Qu 2	Scheme	Marks	AO
(a)	Negative		1.2
(b)	Marc's suggestion is compatible because it's negative correlation	B1	2.4
(c)	$(r=)-0.54458266 \ldots$ awrt - 0.545	B1 $\begin{array}{ll}\text { (1) } \\ & \text { (1) }\end{array}$	1.1 b
(d)	$\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho<0$	B1	2.5
	$\begin{gathered} {[5 \% \text { 1-tail cv }=] \quad(\pm) 0.4259} \\ \text { (significant result / reject } \mathrm{H}_{0} \text {) } \end{gathered}$		1.1a
	There is evidence of negative correlation between the number of letters in (or length of) a student's last name and their first name	A1	2.2b
		(3)	
		(6 marks)	
	Notes		
(a)	B1 for "negative" Allow "slight" or "weak" etc Allow a description e.g. "as x increases y decreases" or in context e.g. "people with longer last names tend to have shorter first names" A comment of "negative skew" is B0 Need to see distinct or separate responses for (a) and (b)		
(b)	B1 for a comment that suggests data is compatible with the suggestion and a suitable reason such as "there is negative correlation" or a description in x and y or in context or the points lie close to a line with negative gradient or draw line $y=x$ and state that more points below the line so supports (or is compatible with) his suggestion A reason based on just a single point is B 0 e.g. " 11 letters in last name has only 5 in first name"		
(c)	B1 for awrt -0.545		
(d)	B1 for both hypotheses correct in terms of ρ		
	1-tail: awrt ± 0.426 (condone ± 0.425) or 2-tail (B 0 scored for H_{1}) : awrt ± 0.497 If hypotheses are in words and can deduce whether one or two-tail then use their words. If no hypotheses or their H_{1} is not clearly one or two tail assume one-tail A1 for compatible signs between cv and r and a correct conclusion in context mentioning correlation and number of letters or length and name (ft their value from (c))		
NB	The M1A1 can be scored independently of the hypotheses		

Qu 2	Scheme	Marks	AO
(a)	$\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho<0$	B1	2.5
	Critical value: -0.6215 (Allow any cv in range $0.5<\|\mathrm{cv}\|<0.75$)	M1	1.1a
	$r<-0.6215$ so significant result and there is evidence of a negative correlation between w and t	A1	2.2b
		(3)	
(b)	e.g. As temperature increases people spend more time on the beach and less time shopping (o.e.)	B1	2.4
		(1)	
(c)	Since r is close to -1 , it is consistent with the sugge	B1	2.4
		(1)	
(d)	t will be the explanatory variable since sales are likely to depend on the temperature	B1	2.4
		(1)	
(e)	Every degree rise in temperature leads to a drop in weekly earnings of $£ 171$	B1	3.4
		(7 m	
	Notes		
(a)	B1 for both hypotheses in terms of ρ		
	A1 must reject H_{0} on basis of comparing -0.915 with -0.6215 (if $-0.915<0.6215$ is seen then A0 but may use $\|r\|$ o.e. which is fine) and mention "negative", "correlation/relationship" and at least " w " and " t "		
(b)	B1 for a suitable reason to explain negative correlation using the context give e.g. "As temperature drops people are more likely to go shopping (than e.g. "As temperature increases people will be outside rather than in sho A mere description in context of negative correlation is B0 SO e.g. "As temperature increases people don't want to go shopping/buy clo e.g. "Less clothes needed as temp increases" is B0	B1 for a suitable reason to explain negative correlation using the context given. e.g. "As temperature drops people are more likely to go shopping (than to the beach)" e.g. "As temperature increases people will be outside rather than in shops"	"
(c)	B1 for a suitable reason e.g. "strong"/"significant"/"near perfect" "correlation", $\|r\|$ close to 1 and saying it is consistent with the suggestion. Allow "yes" followed by the reason.		
(d)	B1 For identifying t and giving a suitable reason. Need idea that " w depends on t " or " w responds to t " or " t affects w " (o.e.) Allow t (temperature) affects the other variable etc Just saying " t is the independent variable" or " t explains change in w " is B0 N. B. Suggesting causation is B0 e.g. " t causes w to decrease"		
(e)	B1 for a description that conveys the idea of rate per degree Celsius. Must have 171 , condone missing " $£$ " sign.		

Question	Scheme		Marks	AOs
3(a)	$\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho>0$		B1	2.5
	Critical value 0.3438		M1	1.1a
	($0.446>0.3438$) so there is evidence that the product moment correlation coefficient (pmcc) is greater than $0 /$ there is positive correlation		A1	2.2b
			(3)	
(b)	The value is close(r) to 1 or there is strong(er) (positive) correlation		B1	2.4
			(1)	
(c)	$\log _{10} y=-1.82+0.89\left(\log _{10} x\right)$	$\begin{aligned} & y=a x^{n} \rightarrow \\ & \log _{10} y=\log _{10}\left(a x^{n}\right) \end{aligned}$	M1	1.1b
	$y=10^{-1.82+0.89\left(\log _{10} x\right)}$	$\log _{10} y=\log _{10} a+\log _{10} x^{n}$	M1	2.1
	$\begin{aligned} & y=10^{-1.82} \times 10^{0.89\left(\log _{10} x\right)} \\ & {\left[=10^{-1.82} \times 10^{\left(\log _{10} x\right)^{0.89}}\right]} \end{aligned}$	$\begin{aligned} & \log _{10} y=\log _{10} a+n \log _{10} x \\ & {\left[\log _{10} a=-1.82, n=0.89\right]} \end{aligned}$	M1	1.1b
	$y=0.015 x^{0.89}$	$y=0.015 x^{0.89}$	A1A1	1.1 b 1.1 b
			(5)	
(9 marks)				
Notes				
(a)	B1: for both hypotheses correct in terms of ρ M1: for the critical value: sight of 0.3438 or any cv such that $0.25<\|\mathrm{cv}\|<0.45$ A1: a comment suggesting a significant result/ H_{0} is rejected on the basis of seeing +0.3438 and which mentions "pmcc/correlation/relationship" and "greater than 0/positive" (not just $\rho>0$) or an answer in context e.g. 'as "income"(o.e.) increases, " $\mathrm{CO}_{2} /$ emissions"(o.e.) increases' A contradictory statement scores A0 e.g. 'Accept H_{0}, therefore positive correlation'			
(b)	B1: for suitable reason e.g. r is close(r) to 1 or "strong(er)"/"near perfect" "correlation" Do not allow 'association'			
(c)	Method 2: (working from the model) M1: Taking the log of both sides (may be implied by $2^{\text {nd }}$ M1 mark) M1: Correct use of addition rule (may be implied by $3^{\text {rd }} \mathrm{M} 1$ mark) M1: Correct multiplication of power (this line implies M1M1M1 provided no previous incorrect working seen) A1: $n=0.89$ or $a=\operatorname{awrt} 0.015$ or $y=a x^{0.89}$ or $y=\operatorname{awrt} 0.015 x^{n}$ (dep on M3) A1: $n=0.89$ and $a=$ awrt $0.015 / y=\operatorname{awrt} 0.015 x^{0.89}$ (dep on M3) do not award the final A 1 if answer is given in an incorrect form e.g $y=0.015+x^{0.89}$			

Qu 2	Scheme	Marks	AO
$\begin{array}{r} \text { (a) } \\ \text { (b)(i) } \\ \text { (ii) } \end{array}$	Negative	B1	1.2
		(1)	
	Rainfall or Pressure		2.2b
	$\mathrm{mm} \mid \underline{\text { or }} \quad \mathrm{hPa}$ or Pascals or hectopascals or mb or millibars	B1ft	1.1 b
		(2)	
(c)	$\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho \neq 0$	B1	2.5
		M1	1.1 b
	$r<-0.3610$ so significant result and there is evidence of a correlation between Daily Total Sunshine and Daily Maximum Relative Humidity	A1	2.2 b
		(3)	
(d)	Humidity is high and there is evidence of correlation and $r<0$ So expect amount of sunshine to be lower than the average for Heathrow(oe)	B1	2.2 b
		(1)	
		(7 marks)	
	Notes		
(a)	B1 for stating negative. "Negative skew" is B0 though		
(b)(i)	(if more than 1 answer both must be correct) NB the other quantitative variable for Perth is: Daily Mean Wind Speed and scores B0 [Not allowed "wind speed" since $r=+0.15$ and in winter might expect wind to raise temp]		
(ii)	B1 ft for giving the correct units. If Daily Mean Wind Speed (kn) or knots "Wind speed" and "knots" would score B0B1 but any other variable sco	B1ft for giving the correct units. If Daily Mean Wind Speed (kn) or knots	
(c)	B1 for both hypotheses correct in terms of ρ M1 for the correct critical value compatible with their H_{1} : allow ± 0.361 (0) If the hypotheses are 1 -tail then allow cv of ± 0.3061 e.g. Alternative hypothesis with $r< \pm 0.377$ implies a one-tail test or H_{0} saying " H_{0} : there is no correlation, $\overline{\mathrm{H}}_{1}$: there is correlation" is two-tail If there are no hypotheses (or they are nonsensical) assume 2-tail so M1	and H_{1} in or ± 0.361	ords (0)
	A1 for a correct conclusion in context based on comparing -0.377 with their cv. Condone incorrect inequality e.g. $-0.3610<-0.377$ as long as they reject H_{0} Do not accept contradictory statements such as "accept H_{0} so there is evidence of ..." Can say "support for Stav's belief"(o.e.e.g. "claim") or "evidence of a correlation between sunshine and humidity" condone "negative correlation" or comments such as "if humidity is high amount of sunshine will be low"		
(d)	B1 for stating low amount of sunshine (o. e.) and some reference to $r<0$ or fog Check for the following 2 features: (i) low sunshine: allow $\leqslant 5 \mathrm{hrs}$ (LDS mean for 2015 is 5.3 , humidity 97% is $4.1, \geqslant 97 \%$ is 3.1) (ii) negative correlation may be described in words e.g. "high humidity gives low sunshine" or $\mathbf{f o g}$ (LDS says $>95 \%$ humidity is foggy) so less sunshine		

Question	Scheme	Marks	AOs
2(a)	e.g. It requires extrapolation so will be unreliable (o.e.)	B1	1.2
		(1)	
(b)	e.g. Linear association between w and t	B1	1.2
		(1)	
(c)	$\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho>0$	B1	2.5
	Critical value 0.5822	M1	1.1a
	Reject H_{0}		
	There is evidence that the product moment correlation coefficient is greater than 0	A1	2.2b
		(3)	
(d)	Higher \bar{t} suggests overseas and not Perth...lower wind speed so perhaps not close to the sea so suggest Beijing	B1	2.4
		(1)	
(6 marks)			
Notes:			
(a) B1: for	correct statement (unreliable) with a suitable reason		
(b) B1: for	correct statement		
(c) B1: for both hypotheses in terms of ρ M1: for selecting a suitable 5% critical value compatible with their H_{1} A1: for a correct conclusion stated			
(d) B1: for suggesting Beijing with some supporting reason based on t or w Allow Jacksonville with a reason based just on higher \bar{t}			

