Question	Scheme	Marks	AOs
6 (a)	$3x^{3} - 17x^{2} - 6x = 0 \Longrightarrow x(3x^{2} - 17x - 6) = 0$	M1	1.1a
	$\Rightarrow x(3x+1)(x-6) = 0$	dM1	1.1b
	$\Rightarrow x = 0, -\frac{1}{3}, 6$	A1	1.1b
		(3)	
(b)	Attempts to solve $(y-2)^2 = n$ where <i>n</i> is any solution ≥ 0 to (a)	M1	2.2a
	Two of $2, 2 \pm \sqrt{6}$	A1ft	1.1b
	All three of $2, 2 \pm \sqrt{6}$	A1	2.1
		(3)	
	(6 marks)		

Notes

(a)

M1: Factorises out or cancels by x to form a quadratic equation.

dM1: Scored for an attempt to find x. May be awarded for factorisation of the quadratic or use of the quadratic formula.

A1:
$$x = 0, -\frac{1}{3}, 6$$
 and no extras

(b)

- M1: Attempts to solve $(y-2)^2 = n$ where *n* is any solution ≥ 0 to (a). At least one stage of working must be seen to award this mark. Eg $(y-2)^2 = 0 \Rightarrow y = 2$
- A1ft: Two of 2, $2 \pm \sqrt{6}$ but follow through on $(y-2)^2 = n \Rightarrow y = 2 \pm \sqrt{n}$ where *n* is a positive solution to part (a). (Provided M1 has been scored)

A1: All three of 2, $2 \pm \sqrt{6}$ and no extra solutions. (Provided M1A1 has been scored)

Question	Scheme	Marks	AOs	
9(a)	$(g(-2)) = 4 \times -8 - 12 \times 4 - 15 \times -2 + 50$	M1	1.1b	
	$g(-2) = 0 \Longrightarrow (x+2)$ is a factor	A1	2.4	
		(2)		
(b)	$4x^{3} - 12x^{2} - 15x + 50 = (x+2)(4x^{2} - 20x + 25)$	M1	1.1b	
	4x - 12x - 15x + 50 - (x + 2)(4x - 20x + 25)	A1	1.1b	
	$=(x+2)(2x-5)^{2}$	M1	1.1b	
	=(x+2)(2x-3)	A1	1.1b	
		(4)		
(a)	(i) < 2 = 25	M1	1.1b	
(c)	(i) $x \le -2, x = 2.5$	A1ft	1.1b	
	(ii) $x = -1, x = 1.25$	B1ft	2.2a	
		(3)		
		(1	(9 marks)	

M1: Attempts g(-2) Some sight of (-2) embedded or calculation is required.

So expect to see $4 \times (-2)^3 - 12 \times (-2)^2 - 15 \times (-2) + 50$ embedded

Or -32-48+30+50 condoning slips for the M1

Any attempt to divide or factorise is M0. (See demand in question)

A1: $g(-2) = 0 \Longrightarrow (x+2)$ is a factor.

Requires a correct statement and conclusion. Both "g(-2) = 0" and "(x+2) is a factor" must be seen in the solution. This may be seen in a preamble before finding g(-2) = 0 but in these cases there must be a minimal statement ie QED, "proved", tick etc.

Also accept, in one coherent line/sentence, explanations such as, 'as g (x) =0 when x = -2, (x+2) is a factor.'

(b)

M1: Attempts to divide g(x) by (x+2) May be seen and awarded from part (a)

If inspection is used expect to see $4x^3 - 12x^2 - 15x + 50 = (x+2)(4x^2 - 15x) \pm 25$

If algebraic / long division is used expect to see $\frac{4x^2 \pm 20x}{x+2 \sqrt{4x^3 - 12x^2 - 15x + 50}}$

A1: Correct quadratic factor is $(4x^2 - 20x + 25)$ may be seen and awarded from part (a)

M1: Attempts to factorise their
$$(4x^2 - 20x + 25)$$
 usual rule $(ax+b)(cx+d), ac = \pm 4, bd = \pm 25$

A1: $(x+2)(2x-5)^2$ oe seen on a single line. $(x+2)(-2x+5)^2$ is also correct.

Allow recovery for all marks for $g(x) = (x+2)(x-2.5)^2 = (x+2)(2x-5)^2$ (c)(i)

M1: For identifying that the solution will be where the curve is on or below the axis. Award for either $x \le -2$ or x = 2.5 Follow through on their $g(x) = (x+2)(ax+b)^2$ only where ab < 0 (that is a positive root). Condone x < -2 See SC below for $g(x) = (x+2)(2x+5)^2$

Question	Scheme	Marks	AOs		
7 (a)	$\frac{1}{x}$ shape in 1st quadrant	M1	1.1b		
	o y=1 Correct	A1	1.1b		
	Asymptote $y = 1$	B1	1.2		
		(3)			
(b)	Combines equations $\Rightarrow \frac{k^2}{x} + 1 = -2x + 5$	M1	1.1b		
	$(\times x) \Rightarrow k^2 + 1x = -2x^2 + 5x \Rightarrow 2x^2 - 4x + k^2 = 0 *$	A1*	2.1		
		(2)			
(c)	Attempts to set $b^2 - 4ac = 0$	M1	3.1a		
	$8k^2 = 16$	A1	1.1b		
	$k = \pm \sqrt{2}$	A1 (3)	1.1b		
			marks)		
	Notes	(0			
(a)	e shape of a $\frac{1}{x}$ type curve in Quadrant 1. It must not cross either ax	is and have			
accept of the A1: Correct It must behavio B1: Asymp	table curvature. Look for a negative gradient changing from $-\infty$ to pencil". (See Practice and Qualification for clarification) shape and position for both branches. I lie in Quadrants 1, 2 and 3 and have the correct curvature includin	0 condonir g asymptot e text.	ıg "slips		
(b)	- 2				
	pts to combine $y = \frac{k^2}{x} + 1$ with $y = -2x + 5$ to form an equation in ju				
slips.	blies by x (the processed line must be seen) and proceeds to given a	nswer with	no		
Condo (c)	one if the order of the terms are different $2x^2 + k^2 - 4x = 0$				
	es that $b^2 - 4ac = 0$ or equivalent for the given equation.				
	If a, b and c are stated only accept $a = 2, b = \pm 4, c = k^2$ so $4^2 - 4 \times 2 \times k^2 = 0$				
Alterna	Alternatively completes the square $x^2 - 2x + \frac{1}{2}k^2 = 0 \Rightarrow (x-1)^2 = 1 - \frac{1}{2}k^2 \Rightarrow "1 - \frac{1}{2}k^2 "= 0$				
A1: $8k^2 = 1$	16 or exact simplified equivalent. Eg $8k^2 - 16 = 0$				

www.yesterdaysmathsexam.com
www.ycbccrudybildclibcAdil.com

Question	Scheme	Marks	AOs
11 (a)	Attempts $f(4) = 2 \times 4^3 - 13 \times 4^2 + 8 \times 4 + 48$	M1	1.1b
	$f(4) = 0 \Longrightarrow (x-4)$ is a factor	Al	1.1b
		(2)	
(b)	$2x^{3} - 13x^{2} + 8x + 48 = (x - 4)(2x^{2} \dots x - 12)$	M1	2.1
	$=(x-4)(2x^2-5x-12)$	A1	1.1b
	Attempts to factorise quadratic factor or solve quadratic eqn	dM1	1.1b
	$f(x) = (x-4)^{2} (2x+3) \Longrightarrow f(x) = 0$ has only two roots, 4 and -1.5	A1	2.4
		(4)	
(c)	Deduces either three roots or deduces that $f(x)$ is moved down two units	M1	2.2a
	States three roots, as when $f(x)$ is moved down two units there will be three points of intersection (with the x - axis)	A1	2.4
		(2)	
(d)	For sight of $k = \pm 4, \pm \frac{3}{2}$	M1	1.1b
	For sight of $k = \pm 4, \pm \frac{3}{2}$ $k = 4, -\frac{3}{2}$	A1ft	1.1b
		(2)	
		(10	marks
	Notes	· · · · · ·	

(a)

M1: Attempts to calculate f(4).

Do not accept f(4) = 0 without sight of embedded values or calculations.

If values are not embedded look for two correct terms from f(4) = 128 - 208 + 32 + 48

Alternatively attempts to divide by (x-4). Accept via long division or inspection.

See below for awarding these marks.

A1: Correct reason with conclusion. Accept f(4) = 0, hence factor as long as M1 has been scored.

This should really be stated on one line after having performed a correct calculation. It could appear as a preamble if the candidate states "If f(4) = 0, then (x-4) is a factor before doing the calculation and then writing hence proven or \checkmark oe.

If division/inspection is attempted it must be correct and there must be some attempt to explain why they have shown that (x-4) is a factor. Eg Via division they must state that there is no remainder, hence factor

(b)

M1: Attempts to find the quadratic factor by inspection (correct first and last terms) or by division (correct first two terms)

Scheme	Marks	AOs
States or uses $f(+3) = 0$	M1	1.1b
$4(3)^3 - 12(3)^2 + 2(3) - 6 = 108 - 108 + 6 - 6 = 0$ and so $(x - 3)$ is a factor	A1	1.1b
	(2)	
Begins division or factorisation so x $4x^3 - 12x^2 + 2x - 6 = (x - 3)(4x^2 +)$	M1	2.1
$4x^3 - 12x^2 + 2x - 6 = (x - 3)(4x^2 + 2)$	A1	1.1b
Considers the roots of their quadratic function using completion of square or discriminant	M1	2.1
$(4x^2 + 2) = 0$ has no real roots with a reason (e.g. negative number does not have a real square root, or $4x^2 + 2 > 0$ for all x So $x = 3$ is the only real root of $f(x) = 0$ *	A1*	2.4
	(4)	
·	(6 n	narks)
	lusion	
Needs to have $(x - 3)$ and first term of quadratic correct Must be correct – may further factorise to $2(x - 3)(2x^2 + 1)$ Considers their quadratic for no real roots by use of completion of the square or consideration of discriminant then		
	States or uses $f(+3) = 0$ $4(3)^{3} - 12(3)^{2} + 2(3) - 6 = 108 - 108 + 6 - 6 = 0 \text{ and so } (x - 3) \text{ is a factor}$ Begins division or factorisation so x $4x^{3} - 12x^{2} + 2x - 6 = (x - 3)(4x^{2} +)$ $4x^{3} - 12x^{2} + 2x - 6 = (x - 3)(4x^{2} + 2)$ Considers the roots of their quadratic function using completion of square or discriminant $(4x^{2} + 2) = 0 \text{ has no real roots with a reason (e.g. negative number does not have a real square root, or 4x^{2} + 2 > 0 for all xSo x = 3 is the only real root of f(x) = 0 *tess or uses f(+3) = 0e correct work evaluating and achieving zero, together with correct concluses the correct may further factorise to 2(x - 3)(2x^{2} + 1)misiders their quadratic for no real roots by use of completion of the square states of the square of the square for the square for the square of the square for the square for the square for the square states of the square for the square for the square states of the square for the square for the square states of the square states of the square for the square states of the square states of the square for the square states of $	States or uses $f(+3) = 0$ M1 $4(3)^3 - 12(3)^2 + 2(3) - 6 = 108 - 108 + 6 - 6 = 0$ and so $(x - 3)$ is a factorA1(2)Begins division or factorisation so x $4x^3 - 12x^2 + 2x - 6 = (x - 3)(4x^2 +)$ M1 $4x^3 - 12x^2 + 2x - 6 = (x - 3)(4x^2 + 2)$ A1Considers the roots of their quadratic function using completion of square or discriminantM1 $(4x^2 + 2) = 0$ has no real roots with a reason (e.g. negative number does not have a real square root, or $4x^2 + 2 > 0$ for all xA1*So $x = 3$ is the only real root of $f(x) = 0$ *(4)(44)(6 me correct work evaluating and achieving zero, together with correct conclusion

Question	Scheme	Marks	AOs
13(a)	$x^3 + 10x^2 + 25x = x(x^2 + 10x + 25)$	M1	1.1b
	$=x(x+5)^2$	A1	1.1b
		(2)	
(b)	A cubic with correct orientation	M1	1.1b
	-5 0 x Curve passes through the origin (0, 0) and touches at (-5, 0) (see note below for ft)	A1ft	1.1b
		(2)	
(c)	Curve has been translated <i>a</i> to the left	M1	3.1a
	a = -2	A1ft	3.2a
	<i>a</i> = 3	A1ft	1.1b
		(3)	
		(7 n	narks)
Notes:			
	these out factor x rect factorisation – allow $x(x + 5)(x + 5)$		
Alft: Curv	The rect shape by the origin $(0, 0)$ and touches at $(-5, 0)$ – allow a incorrect factorisation	v follow through	L
Alft: ft fro	be implied by one of the correct answers for <i>a</i> or by a statement om their cubic as long as it meets the <i>x</i> -axis only twice om their cubic as long as it meets the <i>x</i> -axis only twice		

Question Number	Scheme	Marks
6. (a)	Attempt $f(3)$ or $f(-3)$ Use of long division is M0A0 as factor theorem was required.	M1
	f(-3) = 162 - 63 - 120 + 21 = 0 so $(x + 3)$ is a factor	A1
		(2)
(b)	Either (Way 1): $f(x) = (x + 3)(-6x^2 + 11x + 7)$	M1A1
	= (x + 3)(-3x + 7)(2x + 1) or $-(x + 3)(3x - 7)(2x + 1)$	M1A1
		(4)
	Or (Way 2) Uses trial or factor theorem to obtain $x = -1/2$ or $x = 7/3$	M1
	Uses trial or factor theorem to obtain both $x = -1/2$ and $x = 7/3$ Puts three factors together (see notes below)	A1 M1
		Al
	Correct factorisation : $(x+3)(7-3x)(2x+1)$ or $-(x+3)(3x-7)(2x+1)$ oe	(4)
	Or (Way 3) No working three factors $(x + 3)(-3x + 7)(2x + 1)$ otherwise need working	M1A1M1A1 (4
(c)	$2^{y} = \frac{7}{3}, \rightarrow \log(2^{y}) = \log\left(\frac{7}{3}\right)$ or $y = \log_2\left(\frac{7}{3}\right)$ or $\frac{\log(7/3)}{\log 2}$	B1, M1
		A1
	$\{y=1.222392421\} \Rightarrow y=$ awrt 1.22	(3)
		[9]
	Notes	
(a)	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers substituted into expression	
	A1 for calculating $f(-3)$ correctly to 0, and they must state $(x + 3)$ is a factor for A1 (or eq	
	QED, \Box or a tick). A conclusion may be implied by a preamble, "if $f(-3) = 0$, (x+3) is a factorized for the formula of the second s	
<i>(</i> 1),	$-6(-3)^3-7(-3)^2 + 40(-3) + 21 = 0$ so $(x + 3)$ is a factor of $f(x)$ is M1A1 providing bracketing	
(b)	1 st M1: attempting to divide by $(x + 3)$ leading to a 3TQ beginning with the correct term, us	sually $-6x^2$.
	This may be done by a variety of methods including long division, comparison of coefficien	ts,
	inspection etc. Allow for work in part (a) if the result is used in (b).	
	1 st A1: usually for $(-6x^2 + 11x + 7)$ Credit when seen and use isw if miscopied	· 1 C
	2 nd M1: for a <i>valid</i> * attempt to factorise their quadratic (* see notes on page 6 - General Prin Core Mathematics Marking section 1)	1
	2^{nd} A1 is cao and needs all three factors together fully factorised. Accept e.g. $-3(x + 3)(x - 3)(x $	(2x+1)
	but $(x + 3)(x - \frac{7}{3})(-6x - 3)$ and $(x + 3)(3x - 7)(-2x - 1)$ are A0 as not fully factorised.	
	Ignore subsequent work (such as a solution to a quadratic equation.) Way 2: The second M mark needs three roots together so $\pm 6(x-\alpha)(x-\beta)(x+3)$ or equiva	lent where
	they obtained α and β by trial, so if correct roots identified, then $(x+3)(3x-7)(2x+1)$ c M1A1M1A0.	an gain
	N.B. Replacing $(-6x^2 + 11x + 7)$ (already awarded M1A1) by $(6x^2 - 11x - 7)$ giving	
	(x+3)(3x-7)(2x+1) can have M1A0 for factorization so M1A1M1A0	
(c)	B1: $2^{y} = \frac{7}{3}$	
. /	M1: Attempt to take logs to solve $2^y = \alpha$ or $2^y = 1/\alpha$, where $\alpha > 0$ and α was a root of their fa	ctorization
	A1: for an answer that rounds to 1.22. If other answers are included (and not "rejected") suc or -1 lose final A mark	
	Special case: Those who deal throughout with $f(x) = 6x^3 + 7x^2 - 40x - 21$	
	They may have full credit in part (a). In part (b) they can achieve a maximum of M1A0M1A	
	they return the negative sign to give the correct answer. This is then full marks. Part (c) is for could lose 2 marks on the factorisation. (Like a misread)	ine. So they

Question Number	Scheme	Marks
1.	The line l_1 has equation $8x + 2y - 15 = 0$	
		DI
(a)	Gradient is -4	B1
(b)	Gradient of parallel line is equal to their previous gradient Equation is $y-16 = "-4"(x-(-\frac{3}{4}))$	[1] M1 M1
	So $y = -4x + 13$	A1
		[3]
		(4
		marks)

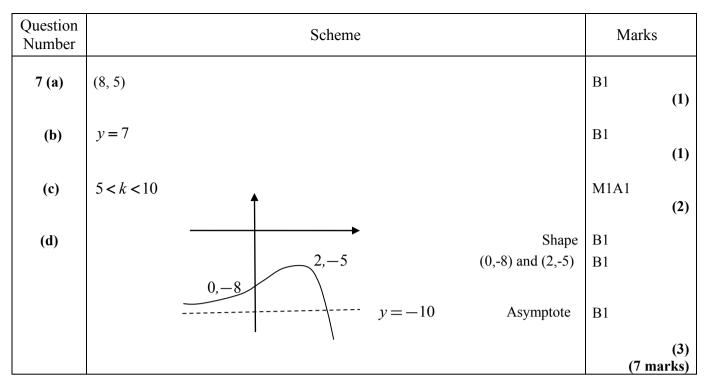
(a)

B1 Gradient, m, $\frac{dy}{dx}$ given as -4 FINAL ANSWER Do not allow $-\frac{8}{2}$ or $-\frac{4}{1}$ or $-4 \rightarrow \frac{1}{4}$ in part (a). Do not allow if left as y = -4x + ...(b) M1 Gradient of lines are the same. This may be implied by sight of their '-4' in a gradient equation. For example you may see candidates state y = '-4'x + ... in (a) and then write y = '-4'x + c in (b) M1 For an attempt to find an equation of a line using $\left(-\frac{3}{4}, 16\right)$ and a numerical gradient (which may

be different to the gradient used in part (a)). For example they may try to find a normal! Condone a sign error on one of the brackets. If the form y = mx + c is used they must proceed as far as finding c.

A1 cao
$$y = -4x + 13$$
 Allow $m = -4, c = 13$

Question Number	Scheme	Marks
2.(a)	(0,3)	B1
(b)	(2, -3)	B1
(c)	(2,-3) (2,1.5) oe (2,-1)	B1
(d)	(2, -1)	B1
		[4]
		(4 marks)


Condone the omission of the brackets. Eg Condone 0,3 for (0,3)

Allow $x = \dots y = \dots$

If options are given, Attempt one =(0,3), Attempt two = (2,5), Award B0.

If there is no labelling mark (a) as the first one seen, (b) as the second one seen etc unless it is obvious.

Question Number	Scheme	Marks	
5 (a)	Attempts f(±1)	M1	
	Remainder =2	A1	
		((2)
(b)	Attempts $f(\pm 3) = -4 \times (\pm 3)^3 + 16 \times (\pm 3)^2 - 13 \times (\pm 3) + 3$	M1	
	Remainder = $0 \Rightarrow (x-3)$ is a factor	A1*	
		((2)
(c)	Divides their $f(x)$ by $(x-3)$ to get the quadratic factor	M1	
	$\left(-4x^2+4x-1\right)$	A1	
	$f(x) = (x-3) \times -(2x-1)(2x-1) = (3-x)(2x-1)^2$	dM1A1	
		((4)
(d)	$f(x) \leqslant 0 \Longrightarrow (3-x)(2x-1)^2 \leqslant 0$		
	$x = \frac{1}{2}, x \ge 3$	B1,B1	
	2	((2)
		(10 marks)	· ·

B1 Accept (8, 5) or x = 8, y = 5 or a sketch of $y = f\left(\frac{1}{4}x\right)$ with a minimum point marked at (8, 5)

(b)

- (c)
- M1 Accept one "side" of the inequality condoning a misunderstanding of whether the boundary is included or not. Allow for k > 5, $k \ge 5$, k < 10, $k \le 10$ Condone a different variable for the M1
- A1 cao 5 < k < 10. Allow k > 5 and k < 10 k > 5, k < 10 (5,10) $\{k \in \mathbb{R} : 5 < k < 10\}$ Do not allow k > 5 or k < 10
- (d)

B1 For a reflection of the original curve in the x – axis. Look for the shape shown in the scheme but be tolerant of slips at either end.
B1 For the graph to have an intercept of (0, -8) and a (single) maximum point of (2, -5) Accept -8 being marked on the y- axis and the graph passing through this. Condone (-8,0) as long as it is marked on the correct axis

B1 For giving the equation of the asymptote as y = -10The graph must clearly be asymptotic but be tolerant of slips. See practice items for clarification.

B1 y = 7. It must be an equation and not just '7'

Question Number	Scheme	Marks
	But note that if all that is seen is $(x+2)(x+\frac{1}{2})(x-5)$ this scores 1000	
		(4)

(d)	$3^t = '5' \Longrightarrow t \log 3 = \log'5'$	Solves $3^t = k$ where $k > 0$ and follows from their (c) to obtain $t \log 3 = \log k$. Accept sight of $t = \log_3 k$ where $k > 0$ and follows from their (c)	M1
	$\Rightarrow t = awrt 1.465$ only	t = awrt 1.465 and no other solutions	A1
			(2)
			(10 marks)

Question Number	Scheme	Marks
9(a)	$f(x) = 8x^{-1} + \frac{1}{2}x - 5$ $\Rightarrow f'(x) = -8x^{-2} + \frac{1}{2}$ M1: -8x^{-2} or -3x^{-2} + \frac{1}{2} A1: Fully correction (may be un-site)	rect $f'(x) = -8x^{-2} + \frac{1}{2}$ M1A1
	M1: Sets their "changed" fun	f'(x) = 0 i.e. a action (may be implied and proceeds to find M1A1
	(4,-1) Correct coordination (allow $x = 4, y$) Ignore their (y = -1). A1
		(5)
(b)(i)	(x=)2, 8 $x=2$ and $x=2$ accept as coordinates $x=2$ and $x=2$	= 8 only. Do not dinates here. B1
(b)(ii)	(4, 1) solution in (a)	w through on their . Accept $(x, y+2)$ y). With no other B1ft
(b)(iii)	$(x=)2,\frac{1}{2}$ (2, 0), $(\frac{1}{2}, 0)$	are needed and accept here. Ignore any he image of the turning B1
		(3)
		(8 marks)

Question Number	Scheme		
13(a)(i)			
- ()(-)	$(0,c^2)$		
	(-c, 0) $(c, 0)$		
	Or Or shape anywhere but not		
	The maximum must be smooth and not form a point and the branches must not		
	clearly turn back in on themselves.		
	or	B1	
	A continuous graph passing through or touching at the points $(-c, 0)$, $(c, 0)$ and	DI	
	$(0, c^2)$. They can appear on their sketch or within the body of the script but		
	there must be a sketch. Allow these marked as $-c$, c and c^2 in the correct		
	places. Allow $(0, -c)$, $(0, c)$ and $(c^2, 0)$ as long as they are marked in the correct		
	places. If there is any ambiguity, the sketch takes precedence.A fully correct diagram with the curve in the correct position and the		
	intercepts and shape as described above. The maximum must be on the y-axis	B1	
	and the branches must extend below the <i>x</i> -axis.	21	
(a)(ii)	There must be a sketch to score any marks in (a)		
	∧ / Shape. A positive cubic with only		
	one maximum and one minimum. The	B1	
	curve must be smooth at the maximum and	DI	
	at the minimum (not pointed).		
	A smooth curve that touches or meets the		
	x-axis at the origin and $(3c, 0)$ in the		
	correct place and no other intersections.		
	O The origin does not need to be marked but the (2 o 0) does Allow 2 o or (0, 2 o) to be	B1	
	(3c, 0) the $(3c, 0)$ does. Allow $3c$ or $(0, 3c)$ to be	DI	
	marked in the correct place. May appear on their sketch or within the body of the		
	script. If there is any ambiguity, the sketch		
	takes precedence.		
	Maximum at the origin (allow the	24	
	maximum to form a point or cusp)	B1	
	There must be a sketch to score any marks in (a)	(5)	
(b)	Intersect when $x^2(x-3c) = c^2 - x^2 \Longrightarrow x^3 - 3cx^2 = c^2 - x^2$		
	Sets equations equal to each other and attempts to multiply out the bracket or		
	vice versa		
	Collects to one side (may be implied),		
	factorises the x^2 terms and obtains printed		
	$x^{3} + x^{2} - 3cx^{2} - c^{2} = 0$ answer with no errors. There must be an intermediate line of working.		
	inter incurate inte of working,	A1*	
	$\Rightarrow x^3 + (1-3c)x^2 - c^2 = 0*$ Allow $x^3 + x^2(1-3c) - c^2 = 0$ or		
	$0 = x^3 + (1 - 3c)x^2 - c^2 $ or		
	$0 = x^3 + x^2(1 - 3c) - c^2$		
		(2)	

(c)	$8 + 4(1 - 3c) - c^2 = 0$	Substitutes $x = 2$ to give a correct unsimplified form of the equation.	M1
	$c^2 + 12c - 12 = 0$	Correct 3 term quadratic. Allow any equivalent form with the terms collected (may be implied)	A1
	$(c+6)^{2} - 36 - 12 = 0 \Longrightarrow c = \dots$ or $c = \frac{-12 \pm \sqrt{12^{2} - 4 \times 1 \times (-12)}}{2}$	Solves their 3TQ by using the formula or completing the square only . This may be implied by a correct exact answer for their 3TQ. (May need to check)	M1
	$4\sqrt{3}-6$	$c = 4\sqrt{3} - 6$ or $c = -6 + 4\sqrt{3}$ only	A1
			(4)
			(11 marks)

Question Number	Scheme	Marks
14(a)	Sets $\frac{1}{2}x = ax + 4$ where $a < 0$	M1
	Solves $\frac{1}{2}x = -2x + 4 \Longrightarrow \frac{5}{2}x = 4 \Longrightarrow x = \frac{8}{5}$ oe	dM1A1
	Sets $\frac{1}{2}x = 5x + b$ where $b < 0$	M1
	Solves $\frac{1}{2}x = 5x - 10 \Rightarrow \frac{9}{2}x = 10 \Rightarrow x = \frac{20}{9}$ oe	dM1A1
		(6)
	<i>y S</i> (4,15)	
(b)	P(-3, 6) = O(0, 6) Any two points correct	B1
	$\begin{array}{c c} & & \\ \hline & \\ O & R(2,0) & x \end{array}$ Same 'shape' with 4 points correct	B1
		(2)
		(8 marks)

(a)

M1 Attempts the smaller solution. Accept setting
$$\frac{1}{2}x = ax + 4$$
 where $a < 0$

- dM1 Sets $\frac{1}{2}x = -2x + 4$ and proceeds to x = ... by collecting terms. Condone errors
- A1 $x = \frac{8}{5}$ oe. Accept 1.6
- M1 Attempts to find the larger solution. Accept setting $\frac{1}{2}x = 5x + b$ where b < 0
- dM1 Sets $\frac{1}{2}x = 5x 10$ and proceeds to x = ... by collecting terms. Condone errors

A1
$$x = \frac{20}{9}$$
 Accept exact equivalents such as $2\frac{2}{9}$ but not 2.2 or 2.2

- (b)
- B1 Any two points correct either in the text or on a sketch. Accept 6 and 2 written on the correct axes
- B1 Shape + all four points correct. Watch for candidates who adapt the given diagram. This is acceptable A diagram can be labelled with P, Q, R and S and coordinates given for P,Q,R and S in the body of the script. If they are given on the diagram and in the body of the script the diagram takes precedence.

Question Number	Scheme	Marks
6.	$f(x) = x^3 + x^2 - 12 x - 18$	
(a)	Attempts f(±3)	M1
	$\{f(-3)=\}$ 0 so $(x + 3)$ is a factor of $f(x)$.	A1
		[2]
(b)	$x^3 + x^2 - 12x - 18 = (x+3)(x^2 + \dots$	M1
	$x^{3} + x^{2} - 12x - 18 = (x+3)(x^{2} - 2x - 6)$ or! $x^{3} + x^{2} - 12x - 18 = (x+3)(x - 1 + \sqrt{7})(x - 1 - \sqrt{7})$ oe	A1
		[2]
(c)	(x =) -3	B1
	$x = \frac{2 \pm \sqrt{4 + 24}}{2} = 1 \pm \sqrt{7} \text{or by completion of square} (x - 1)^2 = 7 \text{so} x = 1 \pm \sqrt{7}$ $\text{or} \left(x - 1 + \sqrt{7}\right) \left(x - 1 - \sqrt{7}\right) = 0 \Rightarrow x = 1 \pm \sqrt{7}$	M1 A1
		[3]
		7 marks
()	Notes	
(a)	M1: As on scheme – must use the <u>factor theorem</u> A1: for seeing 0 and conclusion which may be in a preamble and may be minimal e.g. QED, proven, true, tick etc.	
	There must be no obvious errors but need to see at least $(-3)^3 + (-3)^2 - 12(-3) - 18 = 0$ for	A1 but allow
	invisible brackets e.g. $-3^3 + -3^2 - 12(-3) - 18 = 0$ provided there are no obvious errors.	
(b)	M1: Uses $(x + 3)$ as a factor and obtains correct first term of quadratic factor by division or an method e.g. comparing coefficients or finding roots and factorising	y other
	A1: Correct quadratic and writes $(x+3)(x^2-2x-6)$ or $(x+3)(x-1+\sqrt{7})(x-1-\sqrt{7})$ or	;
	Note that this work may be done in part (a) and the result re-stated here.	
(c)	B1: States -3 M1: Method for finding their roots. Allow the usual rules applied to their quadratic. This mark is for finding the roots and not for just finding factors. You may need to check their roots if no working is shown e.g. if they give decimal answers (3.645, -1.645)	
	A1: need both roots. Correct answer implies M mark. Allow $x = \frac{2 \pm \sqrt{28}}{2}$	
	If they give extra roots e.g. $x = -3$, -1 , $\frac{2 \pm \sqrt{28}}{2}$, lose the final A mark (B1M1A0)	