www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
$\mathbf{6 6}$ (a)	$3 x^{3}-17 x^{2}-6 x=0 \Rightarrow x\left(3 x^{2}-17 x-6\right)=0$	M1	1.1 a
	$\Rightarrow x(3 x+1)(x-6)=0$	dM 1	1.1 b
	$\Rightarrow x=0,-\frac{1}{3}, 6$	A1	1.1 b
	(b)	Attempts to solve $(y-2)^{2}=n$ where n is any solution $\geqslant 0$ to (a)	M1
	Two of $2,2 \pm \sqrt{6}$	A1ft	1.1 b
	All three of $2,2 \pm \sqrt{6}$	A1	2.1
		(3)	

Notes

(a)

M1: Factorises out or cancels by x to form a quadratic equation.
dM1: Scored for an attempt to find x. May be awarded for factorisation of the quadratic or use of the quadratic formula.

A1: $x=0,-\frac{1}{3}, 6$ and no extras
(b)

M1: Attempts to solve $(y-2)^{2}=n$ where n is any solution $\geqslant 0$ to (a). At least one stage of working must be seen to award this mark. $\operatorname{Eg}(y-2)^{2}=0 \Rightarrow y=2$

A1ft: Two of 2, $2 \pm \sqrt{6}$ but follow through on $(y-2)^{2}=n \Rightarrow y=2 \pm \sqrt{n}$ where n is a positive solution to part (a). (Provided M1 has been scored)

A1: All three of $2,2 \pm \sqrt{6}$ and no extra solutions. (Provided M1A1 has been scored)

Question	Scheme	Marks	AOs
9(a)	$(\mathrm{g}(-2))=4 \times-8-12 \times 4-15 \times-2+50$	M1	1.1b
	$\mathrm{g}(-2)=0 \Rightarrow(x+2)$ is a factor	A1	2.4
		(2)	
(b)	$4 x^{3}-12 x^{2}-15 x+50=(x+2)\left(4 x^{2}-20 x+25\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$=(x+2)(2 x-5)^{2}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
		(4)	
(c)	(i) $x \leqslant-2, x=2.5$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1ft } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
	(ii) $x=-1, x=1.25$	B1ft	2.2 a
		(3)	
(9 marks)			

(a)

M1: Attempts $\mathrm{g}(-2)$ Some sight of (-2) embedded or calculation is required.
So expect to see $4 \times(-2)^{3}-12 \times(-2)^{2}-15 \times(-2)+50$ embedded

$$
\text { Or }-32-48+30+50 \text { condoning slips for the M1 }
$$

Any attempt to divide or factorise is M0. (See demand in question)
A1: $\mathrm{g}(-2)=0 \Rightarrow(x+2)$ is a factor.
Requires a correct statement and conclusion. Both " $\mathrm{g}(-2)=0$ " and " $(x+2)$ is a factor" must be seen in the solution. This may be seen in a preamble before finding $g(-2)=0$ but in these cases there must be a minimal statement ie QED, "proved", tick etc.
Also accept, in one coherent line/sentence, explanations such as, 'as $\mathrm{g}(x)=0$ when $x=-2,(x+2)$ is a factor.'
(b)

M1: Attempts to divide $\mathrm{g}(x)$ by $(x+2)$ May be seen and awarded from part (a)
If inspection is used expect to see $4 x^{3}-12 x^{2}-15 x+50=(x+2)\left(4 x^{2}\right.$. ± 25)

If algebraic / long division is used expect to see $\quad 4 x^{2} \pm 20 x$

$$
x + 2 \longdiv { 4 x ^ { 3 } - 1 2 x ^ { 2 } - 1 5 x + 5 0 }
$$

A1: Correct quadratic factor is $\left(4 x^{2}-20 x+25\right)$ may be seen and awarded from part (a)
M1: Attempts to factorise their $\left(4 x^{2}-20 x+25\right)$ usual rule $(a x+b)(c x+d), a c= \pm 4, b d= \pm 25$
A1: $(x+2)(2 x-5)^{2}$ oe seen on a single line. $(x+2)(-2 x+5)^{2}$ is also correct.
Allow recovery for all marks for $\mathrm{g}(x)=(x+2)(x-2.5)^{2}=(x+2)(2 x-5)^{2}$
(c)(i)

M1: For identifying that the solution will be where the curve is on or below the axis. Award for either $x \leqslant-2$ or $x=2.5$ Follow through on their $\mathrm{g}(x)=(x+2)(a x+b)^{2}$ only where $a b<0$ (that is a positive root). Condone $x<-2$ See SC below for $\mathrm{g}(x)=(x+2)(2 x+5)^{2}$

Question	Scheme	Marks	AOs
7 (a)	$\frac{1}{x}$ shape in 1 st quadrant	M1	1.1b
		A1	1.1b
	Asymptote $y=1$	B1	1.2
		(3)	
(b)	Combines equations $\Rightarrow \frac{k^{2}}{x}+1=-2 x+5$	M1	1.1b
	$(\times x) \Rightarrow k^{2}+1 x=-2 x^{2}+5 x \Rightarrow 2 x^{2}-4 x+k^{2}=0 *$	A1*	2.1
		(2)	
(c)	Attempts to set $b^{2}-4 a c=0$	M1	3.1a
	$8 k^{2}=16$	A1	1.1b
	$k= \pm \sqrt{2}$	A1	1.1b
		(3)	
(8 marks)			
Notes			

(a)

M1: For the shape of a $\frac{1}{x}$ type curve in Quadrant 1. It must not cross either axis and have acceptable curvature. Look for a negative gradient changing from $-\infty$ to 0 condoning "slips of the pencil". (See Practice and Qualification for clarification)
A1: Correct shape and position for both branches.
It must lie in Quadrants 1, 2 and 3 and have the correct curvature including asymptotic behaviour
B1: Asymptote given as $y=1$. This could appear on the diagram or within the text.
Note that the curve does not need to be asymptotic at $y=1$ but this must be the only horizontal asymptote offered by the candidate.
(b)

M1: Attempts to combine $y=\frac{k^{2}}{x}+1$ with $y=-2 x+5$ to form an equation in just x
A1*: Multiplies by x (the processed line must be seen) and proceeds to given answer with no slips.

Condone if the order of the terms are different $2 x^{2}+k^{2}-4 x=0$
(c)

M1: Deduces that $b^{2}-4 a c=0$ or equivalent for the given equation.
If a, b and c are stated only accept $a=2, b= \pm 4, c=k^{2}$ so $4^{2}-4 \times 2 \times k^{2}=0$
Alternatively completes the square $x^{2}-2 x+\frac{1}{2} k^{2}=0 \Rightarrow(x-1)^{2}=1-\frac{1}{2} k^{2} \Rightarrow " 1-\frac{1}{2} k^{2 "}=0$
A1: $8 k^{2}=16$ or exact simplified equivalent. Eg $8 k^{2}-16=0$

Question	Scheme	Marks	AOs
11 (a)	Attempts $\mathrm{f}(4)=2 \times 4^{3}-13 \times 4^{2}+8 \times 4+48$	M1	1.1b
	$\mathrm{f}(4)=0 \Rightarrow(x-4)$ is a factor	A1	1.1b
		(2)	
(b)	$2 x^{3}-13 x^{2}+8 x+48=(x-4)\left(2 x^{2} \ldots x-12\right)$	M1	2.1
	$=(x-4)\left(2 x^{2}-5 x-12\right)$	A1	1.1b
	Attempts to factorise quadratic factor or solve quadratic eqn	dM1	1.1b
	$\mathrm{f}(x)=(x-4)^{2}(2 x+3) \Rightarrow \mathrm{f}(x)=0$ has only two roots, 4 and -1.5	A1	2.4
		(4)	
(c)	Deduces either three roots or deduces that $\mathrm{f}(x)$ is moved down two units	M1	2.2a
	States three roots, as when $\mathrm{f}(x)$ is moved down two units there will be three points of intersection (with the x-axis)	A1	2.4
		(2)	
(d)	For sight of $k= \pm 4, \pm \frac{3}{2}$	M1	1.1b
	$k=4,-\frac{3}{2}$	A1ft	1.1b
		(2)	
(10 marks)			
Notes			
(a) M1: Attempts to calculate $f(4)$. Do not accept $f(4)=0$ without sight of embedded values or calculations. If values are not embedded look for two correct terms from $\mathrm{f}(4)=128-208+32+48$ Alternatively attempts to divide by $(x-4)$. Accept via long division or inspection. See below for awarding these marks. A1: Correct reason with conclusion. Accept $f(4)=0$, hence factor as long as M1 has been scored. This should really be stated on one line after having performed a correct calculation. It could appear as a preamble if the candidate states "If $\mathrm{f}(4)=0$, then $(x-4)$ is a factor before doing the calculation and then writing hence proven or \checkmark oe. If division/inspection is attempted it must be correct and there must be some attempt to explain why they have shown that $(x-4)$ is a factor. Eg Via division they must state that there is no remainder, hence factor (b)			
M1: Attempts to find the quadratic factor by inspection (correct first and last terms) or by division (correct first two terms)			

Question	Scheme	Marks	AOs
4(a)	States or uses $\mathrm{f}(+3)=0$	M1	1.1b
	$4(3)^{3}-12(3)^{2}+2(3)-6=108-108+6-6=0$ and so $(x-3)$ is a factor	A1	1.1b
		(2)	
(b)	Begins division or factorisation so x $4 x^{3}-12 x^{2}+2 x-6=(x-3)\left(4 x^{2}+\ldots\right)$	M1	2.1
	$4 x^{3}-12 x^{2}+2 x-6=(x-3)\left(4 x^{2}+2\right)$	A1	1.1b
	Considers the roots of their quadratic function using completion of square or discriminant	M1	2.1
	$\left(4 x^{2}+2\right)=0$ has no real roots with a reason (e.g. negative number does not have a real square root, or $4 x^{2}+2>0$ for all x So $x=3$ is the only real root of $\mathrm{f}(x)=0$ *	A1*	2.4
		(4)	
(6 marks)			
Notes:			
(a) M1: \quad States or uses $\mathrm{f}(+3)=0$ A1: See correct work evaluating and achieving zero, together with correct conclusion			
(b) M1: Needs to have $(x-3)$ and first term of quadratic correct A1: Must be correct - may further factorise to $2(x-3)\left(2 x^{2}+1\right)$ M1: Considers their quadratic for no real roots by use of completion of the square or consideration of discriminant then A1*: A correct explanation			

Question Number	Scheme	Marks
1.	The line l_{1} has equation $8 x+2 y-15=0$	
(a)	Gradient is -4	
(b)	Gradient of parallel line is equal to their previous gradient	M1
	Equation is $y-16=4-4 "\left(x-\left(-\frac{3}{4}\right)\right)$	M1
	So $y=-4 x+13$	A1
		$\begin{gathered} \left(4{ }^{[3]}\right. \\ \text { marks) } \\ \hline \end{gathered}$

(a)

B1 Gradient, $m, \frac{\mathrm{~d} y}{\mathrm{~d} x}$ given as -4 FINAL ANSWER
Do not allow $-\frac{8}{2}$ or $-\frac{4}{1}$ or $-4 \rightarrow \frac{1}{4}$ in part (a). Do not allow if left as $y=-4 x+$..
(b)

M1 Gradient of lines are the same. This may be implied by sight of their ' -4 ' in a gradient equation. For example you may see candidates state $y={ }^{\prime}-4^{\prime} x+.$. in (a) and then write $y={ }^{\prime}-4 '^{\prime} x+c$ in (b)
M1 For an attempt to find an equation of a line using $\left(-\frac{3}{4}, 16\right)$ and a numerical gradient (which may be different to the gradient used in part (a)). For example they may try to find a normal! Condone a sign error on one of the brackets. If the form $y=m x+c$ is used they must proceed as far as finding c.

A1 cao $y=-4 x+13$ Allow $m=-4, c=13$

Question Number	Scheme	Marks
2.(a)	$(0,3)$	B 1
(b)	$(2,-3)$	B 1
(c)	$(2,1.5)$ oe	B 1
(d)	$(2,-1)$	B 1[4]
		(4 marks)

Condone the omission of the brackets. Eg Condone 0,3 for $(0,3)$
Allow $x=\ldots y=\ldots$
If options are given, Attempt one $=(0,3)$, Attempt two $=(2,5)$, Award B0.
If there is no labelling mark (a) as the first one seen, (b) as the second one seen etc unless it is obvious.

Question Number	Scheme	Marks
5(a)	Attempts $\mathrm{f}(\pm 1)$	M1
	Remainder $=2$	A1
(b)		(2)
	Attempts $\mathrm{f}(\pm 3)=-4 \times(\pm 3)^{3}+16 \times(\pm 3)^{2}-13 \times(\pm 3)+3$	M1
	Remainder $=0 \Rightarrow(x-3)$ is a factor	A1*
		(2)
(c)	Divides their $\mathrm{f}(x)$ by $(x-3)$ to get the quadratic factor	M1
	$\left(-4 x^{2}+4 x-1\right)$	
	$\mathrm{f}(x)=(x-3) \times-(2 x-1)(2 x-1)=(3-x)(2 x-1)^{2}$	dM1A1
		(4)
(d)	$\mathrm{f}(x) \leqslant 0 \Rightarrow(3-x)(2 x-1)^{2} \leqslant 0$	
	$x=\frac{1}{2}, x \geqslant 3$	B1,B1
		(2)
		(10 marks)

(a)

B1 Accept $(8,5)$ or $x=8, y=5$ or a sketch of $y=\mathrm{f}\left(\frac{1}{4} x\right)$ with a minimum point marked at $(8,5)$
(b)

B1 $y=7$. It must be an equation and not just ' 7 '
(c)

M1 Accept one "side" of the inequality condoning a misunderstanding of whether the boundary is included or not. Allow for $k>5, k \geqslant 5, k<10, k \leqslant 10$ Condone a different variable for the M1

A1 cao $5<k<10$. Allow $k>5$ and $k<10 \quad k>5, k<10 \quad(5,10) \quad\{k \in \mathbb{R}: 5<k<10\}$
Do not allow $k>5$ or $k<10$
(d)

B1 For a reflection of the original curve in the x-axis.
Look for the shape shown in the scheme but be tolerant of slips at either end.
B1 For the graph to have an intercept of $(0,-8)$ and a (single) maximum point of $(2,-5)$
Accept -8 being marked on the y-axis and the graph passing through this.
Condone $(-8,0)$ as long as it is marked on the correct axis
B1 For giving the equation of the asymptote as $y=-10$
The graph must clearly be asymptotic but be tolerant of slips. See practice items for clarification.

Question Number	Scheme	Marks
	But note that if all that is seen is $(x+2)\left(x+\frac{1}{2}\right)(x-5)$ this scores $\mathbf{1 0 0 0}$	
	(4)	

(d)	$3^{t}=^{\prime} 5^{\prime} \Rightarrow t \log 3=\log ^{\prime} 5^{\prime}$	Solves $3^{t}=k$ where $k>0$ and follows from their (c) to obtain $t \log 3=\log k$. Accept sight of $t=\log _{3} k$ where $k>0$ and follows from their (c)	M1
	$\Rightarrow t=$ awrt 1.465 only	$t=$ awrt 1.465 and no other solutions	A 1
	s)		

Question Number	Scheme		Marks
9(a)	$\begin{aligned} & \mathrm{f}(x)=8 x^{-1}+\frac{1}{2} x-5 \\ & \Rightarrow \mathrm{f}^{\prime}(x)=-8 x^{-2}+\frac{1}{2} \end{aligned}$	M1: $-8 x^{-2}$ or $\frac{1}{2}$	M1A1
		A1: Fully correct $\mathrm{f}^{\prime}(x)=-8 x^{-2}+\frac{1}{2}$ (may be un-simplified)	
	Sets $-8 x^{-2}+\frac{1}{2}=0 \Rightarrow x=4$	M1: Sets their $\mathrm{f}^{\prime}(x)=0$ i.e. a "changed" function (may be implied by their work) and proceeds to find x.	M1A1
		A1: $x=4$ (Allow $x= \pm 4$)	
	$(4,-1)$	Correct coordinates (allow $x=4, y=-1$). Ignore their $(-4, \ldots)$	A1
			(5)
(b)(i)	$(x=) 2,8$	$x=2$ and $x=8$ only. Do not accept as coordinates here.	B1
(b)(ii)	$(4,1)$	$(4,1)$ or follow through on their solution in (a). Accept $(x, y+2)$ from their (x, y). With no other points.	B1ft
(b)(iii)	$(x=) 2, \frac{1}{2}$	Both answers are needed and accept $(2,0),\left(\frac{1}{2}, 0\right)$ here. Ignore any reference to the image of the turning point.	B1
			(3)
			(8 marks)

| Question |
| :---: | :---: | :---: | :---: |
| Number |\quad| Scheme |
| :---: | Marks

(c)	$8+4(1-3 c)-c^{2}=0$	Substitutes $x=2$ to give a correct unsimplified form of the equation.	M1
	$c^{2}+12 c-12=0$	Correct 3 term quadratic. Allow any equivalent form with the terms collected (may be implied)	A1
	$\begin{aligned} & (c+6)^{2}-36-12=0 \Rightarrow c=\ldots \\ & \text { or } \\ & c=\frac{-12 \pm \sqrt{12^{2}-4 \times 1 \times(-12)}}{2} \end{aligned}$	Solves their 3TQ by using the formula or completing the square only. This may be implied by a correct exact answer for their 3TQ. (May need to check)	M1
	$4 \sqrt{3}-6$	$c=4 \sqrt{3}-6$ or $c=-6+4 \sqrt{3}$ only	A1
			(4)
			(11 marks)

Question Number	Scheme	Marks
14(a)	Sets $\frac{1}{2} x=a x+4$ where $a<0$ Solves $\frac{1}{2} x=-2 x+4 \Rightarrow \frac{5}{2} x=4 \Rightarrow x=\frac{8}{5}$ oe	M1 dM1A1
	Sets $\frac{1}{2} x=5 x+b$ where $b<0$ Solves $\frac{1}{2} x=5 x-10 \Rightarrow \frac{9}{2} x=10 \Rightarrow x=\frac{20}{9}$ oe	M1 dM1A1 (6)
(b)	 Any two points correct	B1 B1
		(2) (8 marks)

(a)

M1 Attempts the smaller solution. Accept setting $\frac{1}{2} x=a x+4$ where $a<0$
dM1 Sets $\frac{1}{2} x=-2 x+4$ and proceeds to $x=$.. by collecting terms. Condone errors
A1 $x=\frac{8}{5}$ oe. Accept 1.6
M1 Attempts to find the larger solution. Accept setting $\frac{1}{2} x=5 x+b$ where $b<0$
dM1 Sets $\frac{1}{2} x=5 x-10$ and proceeds to $x=.$. by collecting terms. Condone errors
A1 $\quad x=\frac{20}{9}$ Accept exact equivalents such as $2 \frac{2}{9}$ but not 2.2 or 2.2
(b)

B1 Any two points correct either in the text or on a sketch. Accept 6 and 2 written on the correct axes
B1 Shape + all four points correct.
Watch for candidates who adapt the given diagram. This is acceptable
A diagram can be labelled with P, Q, R and S and coordinates given for P, Q, R and S in the body of the script. If they are given on the diagram and in the body of the script the diagram takes precedence.

Question Number	Scheme	Marks
6.	$\mathrm{f}(x)=x^{3}+x^{2}-12 x-18$	
(a)	Attempts $\mathrm{f}(\pm 3)$	M1
	$\{\mathrm{f}(-3)=\} \quad 0$ so $(x+3)$ is a factor of $\mathrm{f}(x)$.	A1
		[2]
(b)	$x^{3}+x^{2}-12 x-18=(x+3)\left(x^{2}+\ldots\right.$	M1
	$\begin{gathered} x^{3}+x^{2}-12 x-18=(x+3)\left(x^{2}-2 x-6\right) \\ \text { or! } x^{3}+x^{2}-12 x-18=(x+3)(x-1+\sqrt{7})(x-1-\sqrt{7}) \text { oe } \end{gathered}$	A1
		[2]
(c)	$(x=)-3$	B1
	$x=\frac{2 \pm \sqrt{4+24}}{2}=1 \pm \sqrt{7}$ or by completion of square $(x-1)^{2}=7$ so $x=1 \pm \sqrt{7}$ or $(x-1+\sqrt{7})(x-1-\sqrt{7})=0 \Rightarrow x=1 \pm \sqrt{7}$	M1 A1
		[3]
		7 marks
	Notes	
(a)	M1: As on scheme - must use the factor theorem A1: for seeing 0 and conclusion which may be in a preamble and may be minimal e.g. QED, proven, true, tick etc. There must be no obvious errors but need to see at least $(-3)^{3}+(-3)^{2}-12(-3)-18=0$ for A1 but allow invisible brackets e.g. $-3^{3}+-3^{2}-12(-3)-18=0$ provided there are no obvious errors.	
(b)	M1: Uses $(x+3)$ as a factor and obtains correct first term of quadratic factor by division or any other method e.g. comparing coefficients or finding roots and factorising A1: Correct quadratic and writes $(x+3)\left(x^{2}-2 x-6\right)$ or $(x+3)(x-1+\sqrt{7})(x-1-\sqrt{7})$ oe Note that this work may be done in part (a) and the result re-stated here.	
(c)	B1: States -3 M1: Method for finding their roots. Allow the usual rules applied to their quadratic. This mark is for finding the roots and not for just finding factors. You may need to check their roots if no working is shown e.g. if they give decimal answers (3.645..., $\mathbf{- 1 . 6 4 5 . . . \text {) }) ~ (1) ~}$ A1: need both roots. Correct answer implies M mark. Allow $x=\frac{2 \pm \sqrt{28}}{2}$ If they give extra roots e.g. $x=-3,-1, \frac{2 \pm \sqrt{28}}{2}$, lose the final A mark (B1M1A0)	

