Question	Scheme		AOs
14 (a)	$f(x) = -3x^{2} + 12x + 8 = -3(x \pm 2)^{2} + \dots$	M1	1.1b
	$=-3(x-2)^2+$	A1	1.1b
	$=-3(x-2)^2+20$	A1	1.1b
		(3)	
	Coordinates of $M = (2, 20)$	B1ft	1.1b
(b)	Coordinates of $M = (2, 20)$	B1ft	2.2a
		(2)	
(c)	ſ	M1	1 1h
	$-3x^2 + 12x + 8 \mathrm{d}x = -x^3 + 6x^2 + 8x$	A1	1.1b
	Method to find R = their $2 \times 20 - \int_0^2 \left(-3x^2 + 12x + 8\right) dx$	M1	3.1a
	$R = 40 - \left[-2^3 + 24 + 16\right]$	dM1	1.1b
	= 8	A1	1.1b
		(5)	
		(10 n	narks)
Alt(c)	$3x^2 - 12x + 12 \mathrm{d}x = x^3 - 6x^2 + 12x$	M1	1.1b
	J	AI	1.10
	Method to find $R = \int_0^2 3x^2 - 12x + 12 dx$	M1	3.1a
	$R = 2^3 - 6 \times 2^2 + 12 \times 2$	dM1	1.1b
	= 8	A1	1.1b

www.yesterdaysmathsexam.com

Notes:

(a)

- M1: Attempts to take out a common factor and complete the square. Award for $-3(x \pm 2)^2 + ...$ Alternatively attempt to compare $-3x^2 + 12x + 8$ to $ax^2 + 2abx + ab^2 + c$ to find values of a and b
- A1: Proceeds to a form $-3(x-2)^2 + ...$ or via comparison finds a = -3, b = -2

A1:
$$-3(x-2)^2 + 20$$

www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
9	$\int_{k}^{9} \frac{6}{\sqrt{x}} dx = \left[ax^{\frac{1}{2}}\right]_{k}^{9} = 20 \Longrightarrow 36 - 12\sqrt{k} = 20$		1.1b 1.1b
	Correct method of solving Eg. $36-12\sqrt{k} = 20 \Longrightarrow k =$	dM1	3.1a
	$\Rightarrow k = \frac{16}{9}$ oe	A1	1.1b
		(4)	
(4 marks)			
Notes:			
M1: For set	$\operatorname{ting} \left[ax^{\frac{1}{2}} \right]_{k}^{9} = 20$		
A1: A corre	ct equation involving p Eg. $36 - 12\sqrt{k} = 20$		
dM1: For a	whole strategy to find k. In the scheme it is awarded for setting $\left[ax^{\frac{1}{2}}\right]_{k}^{9}$	= 20 , usin	g
both		1	
limits	and proceeding using correct index work to find k . It cannot be scored if	$\frac{1}{2}k^{\overline{2}} < 0$	
A1: $k = \frac{16}{9}$			

www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs	
3	$\int \frac{3x^4 - 4}{2x^3} \mathrm{d}x = \int \frac{3}{2}x - 2x^{-3} \mathrm{d}x$	M1 A1	1.1b 1.1b	
	$=\frac{3}{2}\times\frac{x^{2}}{2}-2\times\frac{x^{-2}}{-2} (+c)$	dM1	3.1a	
	$=\frac{3}{4}x^{2}+\frac{1}{x^{2}}+c$ o.e	A1	1.1b	
		(4)		
		(4 n	narks)	
Notes:				
(1) M1: Attemr	ots to divide to form a sum of terms. Implied by two terms with one corre	ect index.		
$\int \frac{3x^4}{2x^3}$	$-\frac{4}{2x^3}$ dx scores this mark.			
A1: $\int \frac{3}{2}x -$	$2x^{-3}$ dx o.e such as $\frac{1}{2}\int (3x-4x^{-3}) dx$. The indices must have been pr	ocessed or	n both	
terms.	terms. Condone spurious notation or lack of the integral sign for this mark.			
dM1: For th Look	the full strategy to integrate the expression. It requires two terms with one for $=ax^{p} + bx^{q}$ where $p = 2$ or $q = -2$	correct in	dex.	
A1: Correct	t answer $\frac{3}{4}x^2 + \frac{1}{x^2} + c$ o.e. such as $\frac{3}{4}x^2 + x^{-2} + c$			

AS Mathematics Paper 8MA0 01 June 2018 Mark Scheme

Question	Question Scheme		AOs	
1	$\int \left(\frac{2}{3}x^3 - 6\sqrt{x} + 1\right) \mathrm{d}x$			
	Attempts to integrate awarded for any correct power		1.1a	
	$\int \left(\frac{2}{3}x^3 - 6\sqrt{x} + 1\right) dx = \frac{2}{3} \times \frac{x^4}{4} + \dots + x$		1.1b	
	$= \dots - 6 \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + \dots$	A1	1.1b	
	$= \frac{1}{6}x^4 - 4x^{\frac{3}{2}} + x + c$	A1	1.1b	
(4 marks)				
	Notes			
M1: Allow Awarc A1: Correc A1: Correc A1: Comp Simpli	for raising power by one. $x^n \rightarrow x^{n+1}$ I for any correct power including sight of $1x$ et two 'non fractional power' terms (may be un-simplified at this sign et 'fractional power' term (may be un-simplified at this stage) letely correct, simplified and including constant of integration seen ification is expected for full marks.	stage) on one line	›.	
Accept correct exact equivalent expressions such as $\frac{x}{6} - 4x\sqrt{x} + 1x^{1} + c$				
Accep	$\frac{x^2 - 24x^2 + 6x}{6} + c$			
Conde	one poor notation. Eg answer given as $\int \frac{1}{6}x^4 - 4x^{\frac{3}{2}} + x + c$			

A1: Deduces
$$k < 0, k > \frac{15}{8}$$
. This must be in terms of k.
Allow exact equivalents such as $k < 0 \cup k > 1.875$
but not allow $0 > k > \frac{15}{8}$ or the above with AND, & or \cap between the two inequalities

Alternative using a geometric approach with a triangle with vertices at (0,0), and (3,-5)

Alt (b)	Uses a sketch or otherwise to deduce $k = 0$ is a critical value	B1	2.2a
(~)	Distance from (a, ka) to $(0, 0)$ is $3 \Rightarrow a^2(1+k^2) = 9$	M1	3.1a
	Tangent and radius are perpendicular $\Rightarrow k \times \frac{ka+5}{a-3} = -1 \Rightarrow a(1+k^2) = 3-5k$	M1	3.1a
	Solve simultaneously, (dependent upon both M's)	dM1	1.1b
	$k = \frac{15}{8}$	A1	1.1b
	Deduces $k < 0, k > \frac{15}{8}$	A1	2.2a
		(6)	

Question	Scheme	Marks	AOs
15.	For the complete strategy of finding where the normal cuts the <i>x</i>-axis. Key points that must be seen areAttempt at differentiation	M1	3.1a

	()	u marks)
	(10)	0 marles)
Total area =10 + 36 =46 *	A1*	2.1
Area under curve = = $\left[-\frac{32}{x} + \frac{3}{2}x^2 - 8x\right]_2^4 = (-16) - (-26) = (10)$	dM1	1.1b
$\int \frac{32}{x^2} + 3x - 8 \mathrm{d} x = -\frac{32}{x} + \frac{3}{2}x^2 - 8x$	M1 A1	1.1b 1.1b
 For the complete strategy of finding the values of the two key areas. Points that must be seen are There must be an attempt to find the area under the curve by integrating between 2 and 4 There must be an attempt to find the area of a triangle using 1/2 × ('16'-4)×6 or ∫₄^{"16"} "(-1/2 x+8)" dx 	M1	3.1a
$0-6 = "-\frac{1}{2}"(x-4) \Longrightarrow x = \dots \text{ or an attempt using just gradients}$ $"-\frac{1}{2}" = \frac{6}{a-4} \Longrightarrow a = \dots$ Normal cuts the x-axis at $x = 16$	A1	1.1b
Or where the equation of the normal at (4,6) cuts the x - axis. As above but may not see equation of normal. Eg	dM1	2.1
Either the equation of the normal: this requires substituting $x = 4$ in their $\frac{dy}{dx} = -\frac{64}{x^3} + 3 = (2)$, then using the perpendicular gradient rule to find the equation of normal $y = 6 = "-\frac{1}{2}$ " (x = 4)		
$\frac{x^2}{x^3} = \frac{4x^3}{x^3}$ For a correct method of attempting to find	AI	1.10
$y = \frac{32}{2} + 3x - 8 \Rightarrow \frac{dy}{dx} = -\frac{64}{3} + 3$	M1	1.1b
 Attempt at using a changed gradient to find equation of normal Correct attempt to find where normal cuts the x axis 		

(a)

The first 5 marks are for finding the normal to the curve cuts the x - axis

M1: For the complete strategy of finding where the normal cuts the *x*- axis. See scheme M1: Differentiates with at least one index reduced by one

$$\mathbf{A1:} \ \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{64}{x^3} + 3$$

dM1: Method of finding

either the equation of the normal at (4, 6).

or where the equation of the normal at (4, 6) cuts the x - axis See scheme. It is dependent upon having gained the M mark for differentiation.

Question	Scheme	Marks	AOs		
3(a)	$x^n \rightarrow x^{n+1}$	M1	1.1b		
	$\int \left(\frac{4}{3} + kx\right) dx = -\frac{2}{2} + \frac{1}{2}kx^2 + c$	Al	1.1b		
	$\int (x^3) x^2 2$	A1 (3)	1.10		
(b)	(b) $\left[-\frac{2}{x^2} + \frac{1}{2}kx^2\right]_{0.5}^2 = \left(-\frac{2}{2^2} + \frac{1}{2}k \times 4\right) - \left(-\frac{2}{(0.5)^2} + \frac{1}{2}k \times (0.5)^2\right) = 8$		1.1b		
	$7.5 + \frac{15}{8}k = 8 \Longrightarrow k = \dots$	dM1	1.1b		
	$k = \frac{4}{15} \text{ oe}$	A1	1.1b		
		(3)			
	NT- 4	(6	marks)		
Mark na	Notes				
(a)					
M1: For <i>x</i>	$x^n \to x^{n+1}$ for either x^{-3} or x^1 . This can be implied by the sight of eith	her x^{-2} or	x^2 .		
Condo A1: Fithe	one " unprocessed" values here. Eg. x^{-3+1} and x^{1+1}				
	r^{-2} r^{2}				
Al. Corre	Accept $4 \times \frac{\pi}{-2}$ or $k \frac{\pi}{2}$ with the indices processed.				
Ignor	re spurious notation e.g. answer appearing with an $\int_{-\infty}^{\infty} sign or with dy$	c on the er	nd		
151101	2 1	2 on the en			
Accept $-\frac{2}{x^2} + \frac{1}{2}kx^2 + c$ or exact simplified equivalent such as $-2x^{-2} + k\frac{x^2}{2} + c$					
(b)					
M1: For substituting both limits into their $-\frac{2}{x^2} + \frac{1}{2}kx^2$, subtracting either way around and setting					
equal to 8. Allow this when using a changed function. (so the M in part (a) may not have been awarded). Condone missing brackets. Take care here as substituting 2 into the original function gives the same result as the integrated function so you will have to consider both limits.					
dM1: For solving a linear equation in k . It is dependent upon the previous M only Don't be too concerned by the mechanics here. Allow for a linear equation in k leading to $k =$					
A1: $k = \frac{4}{15}$ or exact equivalent. Allow for $\frac{m}{n}$ where m and n are integers and $\frac{m}{n} = \frac{4}{15}$					
Condo	one the recurring decimal 0.26 but not 0.266 or 0.267	10			
i icuse	Please remember to isw after a correct answer				

	wootorda	vama + ha	and and and
www.	yesterua	ysillatiis	sexalli.Colli

	Scheme	Marks	AOs
13.	The overall method of finding the x coordinate of A .	M1	3.1a
	$y = 2x^3 - 17x^2 + 40x \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 34x + 40$	B1	1.1b
	$\frac{dy}{dx} = 0 \Rightarrow 6x^2 - 34x + 40 = 0 \Rightarrow 2(3x - 5)(x - 4) = 0 \Rightarrow x = \dots$ Chooses $x = 4$ $x \neq \frac{5}{3}$		1.1b
			3.2a
	$\int 2x^3 - 17x^2 + 40x dx = \left[\frac{1}{2}x^4 - \frac{17}{3}x^3 + 20x^2\right]$	B1	1.1b
	Area $=\frac{1}{2}(4)^4 - \frac{17}{3}(4)^3 + 20(4)^2$	M1	1.1b
	$=\frac{256}{3}$ *	A1*	2.1
		(7)	
		(7 marks)

Notes

M1: An overall problem -solving method mark to find the minimum point. To score this you need to see

- an attempt to differentiate with at least two correct terms
- an attempt to set their $\frac{dy}{dx} = 0$ and then solve to find x. Don't be overly concerned by the mechanics of this solution
- **B1:** $\left(\frac{dy}{dx}\right) = 6x^2 34x + 40$ which may be unsimplified

M1: Sets their $\frac{dy}{dx} = 0$, which must be a 3TQ in *x*, and attempts to solve via factorisation, formula or calculator. If a calculator is used to find the roots, they must be correct for their quadratic. If $\frac{dy}{dx}$ is correct allow them to just choose the root 4 for M1 A1. Condone $(x-4)\left(x-\frac{5}{3}\right)$ A1: Chooses x=4 This may be awarded from the upper limit in their integral

B1:
$$\int 2x^3 - 17x^2 + 40x \, dx = \left[\frac{1}{2}x^4 - \frac{17}{3}x^3 + 20x^2\right]$$
 which may be unsimplified

M1: Correct attempt at area. There may be slips on the integration but expect two correct terms The upper limit used must be their larger solution of $\frac{dy}{dx} = 0$ and the lower limit used must be 0. So if their roots are 6 and 10, then they must use 10 and 0. If only one value is found then the limits must be 0 to that value.

Expect to see embedded or calculated values.

Don't accept $\int_0^4 2x^3 - 17x^2 + 40x \, dx = \frac{256}{3}$ without seeing the integration and the embedded or calculated values

A1*: Area = $\frac{256}{3}$ with correct notation and no errors. Note that this is a given answer.

Question	Scheme	Marks	AOs
7 (a)	$x^n \rightarrow x^{n+1}$	M1	1.1b
	$\int \left(\frac{5}{2\sqrt{x}} + 3\right) \mathrm{d}x = 5\sqrt{x} + 3x$	A1	1.1b
	$\left[5\sqrt{x} + 3x\right]_{1}^{k} = 4 \Longrightarrow 5\sqrt{k} + 3k - 8 = 4$		1.1b
	$3k + 5\sqrt{k} - 12 = 0 *$	A1*	2.1
		(4)	
(b)	$3k + 5\sqrt{k} - 12 = 0 \Longrightarrow \left(3\sqrt{k} - 4\right)\left(\sqrt{k} + 3\right) = 0$	M1	3.1a
	$\sqrt{k} = \frac{4}{3}, (-3)$	A1	1.1b
	$\sqrt{k} = \Rightarrow k =$ oe	dM1	1.1b
	$k = \frac{16}{9}, \aleph$	A1	2.3
		(4)	
		(8	marks)

Notes

(a)

M1: For $x^n \to x^{n+1}$ on correct indices. This can be implied by the sight of either $x^{\frac{1}{2}}$ or x

- A1: $5\sqrt{x} + 3x$ or $5x^{\frac{1}{2}} + 3x$ but may be unsimplified. Also allow with +c and condone any spurious notation.
- **dM1:** Uses both limits, subtracts, and sets equal to 4. They cannot proceed to the given answer without a line of working showing this.
- A1*: Fully correct proof with no errors (bracketing or otherwise) leading to given answer.

(b)

M1: For a correct method of solving. This could be as the scheme, treating as a quadratic in \sqrt{k} and using allowable method to solve including factorisation, formula etc.

Allow values for \sqrt{k} to be just written down, e.g. allow $\sqrt{k} = \pm \frac{4}{3}$, (± 3)

Alternatively score for rearranging to $5\sqrt{k} = 12 - 3k$ and then squaring to get $...k = (12 - 3k)^2$

A1: $\sqrt{k} = \frac{4}{3}, (-3)$

Or in the alt method it is for reaching a correct 3TQ equation $9k^2 - 97k + 144 = 0$

dM1: For solving to find at least one value for k. It is dependent upon the first M mark. In the main method it is scored for squaring their value(s) of \sqrt{k} In the alternative scored for solving their 3TQ by an appropriate method

A1: Full and rigorous method leading to $k = \frac{16}{9}$ only. The 9 must be rejected.

		+]-	
TA7TA7TA7	Vesterna	vemarneevam	COM
** ** ** .	, y CD CCT dd	y blild crib challe.	COIII

Question	Scheme	Marks	AOs
10 (a)	$g(5) = 2 \times 5^3 + 5^2 - 41 \times 5 - 70 = \dots$	M1	1.1a
	$g(5) = 0 \Rightarrow (x-5)$ is a factor, hence $g(x)$ is divisible by $(x-5)$.	A1	2.4
		(2)	
(b)	$2x^{3} + x^{2} - 41x - 70 = (x - 5)(2x^{2} \dots x \pm 14)$	M1	1.1b
	$=(x-5)(2x^2+11x+14)$	A1	1.1b
	Attempts to factorise quadratic factor	dM1	1.1b
	(g(x)) = (x-5)(2x+7)(x+2)	A1	1.1b
		(4)	
(c)	$\int 2x^{3} + x^{2} - 41x - 70 dx = \frac{1}{2}x^{4} + \frac{1}{3}x^{3} - \frac{41}{2}x^{2} - 70x$	M1 A1	1.1b 1.1b
	Deduces the need to use $\int_{-2}^{5} g(x) dx$ $-\frac{1525}{3} - \frac{190}{3}$	M1	2.2a
	$Area = 571\frac{2}{3}$	A1	2.1
		(4)	
		(10	marks)

Notes

(a)

- M1: Attempts to calculate g(5) Attempted division by (x-5) is M0 Look for evidence of embedded values or two correct terms of g(5) = 250 + 25 - 205 - 70 = ...
- A1: Correct calculation, reason and conclusion. It must follow M1. Accept, for example, $g(5) = 0 \Rightarrow (x-5)$ is a factor, hence divisible by (x-5) $g(5) = 0 \Rightarrow (x-5)$ is a factor \checkmark

Do not allow if candidate states

 $f(5) = 0 \Rightarrow (x-5)$ is a factor, hence divisible by (x-5) (It is not f)

```
g(x) = 0 \Rightarrow (x-5) is a factor (It is not g(x) and there is no conclusion)
```

This may be seen in a preamble before finding g(5) = 0 but in these cases there must be a minimal statement ie QED, "proved", tick etc.

- (b)
- M1: Attempts to find the quadratic factor by inspection (correct coefficients of first term and \pm last term) or by division (correct coefficients of first term and \pm second term). Allow this to be scored from division in part (a)
- A1: $(2x^2+11x+14)$ You may not see the (x-5) which can be condoned
- **dM1:** Correct attempt to factorise their $(2x^2 + 11x + 14)$

Ques	tion	Scheme	Marks	AOs
5		$f(x) = 2x + 3 + 12 x^{-2}$	B1	1.1b
		Attempts to integrate	M1	1.1a
		$\int \left(+2x + 3 + \frac{12}{x^2} \right) dx = x^2 + 3x - \frac{12}{x}$	A1	1.1b
		$\left((2\sqrt{2})^{2} + 3(2\sqrt{2}) - \frac{12(\sqrt{2})}{2\times 2}\right) - (-8)$	M1	1.1b
		$=16+3\sqrt{2}*$	A1*	1.1b
			(5 n	narks)
Notes	5:			
B1:	Corr	rect function with numerical powers		
M1:	Allow for raising power by one. $x^n \rightarrow x^{n+1}$			
A1:	Correct three terms			
M1:	Substitutes limits and rationalises denominator			
A1*:	Completely correct, no errors seen			

Question Number	Sch	eme	Marks
10. (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 12x^2$	+18x - 30	M1
	Either Substitute $x = 1$ to give $\frac{dy}{dx} = 12 + 18 - 30 = 0$	Or Solve $\frac{dy}{dx} = 12x^2 + 18x - 30 = 0$ to give $x =$	A1
	So turning point (all correct work so far)	Deduce $x = 1$ from correct work	A1cso (3)
(b) Way 1	When $x = 1$, $y = 4 + 9 - 30 - 8 = -25$		B1
5	Area of triangle $ABP = \frac{1}{2} \times 1 \times 25 = 12.5$ (W	Where P is at $(1, 0)$	B1
	Way 1: $\int (4x^3 + 9x^2 - 30x - 8) dx = x^4 + \frac{9}{3}x^3 - \frac{9}{3}x^3 $	$-\frac{30x^{2}}{2} - 8x \{+c\} \text{ or } x^{4} + 3x^{3} - 15x^{2} - 8x \{+c\}$	M1A1
	$\left[x^{4} + 3x^{3} - 15x^{2} - 8x\right]_{-\frac{1}{4}}^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{2}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{2}\right)^{1}\right)^{1} = (1 + 3 - 15 - 8) - \left(-\frac{1}{2}\right)^{1} = (1 + 3 - 15 - 15 - 15) - \left(-\frac{1}{2}\right)^{1} = (1 + 3 - 15 - 15) - \left(-\frac{1}{2}\right)^$	$\left(-\frac{1}{4}\right)^{4} + 3\left(-\frac{1}{4}\right)^{3} - 15\left(-\frac{1}{4}\right)^{2} - 8\left(-\frac{1}{4}\right)^{2}$	dM1
	$=(-19)-\frac{261}{256}$	or -19-1.02	
	So Area = " <i>their</i> 12.5"+ " <i>their</i> 20 $\frac{5}{256}$ " or "1	$12.5^{\circ} + 20.02^{\circ}$ or $12.5^{\circ} + their \frac{5125}{256}$	ddM1
	= 32.52 (NOT - 32.52)	230	A1 (7)
			(7) [10]
	Less efficient alternative methods for first For first mark: Finding equation of the line A For second mark: Integrating to find triangle	two marks in part (b) with Way 1 or 2 <i>B</i> as $y = 25x - 50$ as this implies the -25 area	B1
	$\int_{1}^{2} (25x - 50) dx = \left[\frac{25}{2}x^2 - 50x\right]_{1}^{2} = -50 + 37.5 = -50$	-12.5 so area is 12.5	B1
(b)	Then mark as before if they use Method in o Way 2: Those who use area for original cur	riginal scheme ve between -1/4 and 2 and subtract area	
Way 2	between line and curve between 1 and 2 has The first B1 (if y=-25 is not seen) is for equ. The second B1 may be implied by final answ	ave a correct (long) method . ation of straight line $y = 25x - 50$	B1
	shaped" region between line and curve, or by are	a between line and axis/triangle found as 12.5	B1
	$\int (4x^3 + 9x^2 - 55x + 42) dx = x^4 + \frac{9}{3}x^3 - \frac{55x^2}{2} + \frac{1}{3}x^3 - \frac{55x^2}{2} + \frac{1}{3}x^3 - \frac{55x^2}{2} + \frac{1}{3}x^3 - \frac$	+ $42x \{+c\}$ (or integration as in Way 1)	M1A1
	The dM1 is for correct use of the different co	prrect limits for each of the two areas: i.e.	
	$\left[x^{4} + 3x^{3} - 15x^{2} - 8x\right]_{-\frac{1}{4}}^{2} = (16 + 24 - 60 - 16) - 60 - 16$	$-\left(\left(-\frac{1}{4}\right)^{4}+3\left(-\frac{1}{4}\right)^{3}-15\left(-\frac{1}{4}\right)^{2}-8\left(-\frac{1}{4}\right)\right)$	
	And $\left[x^4 + \frac{9}{3}x^3 - \frac{55x^2}{2} + 42x\right]_1^2 = 16 + 24 - 110$	+84-(1+3-27.5+42)	dM1
	So Area = their $\left[x^4 + 3x^3 - 15x^2 - 8x\right]_{-\frac{1}{4}}^2$ min	nus their $\left[x^4 + \frac{9}{3}x^3 - \frac{55x^2}{2} + 42x \right]_1^2$	ddM1
	i.e. " <i>their</i> 37.0195 "-" <i>their</i> 4.5 " (with b Reaching = 32.52 (NOT - 32.52) See over for special case with wrong limits	oth sets of limits correct for the integral)	A1

Question Number		Scheme	Marks		
7. (a)	$\left\{ \int \left(3x - x^{\frac{3}{2}} \right)^{\frac{3}{2}} \right\}$	$Either f) dx = \frac{3x^2}{2} - \frac{x^{\frac{5}{2}}}{\left(\frac{5}{2}\right)} \{+c\}$ $\frac{3x \to \pm \lambda x^2 \text{ or } x^{\frac{3}{2}} \to \pm \mu x^{\frac{5}{2}}, \lambda, \mu \neq 0$ At least one term correctly integrate Both terms correctly integrate	r M1 ¬		
(b)	$0 = 3x - x^{\frac{3}{2}} \Rightarrow 0 = 3 - x^{\frac{1}{2}} \text{ or } 0 = x \left(3 - x^{\frac{1}{2}}\right) \Rightarrow x = \dots$ Sets $y = 0$, in order to f the correct $x^{\frac{1}{2}} = 3$ or x		[3]		
	$\begin{cases} \operatorname{Area}(S) = \begin{bmatrix} \\ \end{bmatrix} \end{cases}$	$\left[\frac{3x^2}{2} - \frac{2}{5}x^{\frac{5}{2}}\right]_0^9$			
	$=\left(\frac{3(9)^2}{2}-\right)$	$\left(\frac{2}{5}\right)(9)^{\frac{5}{2}} - \{0\}$ Applies the limit 9 on an integrate function with no wrong lower limit	d ddM1		
	$\left\{=\left(\frac{243}{2}-\frac{4}{2}\right)\right\}$	$\frac{486}{5} - \{0\} = \frac{243}{10} \text{ or } 24.3 \qquad \qquad \frac{243}{10} \text{ or } 24.3$	A1 oe		
			[3]		
		Question 7 Notes			
(a)	M1	Either $3x \to \pm \lambda x^2$ or $x^{\frac{3}{2}} \to \pm \mu x^{\frac{5}{2}}$, $\lambda, \mu \neq 0$			
	1 st A1	At least one term correctly integrated. Can be simplified or un-simplified but power must simplified. Then isw.	be		
	2 nd A1	Both terms correctly integrated. Can be un-simplified (as in the scheme) but the $n+1$ in each denominator and power should be a single number. (e.g. $2 - \text{not } 1+1$) Ignore subsequent work if there are errors simplifying. Ignore the omission of " $+c$ ". Ignore integral signs in their answer.			
(b)	1 st M1	Sets $y = 0$, and reaches the correct $x^{\frac{1}{2}} = 3$ or $x = 9$ (isw if $x^{\frac{1}{2}} = 3$ is followed by $x =$	√ 3)		
		Just seeing $x = \sqrt{3}$ without the correct $x^{\frac{1}{2}} = 3$ gains M0. May just see $x = 9$.			
		Use of trapezium rule to find area is M0A0 as hence implies integration needed.			
	ddM1This mark is dependent on the two previous method marks and needs both to have been awarded. Sees the limit 9 substituted in an integrated function. (Do not follow through their value of x) Do not need to see MINUS 0 but if another value is used as lower limit – this is M0. This mark may be implied by 9 in the limit and a correct answer.				
	A1	$\frac{243}{10}$ or 24.3			
	Common Error	Common Error $0 = 3x - x^{\frac{3}{2}} \Rightarrow x^{\frac{1}{2}} = 3 \text{ so } x = \sqrt{3}$ Then uses limit $\sqrt{3}$ etc gains M1 M0 A0 so 1/3			

Question Number	Scheme	Marks
3.(a)	$\frac{x^3 + 4}{2x^2} = \frac{x^3}{2x^2} + \frac{4}{2x^2} = \frac{1}{2}x + 2x^{-2}$	M1A1A1 [3]
(b)	$\int \frac{x^3 + 4}{2x^2} \mathrm{d}x = \int \frac{1}{2} x + 2x^{-2} \mathrm{d}x = \frac{1}{4} x^2 - 2x^{-1} + c$	M1A1A1
		[3] (6 marks)

(a)	
M1	For an attempt to divide by $2x^2$. It may be implied if either index or either coefficient is correct.
A1	One correct term. Either $\frac{1}{2}x$ or $+2x^{-2}$. Allow $\frac{1}{2}x^1 = 0.5x$ or, for this mark only, $+2x^{-2} = +\frac{2}{x^2}$
A1	$\frac{1}{2}x + 2x^{-2}$ or $0.5x + 2x^{-2}$ Accept $x^{1} = x$ A final answer of $\frac{1}{2}x + \frac{2}{x^{2}}$ is M1 A1 A0
(b)	
M1	Raises any of the indices by one for their $Ax^{p} + Bx^{q}$
A1	One term both correct and simplified. Accept either $\frac{1}{4}x^2/0.25x^2$ or $-2x^{-1}/-\frac{2}{x}/-\frac{2}{x^1}$
A1	$\frac{1}{4}x^2 - 2x^{-1} + c$ including the +c. Accept equivalents such as $0.25x^2 - \frac{2}{x^1} + c$ or $\frac{x^3 - 8}{4x} + c$
	Do not accept expressions like $\frac{1}{4}x^2 + -2x^{-1} + c$

Question Number	Scheme		Marks
15. (a)(i) (ii)	18 3		B1 B1 [2]
(b)	$\frac{(x-3)^2 (x+4)}{2} = '18'$		M1
	$(x^2 - 6x + 9)(x + 4) = 36$		
	$\Rightarrow x^3 - 2x^2 - 15x + 36 = 36$ $\Rightarrow x^3 - 2x^2 - 15x = 0 \Rightarrow x^2 - 2x - 15 = 0$		dM1 A1*
(c)	<i>x</i> = 5		[3] B1
	$y = \frac{(5-3)^2 (5+4)}{2} \implies (5,18)$		M1A1
			[3]
(d)	Method 1	Method 2	
(u)	$\int \left(\frac{1}{2}x^3 - x^2 - \frac{15}{2}x + 18\right) dx = \frac{1}{8}x^4 - \frac{1}{3}x^3 - \frac{15}{4}x^2 + 18x$	$\int \left(-\frac{1}{2}x^3 + x^2 + \frac{15}{2}x\right) dx = -\frac{1}{8}x^4 + \frac{1}{3}x^3 + \frac{15}{4}x^2$	M1A1
	Uses their 5 as the upper limit (and subtracts 0) to obtain an area	Uses their 5 as the upper limit (and subtracts 0) to obtain area	M1
	Area of rectangle = 90	Implied by correct answer $57\frac{7}{24}$	B1
	Use = Area of rectangle – Area beneath curve	Implied by subtraction in the integration	dM1
	$=90-32\frac{17}{24}=57\frac{7}{24}\left(\frac{1375}{24}\right)$	$=57\frac{7}{24}$ $\left(\frac{1375}{24}\right)$	Alcso
			[6] (14 marks)

Question Number	Scheme	Marks	
8 (a)	$\int (3x^2 + 4x - 15) dx = x^3 + 2x^2 - 15x + c$	M1A1A1	
(b)	$\int_{b}^{4} (3x^{2} + 4x - 15) dx = [x^{3} + 2x^{2} - 15x + (c)]_{b}^{4} = 36$		(3)
	$(64+32-60) - (b^3 + 2b^2 - 15b) = 36$	M1	
	$b^3 + 2b^2 - 15b = 0$	A1*	(2)
(c)	b = 0	B1	
	$b^2 + 2b - 15 = 0 \Longrightarrow (b+5)(b-3) = 0$	M1	
	b = -5, 3	A1	
			(3)
		(8 marks)	

- (a)
- M1 Raises the index of any term in *x* by one
- A1 Two of the three algebraic terms correct (unsimplified). For example accept $2x^2 = \frac{4}{2}x^{1+1}$
- A1 cao including the +c
- (b)
- M1 Substitutes 4 and *b* into their integrated expression, subtracts either way around and sets equal to 36
- A1* Simplifies to the given solution. This is a given answer and therefore the intermediate line(s) must be correct. Minimum expectation for an intermediate line is $36 (b^3 + 2b^2 15b) = 36$ or equivalent with the bracket removed.
- (c)
- B1 b=0
- M1 Factorises/ attempts to solve the quadratic
- A1 b = -5, 3

Question Number	Scheme	Marks	
12(a)	$y = x^3 - 9x^2 + 26x - 18 \Longrightarrow \frac{dy}{dx} = 3x^2 - 18x + 26$	M1A1	
	At $x = 4 \implies \frac{dy}{dx} = 3 \times 4^2 - 18 \times 4 + 26 (= 2)$	M1	
	Equation of normal is $y-6 = -\frac{1}{2}(x-4) \Longrightarrow 2y + x = 16$	dM1A1*	
		D1*	(5)
(b)	Sub $x = 1$ in $(y) = 1 - 9 + 26 - 18 = 0$	B1*	(1)
(c)	$\int x^3 - 9x^2 + 26x - 18dx = \left[\frac{1}{4}x^4 - 3x^3 + 13x^2 - 18x\right]$	M1A1	
	Normal meets x axis at $x = 16$	B1	
	Area of triangle = $\frac{1}{2} \times (16 - 4) \times 6 = (36)$	M1	
	Correct method for area = $\left[\frac{1}{4}x^4 - 3x^3 + 13x^2 - 18x\right]_1^4 + \frac{1}{2} \times (16 - 4) \times 6$	dM1	
	= 51.75	A1	(6)
		(12 mark	(6) <u>(</u> 8)

(a)

M1 Two of the three terms correct (may be unsimplified).

A1
$$\left(\frac{dy}{dx}\right) = 3x^2 - 18x + 26$$
, need not be simplified. You may not see the $\frac{dy}{dx}$

M1 Substitutes x = 4 into their $\frac{dy}{dx}$

dM1 The candidate must have scored both M's. It is for the correct method of finding the equation of a normal. Look for $y-6 = -\frac{dx}{dy}\Big|_{x=4} \times (x-4)$

If the form y = mx + c is used it is for proceeding as far as c = ...

A1* cso 2y + x = 16 Note that this is a given answer. x + 2y = 16 is ok

(b)
B1* Either substitute
$$x = 1$$
 in $(y) = 1^3 - 9 \times 1^2 + 26 \times 1 - 18 = 0$ or $(y) = 1 - 9 + 26 - 18 = 0$

Or substitute
$$y = 0$$
 reach $(x-1)(x^2-8x+18)$ by inspection or division and state $x = 1$

Question Number	Sch	eme	Marks
7 (i)	$\frac{2+4x^3}{x^2} = \frac{2}{x^2} + 4x = 2x^{-2} + 4x$	Attempts to split the fraction. This can be awarded for $\frac{2}{x^2}$ or $\frac{4x^3}{x^2}$ or may be implied by the sight of one correct index e.g px^{-2} or qx providing one of these terms is obtained correctly. So for example $\frac{2+4x^3}{x^2} = 2+4x^3+x^{-2}$ would be M0 as the x^{-2} has been obtained incorrectly.	M1
	$\int 2x^{-2} + 4x \mathrm{d}x = 2 \times \frac{x^{-1}}{-1} + 4 \times \frac{x^2}{2} (+c)$	dM1: $x^n \rightarrow x^{n+1}$ on any term. Dependent on the first M. A1: At least one term correct, simplified or un-simplified. Allow powers and coefficients to be un- simplified e.g. $2 \times \frac{x^{-2+1}}{-1}$, $+4 \times \frac{x^{1+1}}{2}$	dM1A1
	$= -\frac{2}{x} + 2x^2 + c$	All correct and simplified including the + c. Accept equivalents such as $-2x^{-1} + 2x^2 + c$	A1
		(4)	
	There are no marks in (ii) for use integr		
(ii)	$\int \left(\frac{4}{\sqrt{x}} + k\right) dx$ $= \int \left(4x^{-0.5} + k\right) dx = 4\frac{x^{0.5}}{0.5} + kx(+c)$	M1: Integrates to obtain either $\alpha x^{0.5}$ or kx A1: Correct integration (simplified or un-simplified). Allow powers and coefficients to be un-simplified e.g. $4\frac{x^{-0.5+1}}{0.5}$. There is no need for $+c$	M1A1
	$\left[4\frac{x^{0.5}}{0.5} + kx\right]_{2}^{4} = 30 \Rightarrow \left(8\sqrt{4} + 4k\right) - \left(8\sqrt{2} + 2k\right) = 30$ Substitutes both $x = 4$ and $x = 2$ into <u>changed</u> expression involving k, subtracts either way round and sets equal to 30 Condena poor use or emission of breakets when subtracting		M1
	$2k + 16 - 8\sqrt{2} = 30 \implies k = 7 + 4\sqrt{2}$	ddM1: Attempts to solve for k from a linear equation in k. Dependent upon both M's and need to have seen $\int k dx \rightarrow kx$. A1: $7+4\sqrt{2}$ or exact equivalent e.g. $7+2^{2.5}$, $7+4\times2^{0.5}$	ddM1A1 (5)
			(9 marks)
			(* *********)

Question Number	Scheme		Marks
12(a)	$y = \frac{3}{4}x^2 - 4\sqrt{x} + 7 \Longrightarrow \frac{dy}{dx} = \frac{3}{2}x - 2x^{-0.5}$	M1: Differentiates to obtain at least one correct power for one of the terms in x. (may be un-simplified) e.g. $x^2 \rightarrow x^{2^{-1}}$ or $\sqrt{x} \rightarrow x^{\frac{1}{2}^{-1}}$ A1: Correct derivative. Allow un- simplified e.g. $2 \times \frac{3}{4} x^{2^{-1}}$ or $-4 \times \frac{1}{2} x^{\frac{1}{2}^{-1}}$	M1A1
	At $x = 4 \frac{dy}{dx} = \frac{3}{2}(4) - 2(4)^{-0.5} = \dots$	Substitutes $x = 4$ into a changed function in an attempt to find the gradient.	M1
	y-11 = "5"(x-4) or $y = mx + c \Longrightarrow 11 = "5" \times 4 + c \Longrightarrow c =$	Correct straight line method using $(4, 11)$ correctly placed and their dy/dx at $x = 4$ for the tangent not the normal. If using $y = mx + c$, must reach as far as finding a value for <i>c</i> . Dependent on the previous M.	d M1
	y = 5x - 9	Correct printed equation with no errors seen. Beware of the "5" appearing from wrong working.	A1*
	Important Note:Important Note:Following a correct derivative, if candidate states $x = 4$ so $dy/dx = 5$, this is fine if they then complete correctly – allow full marks. However, following a correct derivative, if the candidate just states $dy/dx = 5$ and then proceeds to obtain the correct straight line equation, the final mark can be withheld. Some evidence is needed that the candidate is considering the gradient at $x = 4$.		
			(5)

	Finds area under curve between 1 and 4 and subtracts triangle C			
	(see diagr	am at en	d)	
(b) Way 1	$\int \frac{3}{4}x^2 - 4\sqrt{x} + 7 \mathrm{d}x = \frac{1}{4}x^3 - \frac{8}{3}x^{1.5} + 7$	7x(+c)	M1: $x^n \rightarrow x^{n+1}$ on any term. May be un-simplified e.g. $x^2 \rightarrow x^{2+1}, x^{0.5} \rightarrow x^{0.5+1},$ $7 \rightarrow 7x^1$ A1: Correct integration. May be un-simplified e.g. terms such as $\frac{1}{3} \times \frac{3}{4} x^{2+1},$ $-\frac{2}{3} \times 4x^{0.5+1}, 7x^1$ and $+c$ is not required.	M1A1
	Tangent meets x axis at $x = 1.8$	This ma triangle on a dia	ay be embedded within a e area below or may be seen agram.	B1
	Area of triangle $=\frac{1}{2} \times (4 - 1.8) \times 11 = (12.1)$ Correct method for the area of a triangle - look for $\frac{1}{2} \times (4 - 1.8) \times 11$ This may be implied by the evaluation of $\int_{1.8}^{4} 5x - 9 dx = \left[5\frac{x^2}{2} - 9x\right]_{1.8}^{4}$ Correct method for area = Area A + Area B + Area C - Area C $\left(\frac{1}{4}4^3 - \frac{8}{3} \times 4^{1.5} + 7 \times 4\right) - \left(\frac{1}{4}1^3 - \frac{8}{3} \times 1^{1.5} + 7 \times 1\right) - 12.1'$ Correct combination of areas. Dependent on both previous method marks.			M1
				dd M1
	= awrt 5.98	Area of exact as	R = awrt 5.98 or allow the nswer of $\frac{359}{60}$ or equivalent.	A1
				(6)
				(11 marks)

Foi	· part	(b),	, in all	l cases,	look	to a	apply	the a	pprop	riate	sche	eme tl	hat	gives	the	candi	idate	the	best ma	ırk
-----	--------	------	----------	----------	------	------	-------	-------	-------	-------	------	--------	-----	-------	-----	-------	-------	-----	---------	-----

	Finds area under curve between 1 and "1.8"					
	"curve – line" between "1					
(b) Way 2	$\int \frac{3}{4}x^2 - 4\sqrt{x} + 7 \mathrm{d}x = \frac{1}{4}x^3 - \frac{8}{3}x^{1.5} + 7x(+c)$	M1: $x^n \rightarrow x^{n+1}$ on any term. May be un-simplified e.g. $x^2 \rightarrow x^{2+1}, x^{0.5} \rightarrow x^{0.5+1},$ $7 \rightarrow 7x^1$ A1: Correct integration. May be un-simplified e.g. terms such as $\frac{1}{3} \times \frac{3}{4} x^{2+1},$ $-\frac{2}{3} \times 4x^{0.5+1}, 7x^1$ and $+c$ is not required.	M1A1			
	Tangent meets x axis at $x = 1.8$	This may be seen on a diagram.	B1			
	Area between "1.8" an					
	$\pm \int_{1.8}^{4} \left(\frac{3}{4}x^2 - 4\sqrt{x} + 7\right) - (5x - 9) dx = \pm \left[\frac{1}{4}\right]$ $= \frac{56}{-15} - 157182 (= 2.9)$	$\left[x^{3} - \frac{8}{3}x^{1.5} - \frac{5x^{2}}{2} + 16x\right]_{1.8}^{4}$	M1			
	Attempts to integrate "curve – line" or "line – "1.8" and 4 and subtr	- curve", substitute the limits racts.				
	Correct method for area = Are					
	$\left(\left(\frac{1}{4}"1.8"^{3}-\frac{8}{3}"1.8"^{1.5}+7\times"1.8"\right)-\left(\frac{1}{4}l^{3}-\frac{8}{3}l^{1.5}+7\times 1\right)+'2.9485'\right)$					
	Correct combination of areas. Dependent on both previous method marks.					
	= awrt 5.98	Area of R = awrt 5.98 or allow the exact answer of $\frac{359}{60}$ or equivalent.	A1			

Questi	on Scheme	Marks
1.	$f(x) = 3x^2 + x - 4x^{-\frac{1}{2}} + 6x^{-3}$	
	$\int \left(3x^2 + x - 4x^{-\frac{1}{2}} + 6x^{-3}\right) dx = \frac{3x^3}{3} + \frac{x^2}{2} - \frac{4x^{\frac{1}{2}}}{\frac{1}{2}} + \frac{6x^{-2}}{-2}(+c)$	M1 A1A1A1
	$= x^{3} + \frac{x^{2}}{2} - 8x^{\frac{1}{2}} - 3x^{-2} + c$	A1
		[5]
		5 marks
	Notes	
M1: 4 A1: 7	Attempt to integrate original $f(x)$ – one power increased $x^n \to x^{n+1}$ wo of the four terms in x correct un simplified or simplified – (ignore no constant here). They may be listed. $4x^2 \to 3\frac{x^3}{x^3}$ is accordable for an un simplified term PLUT. $3x^2 \to 3\frac{x^{2+1}}{x^2}$ isn't	
•	$\rightarrow 3\frac{3}{3}$ is acceptable for an un simplified term BOT $3x \rightarrow 3\frac{3}{2+1}$ isn't	
A1: 7	Three terms correct (may be) unsimplified. They may be listed separately	
A1: 4	All four terms correct (may be) unsimplified on a single line.	

A1 cao: All four terms correct simplified with constant of integration on a single line. You may isw after sight of correct answer.

Question	Scheme	Marks
14.	$y = -x^2 + 6x - 8$	
(a)	$\frac{dy}{dx} = -2x + 6$ and substitutes $x = 5$ to give gradient $= m = -4$	M1 A1
	Normal has gradient $\frac{-1}{m} = \left(\frac{1}{4}\right)$	M1
	Equation of normal is $(y+3) = "\frac{1}{4}"(x-5)$ so $x-4y-17 = 0$	dM1 A1 [5]
(b)	$\int -x^2 + 6x - 8 \mathrm{d}x = -\frac{x^3}{3} + 6\frac{x^2}{2} - 8x$	M1
	The Line meets the <i>x</i> -axis at 17	B1
	The Curve meets the <i>x</i> -axis at 4	B1
	Uses correct limits correctly for their integral	
	i.e. $\left[-\frac{x^3}{3} + 6\frac{x^2}{2} - 8x\right]_4^5 = -\frac{5^3}{3} + 6\frac{5^2}{2} - 8 \times 5 - (-\frac{4^3}{3} + 6\frac{4^2}{2} - 8 \times 4)$	M1
	Finds area above line, using area of triangle or integration $=\frac{1}{2} \times 3 \times ("17"-5)$	M1
	Area of $R = 18 + 1\frac{1}{3} = 19\frac{1}{3}$	A1
		[6]
		11 marks

Question Number	Scheme	Marks
6(a)	$\frac{x^2 - 4}{2\sqrt{x}} = \frac{x^2}{2\sqrt{x}} - \frac{4}{2\sqrt{x}} = \frac{1}{2}x^{\frac{3}{2}} - 2x^{-\frac{1}{2}}$	M1A1A1 (3)
(b)	$\int \frac{x^{\frac{3}{2}}}{2} - 2x^{-\frac{1}{2}} dx = \frac{x^{\frac{5}{2}}}{2 \times 2.5} - 2\frac{x^{\frac{1}{2}}}{0.5}(+c)$	M1 A1ft A1
	$=\frac{x^{\frac{5}{2}}}{5}-4x^{\frac{1}{2}}+c$	B1
		(4) (7 marks)

(a)

- M1 Attempt to divide by $2\sqrt{x}$ to get exactly two terms (not three) This can be implied by any of A, B, p or q being correct.
- A1 Two of *A*, *B*, *p* or *q* correct. Look for two of the four numbers $\frac{x^{\frac{3}{2}}}{2} 2x^{-\frac{1}{2}}$ oe Allow the power as $\frac{3}{2}$ appearing as $2 - \frac{1}{2}$ A1 Completely correct expression $\frac{x^{\frac{3}{2}}}{2} - 2x^{-\frac{1}{2}}$ or equivalent. Eg accept $0.5x^{1.5} - 2x^{-0.5}$ The powers must now be simplified.

(b)

- M1 Increases a fractional index by one. Do not allow if the candidate integrates the numerator and denominator of the original function
- A1ft One of the fractional terms correct unsimplified. You may follow through on any term with a fractional index.
- A1 Both terms correct unsimplified Allow the powers and coefficients such as $\frac{5}{2}$ appearing as $\left(\frac{3}{2}+1\right)$ for this mark

B1
$$=\frac{x^{\frac{5}{2}}}{5} - 4x^{\frac{1}{2}} + c$$
 or exact equivalent such as $0.2x^{2.5} - 4x^{0.5} + c$