4<0$ treat the <0 as ISW and award A1. If they write $-4 \geq 0$ then score A0.
So substituting into $b^{2}-4 a c<0$ leading to $-4<0$ can score M1A1
Note: Only award marks for use of the discriminant in part (b).
Note: Award M0 if the candidate uses the quadratic formula UNLESS they later go on to identify that the discriminant is the result of $b^{2}-4 a c$.
Beware: A number of candidates are writing up their solution to part (b) at the bottom of the second page. So please look!
(c) M1: Correct \cap shape in any quadrant.

A1: The maximum must be within the fourth quadrant to award this mark.
B1: Curve (and not line!) cuts through -5 or $(0,-5)$ marked on the y-axis
Allow $(-5,0)$ rather than $(0,-5)$ if marked in the "correct" place on the y-axis.
If the curve cuts through the negative y-axis and this is not marked, then you can recover $(0,-5)$ from the candidate's working in part (c). You are not allowed to recover this point, though, from a table of values.

Note: Do not recover work for part (a) in part (c).

Note: Writing down $m\left(L_{2}\right)=-2$ with no earlier incorrect working gains M1A1B1
$\mathbf{2}^{\text {nd }} \mathbf{M} 1$: for applying $y-4= \pm \lambda(x-2)$ where λ is a numerical value, $\lambda \neq 0$. or full method of $y=m x+c$, with $x=2, y=4$ and (their $\pm \lambda$) to find c.
$\mathbf{2}^{\text {nd }}$ A1: $2 x+y-8=0$ or $-2 x-y+8=0$ or $y+2 x-8=0$ or $4 x+2 y-16=0$ or $2 x+1 y-8=0$ etc. Must be " $=0$ ". So do not allow $2 x+y=8$ etc.
Note: Condone the error of incorrectly rearranging L_{1} to give $y=\frac{1}{2} x-3 \Rightarrow m\left(L_{1}\right)=\frac{1}{2}$.
(c) \quad M1: \quad for an attempt to solve. Must form a linear equation in one variable.
$\mathbf{1}^{\text {st }} \mathbf{A 1}$: for $x=3.5$ (correct solution only).
$\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for $y=1 \quad$ (correct solution only).
Note: If $x=3.5, y=1$ is found from no working, then send to review.
Note: Use of trial and error to find one of x or y and then substitution into one of L_{1} or L_{2} can achieve M1A1A1.
(d) M1: for an attempt at $C D^{2}-\mathrm{ft}$ their point D. Eg: $(" 3.5 "-2)^{2}+(" 1 "-4)^{2}$ or simplified. This mark can be implied by finding $C D$.
$\mathbf{1}^{\text {st }} \mathbf{A 1 f t}$ for finding their $C D-\mathrm{ft}$ their point D. Eg: $\sqrt{(" 3.5 "-2)^{2}+(" 1 "-4)^{2}}$ or correctly simplified. $\mathbf{2}^{\text {nd }} \mathbf{A 1}$:cso for no incorrect working seen.
Note: A candidate initially writing down $\sqrt{1.5^{2}+3^{2}}$ can be awarded M1A1.

Alternatives part (d): Final accuracy

1. $\left\{\sqrt{1.5^{2}+3^{2}}=\right\} \sqrt{\frac{9}{4}+9}=\sqrt{\frac{9}{4}+\frac{36}{4}}=\sqrt{\frac{45}{4}}=\frac{3 \sqrt{5}}{2}$
2. $\left\{\sqrt{1.5^{2}+3^{2}}=\right\} \sqrt{11.25}=\sqrt{2.25} \sqrt{5}=1.5 \sqrt{5}$
(e) M1: for an attempt at finding the area of either triangle $A B C$ or triangle $A B E$.

B1: Correct method for removing a square root. Eg: $\sqrt{80} \sqrt{5}=\sqrt{400}=20$ or $\sqrt{5} \times 4 \sqrt{5}=20$
Note: This mark can be implied.
A1: for 45 only.
Alternative 1 to part (e): \quad Area $=\frac{1}{2}\left(\frac{3}{2} \sqrt{5}+3 \sqrt{5}\right)(\sqrt{80})=\frac{1}{2}(30+60)=45$
M1: $\frac{1}{2}(A B)(C E)$. B1: Evidence of correct surd removal. A1: for 45.
Note: Multiplying the diagonals (usually to find 90) is M0, B1 if surds are removed correctly, A0.

Alternative 2 to part (e):

Area $=$ triangle $D A C+$ triangle $D C B+$ triangle $D E A+$ triangle $D B E$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times \frac{3}{2} \sqrt{5} \times \sqrt{45}\right)+\left(\frac{1}{2} \times \frac{3}{2} \sqrt{5} \times(\sqrt{80}-\sqrt{45})\right)+\left(\frac{1}{2} \times 3 \sqrt{5} \times \sqrt{45}\right)+\left(\frac{1}{2} \times 3 \sqrt{5} \times(\sqrt{80}-\sqrt{45})\right) \\
& =\left(\frac{1}{2} \times \frac{3}{2}(15)\right)+\left(\frac{1}{2} \times \frac{3}{2}(5)\right)+\left(\frac{1}{2} \times 3(15)\right)+\left(\frac{1}{2} \times 3(5)\right) \\
& =\left(\frac{45}{4}\right)+\left(\frac{15}{4}\right)+\left(\frac{45}{2}\right)+\left(\frac{15}{2}\right) \\
& =45
\end{aligned}
$$

M1: For finding the area of one of the four triangles. B1: Evidence of correct surd removal. A1: for 45.

Alternative 3 to part (e):

$$
\left\{C E=C D+D E=\frac{3}{2} \sqrt{5}+3 \sqrt{5}=\frac{9}{2} \sqrt{5}\right\}, \quad\{B D=D A+\underline{A B}=3 \sqrt{5}+\underline{4 \sqrt{5}}=7 \sqrt{5}\}
$$

Area $=$ triangle $B C E-$ triangle $A C E=\frac{1}{2}(C E)(B D)-\frac{1}{2}(C E)(B D)$
$=\frac{1}{2} \times \frac{9}{2} \sqrt{5} \times 7 \sqrt{5}-\frac{1}{2} \times \frac{9}{2} \sqrt{5} \times 3 \sqrt{5} \quad$ M1: for an attempt at the area of triangle $B C E$ or triangle $A C E$.
$=\frac{63(5)}{4}-\frac{27(5)}{4}=\frac{36(5)}{4}=9(5) \quad$ B1: Evidence of correct surd removal.
$=45$
A1: for 45 only.

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA031950 Summer 2012

Llywodraeth Cynulliad Cymru
Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

