Qu 2	Scheme	Mai	rks	AO
(a)	Negative	B1		1.2
(b)	Marc's suggestion is compatible because it's negative correlation	В1	(1)	2.4
(c)	(r=) -0.54458266 awrt -0.545	В1	(1)(1)	1.1b
(d)	$H_0: \rho = 0$ $H_1: \rho < 0$	В1	(1)	2.5
	$[5\% \text{ 1-tail cv} =] (\pm) \text{ 0.4259}$	M1		1.1a
	(significant result / reject H ₀) There <u>is</u> evidence of negative <u>correlation</u> between the <u>number of letters</u> in (or <u>length</u> of) a student's last <u>name</u> and their first <u>name</u>	A1		2.2b
			(3)	
		(6 n	nark	s)
	Notes	(0 1		
(a) (b)	B1 for "negative" Allow "slight" or "weak" etc Allow a description e.g. "as x increases y decreases" or in context e.g. "people with longer last names tend to have shorter first names" A comment of "negative skew" is B0 Need to see distinct or separate responses for (a) and (b) B1 for a comment that suggests data is compatible with the suggestion and a suitable reason such as "there is negative correlation" or a description in x and y or in context or the points lie close to a line with negative gradient or draw line y = x and state that more points below the line so supports (or is compatible with) his suggestion			
(c)	A reason based on just a single point is B0 e.g. "11 letters in last name has only 5 in first name"			
(d)	 B1 for both hypotheses correct in terms of ρ M1 for a critical value compatible with their H₁: 1-tail: awrt ± 0.426 (condone ± 0.425) or 2-tail (B0 scored for H₁): awrt ± 0.497 If hypotheses are in words and can deduce whether one or two-tail then use their words. If no hypotheses or their H₁ is not clearly one or two tail assume one-tail A1 for compatible signs between cv and r and a correct conclusion in context mentioning correlation and number of letters or length and name (ft their value from (c)) Do NOT award this A mark if contradictory comments or working seen e.g. "accept H₀" or comparison of 0.426 with significance level of 0.05 etc 			
NB	The M1A1 can be scored independently of the hypotheses			

Qu 2	Scheme	Marks	AO	
(a)	$H_0: \rho = 0$ $H_1: \rho < 0$	B1	2.5	
	Critical value: -0.6215 (Allow any cv in range $0.5 < cv < 0.75$)	M1	1.1a	
	r < -0.6215 so significant result and there is evidence of a negative correlation between w and t	A1	2.2b	
(b)	a a A a tamparatura inaragga paople anond mara time on the booch and logg	(3)		
(b)	e.g. As temperature increases people spend more time on the beach and less time shopping (o.e.)	B1	2.4	
(c)	Since r is close to -1 , it is consistent with the suggestion	(1) B1	2.4	
(d)	t will be the explanatory variable since sales are likely to depend on the temperature	(1) B1	2.4	
(e)	Every degree rise in temperature leads to a drop in weekly earnings of £171	(1) B1 (1)	3.4	
		(7 mar)	ks)	
	Notes	1 () 22242		
(b)	M1 for the critical value: sight of ±0.6215 or any cv such that 0.5 < cv < 0.75 A1 must reject H ₀ on basis of comparing - 0.915 with - 0.6215 (if - 0.915 < 0.6215 is seen then A0 but may use r o.e. which is fine) and mention "negative", "correlation/relationship" and at least "w" and "t" B1 for a suitable reason to explain negative correlation using the context given. e.g. "As temperature drops people are more likely to go shopping (than to the beach)" e.g. "As temperature increases people will be outside rather than in shops" A mere description in context of negative correlation is B0 SO e.g. "As temperature increases people don't want to go shopping/buy clothes" is B0 e.g. "Less clothes needed as temp increases" is B0			
(c)	B1 for a suitable reason e.g. "strong"/"significant"/"near perfect" "correlation", r close to 1 and saying it is consistent with the suggestion. Allow "yes" followed by the reason.			
(d)	B1 For identifying t and giving a suitable reason. Need idea that "w depends on t" or "w responds to t" or "t affects w" (o.e.) Allow t (temperature) affects the other variable etc Just saying "t is the independent variable" or "t explains change in w" is B0 N. B. Suggesting causation is B0 e.g. "t causes w to decrease"			
(e)	B1 for a description that conveys the idea of rate per degree Celsius. Must have 171, condone missing "£" sign.			

Question	Sche	me	Marks	AOs
3(a)	$H_0: \rho = 0$ $H_1: \rho > 0$		B1	2.5
	Critical value 0.3438			1.1a
	(0.446 > 0.3438) so there is evidence that the product moment correlation coefficient (pmcc) is greater than 0/there is positive correlation			2.2b
			(3)	
(b)	The value is close(r) to 1 or there is strong(er) (positive) correlation		B1	2.4
			(1)	
(c)	$\log_{10} y = -1.82 + 0.89(\log_{10} x)$	$y = ax^n \to \log_{10} y = \log_{10} (ax^n)$	M1	1.1b
	$y = 10^{-1.82 + 0.89(\log_{10} x)}$	$\log_{10} y = \log_{10} a + \log_{10} x^n$	M1	2.1
	$y = 10^{-1.82} \times 10^{0.89(\log_{10} x)}$	$\log_{10} y = \log_{10} a + n \log_{10} x$		
	$= 10^{-1.82} \times 10^{(\log_{10} x)^{0.89}}$	$[\log_{10} a = -1.82, n = 0.89]$	M1	1.1b
	$y = 0.015x^{0.89}$	$y = 0.015x^{0.89}$	A1A1	1.1b 1.1b
			(5)	
	(9 marks)			
	B1: for both hypotheses correct in	Notes		
(a)	M1: for the critical value: sight of 0.3438 or any cv such that $0.25 < cv < 0.45$ A1: a comment suggesting a significant result/ H_0 is rejected on the basis of seeing +0.3438 and which mentions "pmcc/correlation/relationship" and "greater than 0/positive" (not just $\rho > 0$) or an answer in context e.g. 'as "income"(o.e.) increases, "CO ₂ /emissions"(o.e.) increases' A contradictory statement scores A0 e.g. 'Accept H_0 , therefore positive correlation'			
(b)	B1: for suitable reason e.g. <i>r</i> is cl	ose(r) to 1 or "strong(er)"/"near p	perfect" "co	rrelation"
	Do not allow 'association' For both methods, once an M0 is scored, no further marks can be awarded			
	and condone missing base 10 throughout Method 1: (working to the model) M1: Correct substitution for both c and m (may be implied by 2^{nd} M1 mark) M1: Making y the subject to give an equation in the form $y = 10^{a+b(\log_{10} x)}$ (may be implied by 3^{rd} M1 mark) M1: Correct multiplication to give an equation in the form $y = 10^a \times 10^{b(\log_{10} x)}$ (this line implies M1M1M1 provided no previous incorrect working seen)			
(c)	Method 2: (working from the model) M1: Taking the log of both sides (may be implied by 2 nd M1 mark) M1: Correct use of addition rule (may be implied by 3 rd M1 mark) M1: Correct multiplication of power (this line implies M1M1M1 provided no previous incorrect working seen)			
	A1: $n = 0.89$ or $a = \text{awrt } 0.015$ or $y = ax^{0.89}$ or $y = \text{awrt } 0.015x^n$ (dep on M3) A1: $n = 0.89$ and $a = \text{awrt } 0.015$ / $y = \text{awrt } 0.015x^{0.89}$ (dep on M3)			
	A1: $n = 0.89$ and $a = \text{awrt } 0.015$ / $y = \text{awrt } 0.015x$ (dep on M3) do not award the final A1 if answer is given in an incorrect form e.g. $y = 0.015 + x^{0.89}$			
	do not award the final A1 if answer is given in an incorrect form e.g. $y = 0.015 + x^{-1}$			

Qu 2	Scheme	Marks	AO	
(a)	Negative	B1	1.2	
(b)(i) (ii)	Rainfall or Pressure hPa or Pascals or hectopascals or mb or millibars	(1) B1 B1ft (2)	2.2b 1.1b	
(c)	$H_0: \rho = 0$ $H_1: \rho \neq 0$	B1	2.5	
	Critical value: $-0.361(0)$	M1	1.1b	
	r < -0.3610 so significant result and there is evidence of a correlation between Daily Total <u>Sunshine</u> and Daily Maximum Relative <u>Humidity</u>	A1	2.2b	
		(3)		
(d)	Humidity is high and there is evidence of correlation and $r < 0$ So expect amount of sunshine to be <u>lower</u> than the <u>average</u> for Heathrow(oe)	B1	2.2b	
		(1)		
		(7 mark	s)	
	Notes			
(a)	B1 for stating negative. "Negative skew" is B0 though			
(b)(i) (ii)	B1 for mentioning "rainfall" (allow "rain" or "precipitation") or "pressure" (if more than 1 answer both must be correct) NB the other quantitative variable for Perth is: Daily Mean Wind Speed and scores B0 [Not allowed "wind speed" since $r = +0.15$ and in winter might expect wind to raise temp] B1ft for giving the correct units. If Daily Mean Wind Speed (kn) or knots "Wind speed" and "knots" would score B0B1 but any other variable scores B0B0			
(c)	 B1 for both hypotheses correct in terms of ρ M1 for the correct critical value compatible with their H₁: allow ± 0.361(0) If the hypotheses are 1-tail then allow cv of ± 0.3061 e.g. Alternative hypothesis with r < ± 0.377 implies a one-tail test or H₀ and H₁ in words saying "H₀: there is no correlation, H₁: there is correlation" is two-tail If there are no hypotheses (or they are nonsensical) assume 2-tail so M1 for ± 0.361(0) A1 for a correct conclusion in context based on comparing -0.377 with their cv. Condone incorrect inequality e.g0.3610 < -0.377 as long as they reject H₀ Do not accept contradictory statements such as "accept H₀ so there is evidence of" Can say "support for Stav's belief" (o.e.e.g. "claim") or "evidence of a correlation between sunshine and humidity" condone "negative correlation" or comments such as "if humidity 			
(d)	 is high amount of sunshine will be low" B1 for stating low amount of sunshine (o. e.) and some reference to r < 0 or fog Check for the following 2 features: (i) low sunshine: allow ≤ 5 hrs (LDS mean for 2015 is 5.3, humidity 97% is 4.1, ≥ 97% is 3.1) (ii) negative correlation may be described in words e.g. "high humidity gives low sunshine" or fog (LDS says >95% humidity is foggy) so less sunshine 			

Questio	n Scheme	Marks	AOs	
2(a)	e.g. It requires extrapolation so will be unreliable (o.e.)	B1	1.2	
		(1)		
(b)	e.g. Linear association between w and t	B1	1.2	
		(1)		
(c)	$H_0: \rho = 0 H_1: \rho > 0$	B1	2.5	
	Critical value 0.5822	M1	1.1a	
	Reject H ₀			
	There is evidence that the product moment correlation coefficient is greater than 0	A1	2.2b	
		(3)		
(d)	Higher \bar{t} suggests overseas and not Perthlower wind speed so perhaps not close to the sea so suggest Beijing	B1	2.4	
		(1)		
		(6 marks)	
Notes:				
(a) B1: fo	er a correct statement (unreliable) with a suitable reason			
(b)				
B1: fo	r a correct statement			
(c)				
	for both hypotheses in terms of ρ			
	for selecting a suitable 5% critical value compatible with their H ₁ for a correct conclusion stated			
	for suggesting Beijing with some supporting reason based on t or w Allow Jacksonville with a reason based just on higher \bar{t}			