Question	Scheme	Marks	AOs			
2(a)	<i>y</i> ≤ 7	B1	2.5			
		(1)				
(b)	$f(1.8) = 7 - 2 \times 1.8^2 = 0.52 \Longrightarrow gf(1.8) = g(0.52) = \frac{3 \times 0.52}{5 \times 0.52 - 1} = \dots$	M1	1.1b			
	gf (1.8) = 0.975 oe e.g. $\frac{39}{40}$	A1	1.1b			
		(2)				
(c)	$y = \frac{3x}{5x-1} \Longrightarrow 5xy - y = 3x \Longrightarrow x(5y-3) = y$	M1	1.1b			
	$\left(\mathrm{g}^{-1}\left(x\right)=\right)\frac{x}{5x-3}$	A1	2.2a			
		(2)				
		(5	marks)			
	Notes					
(a)						
B1: Corre	ct range. Allow f (x) or f for y. Allow e.g. $\{y \in \mathbb{R} : y \leq 7\}, -\infty < y \leq 7$,	$(-\infty,7]$				
(b) M1: Full r Also						
A1: Correct value						
(c)M1: Correct attempt to cross multiply, followed by an attempt to factorise out <i>x</i> from an <i>xy</i> term and an <i>x</i> term.If they swap <i>x</i> and <i>y</i> at the start then it will be for an attempt to cross multiply followed by an						
-	attempt to factorise out y from an xy term and a y term.					

A1: Correct expression. Allow equivalent correct expressions e.g. $\frac{-x}{3-5x}, \frac{1}{5} + \frac{3}{25x-15}$

Ignore any domain if given.

Question	Scheme	Marks	AOs	
1	$f(1) = a(1)^{3} + 10(1)^{2} - 3a(1) - 4 = 0$	M1	3.1a	
	$6-2a=0 \Rightarrow a=\dots$	M1	1.1b	
	<i>a</i> = 3	A1	1.1b	
		(3)		
		(3	marks)	
	Notes			

Main method seen:

M1: Attempts f(1) = 0 to set up an equation in *a* It is implied by a+10-3a-4=0

Condone a slip but attempting f(-1) = 0 is M0

M1: Solves a linear equation in a.

Using the main method it is dependent upon having set $f(\pm 1) = 0$

It is implied by a solution of $\pm a \pm 10 \pm 3a \pm 4 = 0$.

Don't be concerned about the mechanics of the solution.

A1: a = 3 (following correct work)

Answers without working scores 0 marks. The method must be made clear. Candidates cannot guess. However if a candidate states for example, when a = 3, $f(x) = 3x^3 + 10x^2 - 9x - 4$ and shows that (x-1) is a factor of this f(x) by an allowable method, they should be awarded M1 M1 A1

E.g. 1: $3x^3 + 10x^2 - 9x - 4 = (x - 1)(3x^2 + 13x + 4)$ Hence a = 3

E.g. 2: $f(x) = 3x^3 + 10x^2 - 9x - 4$, f(1) = 3 + 10 - 9 - 4 = 0 Hence a = 3

The solutions via this method must end with the value for *a* to score the A1

.....

www.yesterdaysmathsexam.com

Questic		Marks	AOs		
1	$g(x) = \frac{2x+5}{x-3}, \ x \ge 5$				
(a)	$g(x) = \frac{2x+5}{x-3}, \ x \ge 5$ $g(5) = \frac{2(5)+5}{5-3} = 7.5 \implies gg(5) = \frac{2("7.5")+5}{"7.5"-3}$	M1	1.1b		
Way 1	$gg(5) = \frac{40}{9} \left(\text{ or } 4\frac{4}{9} \text{ or } 4.4 \right)$	A1	1.1b		
		(2)			
(a) Way 2	$gg(x) = \frac{2\left(\frac{2x+5}{x-3}\right)+5}{\left(\frac{2x+5}{x-3}\right)-3} \implies gg(5) = \frac{2\left(\frac{2(5)+5}{(5)-3}\right)+5}{\left(\frac{2(5)+5}{(5)-3}\right)-3}$	M1	1.1b		
	$gg(5) = \frac{40}{9} \left(\text{ or } 4\frac{4}{9} \text{ or } 4.4 \right)$	A1	1.1b		
		(2)			
(b)	{Range:} $2 < y \le \frac{15}{2}$	B1	1.1b		
		(1)			
(c) Way 1	$y = \frac{2x+5}{x-3} \Rightarrow yx - 3y = 2x + 5 \Rightarrow yx - 2x = 3y + 5$	M1	1.1b		
	$x(y-2) = 3y+5 \implies x = \frac{3y+5}{y-2} \left\{ \text{or } y = \frac{3x+5}{x-2} \right\}$	M1	2.1		
	$g^{-1}(x) = \frac{3x+5}{x-2}, 2 < x \le \frac{15}{2}$	A1ft	2.5		
		(3)			
(c) Way 2	$y = \frac{2x-6+11}{x-3} \Rightarrow y = 2 + \frac{11}{x-3} \Rightarrow y-2 = \frac{11}{x-3}$	M1	1.1b		
	$y = \frac{2x - 6 + 11}{x - 3} \Rightarrow y = 2 + \frac{11}{x - 3} \Rightarrow y - 2 = \frac{11}{x - 3}$ $x - 3 = \frac{11}{y - 2} \Rightarrow x = \frac{11}{y - 2} + 3 \left\{ \text{or } y = \frac{11}{x - 2} + 3 \right\}$	M1	2.1		
	$g^{-1}(x) = \frac{11}{x-2} + 3, 2 < x \le \frac{15}{2}$	A1ft	2.5		
		(3)			
	Notes for Question 1	(6	marks)		
(a)					
	Full method of attempting g(5) and substituting the result into g				
Note:	Full method of attempting g(5) and substituting the result into g Way 2: Attempts to substitute $x = 5$ into $\frac{2\left(\frac{2x+5}{x-3}\right)+5}{\left(\frac{2x+5}{x-3}\right)-3}$, o.e. Note that $gg(x) = \frac{9x-5}{14-x}$				
A1:	Obtains $\frac{40}{9}$ or $4\frac{4}{9}$ or 4.4 or an exact equivalent				
Note:	Give A0 for 4.4 or 4.444 without reference to $\frac{40}{9}$ or $4\frac{4}{9}$ or 4.4				

Question	Scheme	Marks	AOs
1	Attempts $f(-3) = 3 \times (-3)^3 + 2a \times (-3)^2 - 4 \times -3 + 5a = 0$	M1	3.1a
	Solves linear equation $23a = 69 \Longrightarrow a =$	M1	1.1b
	a=3 cso	A1	1.1b
		(3)	
			(3 marks)

M1: Chooses a suitable method to set up a correct equation in *a* which may be unsimplified.

This is mainly applying f(-3) = 0 leading to a correct equation in *a*.

Missing brackets may be recovered.

Other methods may be seen but they are more demanding

If division is attempted must produce a correct equation in a similar way to the f(-3) = 0 method

$$3x^{2} + (2a - 9)x + 23 - 6a$$

$$x + 3\overline{\smash{\big)}}3x^{3} + 2ax^{2} - 4x + 5a$$

$$\underline{3x^{3} + 9x^{2}}(2a - 9)x^{2} - 4x$$

$$(\underline{2a - 9})x^{2} + (6a - 27)x$$

$$(23 - 6a)x + 5a$$

$$(23 - 6a)x + 69 - 18a$$

So accept 5a = 69 - 18a or equivalent, where it implies that the remainder will be 0 You may also see variations on the table below. In this method the terms in x are equated to -4

	$3x^2$	(2a-9)x	$\frac{5a}{3}$	
x	$3x^3$	$(2a-9)x^2$	$\frac{5a}{3}x$	(27, ⁵ <i>a</i>
3	$9x^2$	(6a-27)x	5a	$6a - 27 + \frac{5a}{3} = -4$

M1: This is scored for an attempt at solving a linear equation in *a*.

For the main scheme it is dependent upon having attempted $f(\pm 3) = 0$. Allow for a linear equation in *a* leading to $a = \dots$. Don't be too concerned with the mechanics of this.

 $\frac{3x^2...}{3x^3 + 2ax^2 - 4x + 5a}$ followed by a remainder in *a* set = 0 \Rightarrow *a* = ... or two terms in *a* are equated so that the remainder = 0 FYI the correct remainder via division is 23a + 12 - 81 oe a = 3 cso

A1: $a = 3 \cos \theta$

An answer of 3 with no incorrect working can be awarded 3 marks

www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
5 (a)	$2x^{2} + 4x + 9 = 2(x \pm k)^{2} \pm \dots \qquad a = 2$	B1	1.1b
	Full method $2x^2 + 4x + 9 = 2(x+1)^2 \pm$ $a = 2 \& b = 1$	M1	1.1b
	$2x^{2} + 4x + 9 = 2(x+1)^{2} + 7$	A1	1.1b
		(3)	
(b)	U shaped curve any position but not through (0,0)	B1	1.2
	y - intercept at $(0,9)$	B1	1.1b
	$\frac{1}{x}$ Minimum at $(-1,7)$	B1ft	2.2a
		(3)	
(c)	(i) Deduces translation with one correct aspect.	M1	3.1a
	Translate $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$	A1	2.2a
	(ii) $h(x) = \frac{21}{"2(x+1)^2 + 7"} \implies (\text{maximum}) \text{ value } \frac{21}{"7"} (=3)$	M1	3.1a
	$0 < h(x) \leqslant 3$	Alft	1.1b
		(4)	
		(10 marks)

(a)

B1: Achieves
$$2x^2 + 4x + 9 = 2(x \pm k)^2 \pm ...$$
 or states that $a = 2$

M1: Deals correctly with first two terms of $2x^2 + 4x + 9$.

Scored for $2x^2 + 4x + 9 = 2(x+1)^2 \pm \dots$ or stating that a = 2 and b = 1

A1:
$$2x^2 + 4x + 9 = 2(x+1)^2 + 7$$

Note that this may be done in a variety of ways including equating $2x^2 + 4x + 9$ with the expanded form of $a(x+b)^2 + c \equiv ax^2 + 2abx + ab^2 + c$

6 (a) gg(0) = g((0-2)^2+1) = g(5) = 4(5) - 7 = 13 M1 2.1 Al 1.1b (b) Solves either $(x-2)^2 + 1 = 28 \Rightarrow x = \text{ or } 4x - 7 = 28 \Rightarrow x = M1 1.1b At least one critical value x = 2 - 3\sqrt{3} or x = \frac{35}{4} is correct A1 1.1b At least one critical value x = 2 - 3\sqrt{3} or x = \frac{35}{4} is correct A1 1.1b Solves both (x-2)^2 + 1 = 28 \Rightarrow x = and 4x - 7 = 28 \Rightarrow x = M1 M1 1.1b Correct final answer of 'x < 2 - 3\sqrt{3}, x > \frac{35}{4}, A1 2.1 Note: Writing awrt -3.20 or a truncated -3.19 or a truncated -3.2 (4) in place of 2 - 3\sqrt{3} is accepted for any of the A marks 11 (c) h is a one-one (function (or mapping) so has an inverse}; B1 2.4 (d) \left\{ h^{-1}(x) = -\frac{1}{2} \Rightarrow \right\} x = h\left(-\frac{1}{2}\right) M1 1.1b x = (-\frac{1}{2} - 2)^2 + 1 Note: Condone x - (\frac{1}{2} - 2)^2 + 1 M1 1.1b (d) \{ \text{their h}^{-1}(x) \} = \pm 2 \pm \sqrt{x \pm 1} M1 1.1b x = 7.25 only cso A1 2.2a (d) \{ \text{their h}^{-1}(x) \} = \pm 2 \pm \sqrt{x \pm 1} M1 1.1b x = 7.25 only cso A1 2.2a $	Questic	on Scheme	Marks	AOs	
(b) Solves either $(x-2)^2 + 1 = 28 \Rightarrow x = \text{ or } 4x - 7 = 28 \Rightarrow x = \text{ M1}$ 1.1b At least one critical value $x = 2 - 3\sqrt{3}$ or $x = \frac{35}{4}$ is correct A1 1.1b Solves both $(x-2)^2 + 1 = 28 \Rightarrow x = \text{ and } 4x - 7 = 28 \Rightarrow x = \text{ M1}$ 1.1b Correct final answer of ${}^*x < 2 - 3\sqrt{3}$, $x > \frac{35}{4}$, A1 2.1 Note: Writing awr - 3.20 or a truncated -3.19 or a truncated -3.2 (i) in place of $2 - 3\sqrt{3}$ is accepted for any of the A marks (c) <u>h is a one-one</u> {function (or mapping) so has an inverse} <u>g is a many-one</u> {function (or mapping) so has an inverse} <u>g is a many-one</u> {function (or mapping) so has an inverse} (1) <u>(d)</u> (d) $\{h^+(x) = -\frac{1}{2} \Rightarrow\} x = h(-\frac{1}{2})$ M1 1.1b $x = (-\frac{1}{2} - 2)^2 + 1$ Note: Condone $x = (\frac{1}{2} - 2)^2 + 1$ M1 1.1b $x = (-\frac{1}{2} - 2)^2 + 1$ Note: Condone $x = (\frac{1}{2} - 2)^2 + 1$ M1 1.1b $x = (-\frac{1}{2} - 2)^2 + 1$ Note: $x = 1$ (3) (d) $\{\text{their } h^{-1}(x)\} = \pm 2\pm \sqrt{x\pm 1}$ M1 1.1b Attempts to solve $\pm 2\pm \sqrt{x\pm 1}$ M1 1.1b $x = -\frac{1}{2} \Rightarrow \pm \sqrt{x\pm 1} =$ M1 1.1b $x = -\frac{1}{2} \Rightarrow \pm \sqrt{x\pm 1} =$ M1 1.1b (10 marks) Notes for Question 6 (a) M1: Uses a complete method to find gg(0). F.g. • Substituting $x = 0$ into $(0 - 2)^2 + 1$ and the result of this into the relevant part of $g(x)$ • Attempts to substitute $x = 0$ into $4((x - 2)^2 + 1) - 7$ or $4(x - 2)^2 - 3$ Attempts to substitute $x = 0$ into $4((x - 2)^2 + 1) - 7$ or $4(x - 2)^2 - 3$ Attempts to substitute $x = 0$ into $4((x - 2)^2 + 1) - 7$ or $4(x - 2)^2 - 3$ Attempts to substitute $x = 0$ into $4((x - 2)^2 + 1) - 7$ or $4(x - 2)^2 - 3$ Attempts to substitute $x = 0$ into $4((x - 2)^2 + 1) - 7$ or $4(x - 2)^2 - 3$ Attempts to substitute $x = 0$ into $4((x - 2)^2 + 1) - 7$ or $4(x - 2)^2 - 3$ (b) M1: See scheme A1: See scheme A1: See scheme A1: See scheme A1: Brings all the strands of the problem together to give a correct solution. Note: Wrote a ignore inequality symbols for any of the M marks Note: If a 3TQ is formed (e.g., $x^2 - 4x - 23 = 0$) then a correct solution. N	6 (a)	$aa(0) - a((0 - 2)^2 + 1) - a(5) - 4(5) - 7 - 13$	M1	2.1	
(b) Solves either $(x-2)^2 + 1 = 28 \Rightarrow x = or 4x - 7 = 28 \Rightarrow x = M1 1.1bAt least one critical value x = 2 - 3\sqrt{3} or x = \frac{35}{4} is correct A1 1.1bSolves both (x-2)^2 + 1 = 28 \Rightarrow x = and 4x - 7 = 28 \Rightarrow x = M1 1.1bCorrect final answer of *x < 2 - 3\sqrt{3}, x > \frac{35}{4} A1 2.1Note: Writing awrt -3.20 or a truncated -3.19 or a truncated -3.2 (4)in place of 2 - 3\sqrt{3} is accepted for any of the A marks(c) h is a one-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or mapping) so has an inverse}g is a many-one {function (or x = \frac{1}{2} \Rightarrow x = h\left(-\frac{1}{2}-2\right)^2 + 1 M1 1.1bx = (-\frac{1}{2}-2)^2 + 1 Note: Condone x = \left(\frac{1}{2}-2\right)^2 + 1 M1 1.1bx = (-\frac{1}{2}-2)^2 + 1 Note: x = 7.25 only cso A1 2.2a(d) {their h^{-1}(x) = \pm 2\pm \sqrt{x\pm 1} = M1 1.1bx = 7.25 only cso A1 2.2a(10 marks)Notes for Question 6(a)(b)See schemeA1: Benes a demonder to the g on the 4(x-2)^2 + 1) - 7 or 4(x-2)^2 - 3A1: gg(0) = 13(b)M1: See schemeA1: See schemeA1: See schemeA1: See schemeA1: See schemeA1: See schemeA1: See sch$	0 (a)	gg(0) - g((0-2) + 1) - g(3) - 4(3) - 7 - 13	A1	1.1b	
At least one critical value $x = 2 - 3\sqrt{3}$ or $x = \frac{35}{4}$ is correctA11.1bSolves both $(x-2)^2 + 1 = 28 \implies x = and 4x - 7 = 28 \implies x = M11.1bCorrect final answer of x < 2 - 3\sqrt{3}, x > \frac{35}{4}.A12.1Note: Writing awrt -3.20 or a truncated -3.19 or a truncated -3.2(4)in place of 2 - 3\sqrt{3} is accepted for any of the A marks(1)bits anon-cone {function (or mapping) so has an inverse}B12.4(d)(d)(d)x = (-\frac{1}{2})^2 + 1Note: Condone x = (\frac{1}{2} - 2)^2 + 1M11.1bx = (-\frac{1}{2} - 2)^2 + 1Note: Condone x = (\frac{1}{2} - 2)^2 + 1M1x = 7.25 only csoA12.2a(d)(d)(d)(d)(d)(d)(d)(d)x = 7.25 only csoA12.2a(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)$			(2)		
$\begin{array}{ c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	(b)	Solves either $(x-2)^2 + 1 = 28 \implies x =$ or $4x - 7 = 28 \implies x =$	M1	1.1b	
$\begin{tabular}{ c c c c } \hline Correct final answer of $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$		4	A1	1.1b	
Note:Writing awrt -3.20 or a truncated -3.19 or a truncated -3.2 in place of 2 - 3 $\sqrt{3}$ is accepted for any of the A marks(4)(c)h is a one-one {function (or mapping) so has an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse?B12.4(d) Way 2 $x = (-\frac{1}{2} - 2)^2 + 1$ Note: Note: for Question 6 (3)NoteNoteNoteNote(d) Way 2Attempts to substitute $x = 0$ into $(0 - 2)^2 + 1$ and the result of this into the relevant part of g(x) e. Attempts to substitute $x = 0$ into $4((x - 2)^2 + 1) - 7$ or $4(x - 2)^2 - 3$ Not		Solves both $(x-2)^2 + 1 = 28 \implies x =$ and $4x - 7 = 28 \implies x =$	M1	1.1b	
in place of $2-3\sqrt{3}$ is accepted for any of the A marks(c)h is a one-one {function (or mapping) so has an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} g is a many-one {function (or mapping) so does not have an inverse} (1)(d)(h)(1)(e)(h)(1)(f)(h)(1)(g) $x = \left(-\frac{1}{2}-2\right)^2 + 1$ Note: Condone $x = \left(\frac{1}{2}-2\right)^2 + 1$ M11.1b $x = \left(-\frac{1}{2}-2\right)^2 + 1$ Note: Condone $x = \left(\frac{1}{2}-2\right)^2 + 1$ M11.1b(f) $x = \left(-\frac{1}{2}-2\right)^2 + 1$ Note: Condone $x = \left(\frac{1}{2}-2\right)^2 + 1$ M11.1b(g) $x = (-\frac{1}{2}-2)^2 + 1$ Note: Condone $x = \left(\frac{1}{2}-2\right)^2 + 1$ M11.1b(h) $x = (-\frac{1}{2}-2)^2 + 1$ M11.1b1.1b(h) $x = (-\frac{1}{2}-2)^2 + 1$ M11.1b(h) $x = 7.25$ onlycsoA12.2a(h) $x = 7.25$ only $csoA12.2a(h)x = 7.25 onlycsoA12.2a(h)x = 7.25 onlycsoA12.2a(h)x = 7.25 onlycsoA12.2a(h)x = 7.25 onlycsoA12.2a(h)x = 7.25 only<$		4	A1	2.1	
(c)h is a one-one {function (or mapping) so has an inverse} g is a many-one {function (or mapping) so does not have an inverse}B12.4(d) Way 1 $\left\{h^{-1}(x) = -\frac{1}{2} \Rightarrow\right\} x = h\left(-\frac{1}{2}\right)$ M11.1b $x = \left(-\frac{1}{2}-2\right)^2 + 1$ Note: Condone $x = \left(\frac{1}{2}-2\right)^2 + 1$ M11.1b $x = \left(-\frac{1}{2}-2\right)^2 + 1$ Note: Condone $x = \left(\frac{1}{2}-2\right)^2 + 1$ M11.1b $way 2$ $x = (-\frac{1}{2}-2)^2 + 1$ Note: Condone $x = \left(\frac{1}{2}-2\right)^2 + 1$ M11.1b $way 2$ $x = 7.25$ only csoA12.2a(d) Way 2 $\{\text{their } h^{-1}(x)\} = \pm 2\pm \sqrt{x\pm 1} = \dots$ M11.1b $way 2$ Attempts to solve $\pm 2\pm \sqrt{x\pm 1} = -\frac{1}{2} \Rightarrow \pm \sqrt{x\pm 1} = \dots$ M11.1b $way 3$ Notes for Question 6(3)(10 marks)(a)Image: Constraint of the		Note: Writing awrt -3.20 or a truncated -3.19 or a truncated -3.2	(4)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		in place of $2-3\sqrt{3}$ is accepted for any of the A marks			
(d) Way 1 $\left\{h^{-1}(x) = -\frac{1}{2} \Rightarrow\right\} x = h\left(-\frac{1}{2}\right)$ M1 B1 on epen1.1bx = $\left(-\frac{1}{2}-2\right)^2 + 1$ Note:Condone $x = \left(\frac{1}{2}-2\right)^2 + 1$ M11.1bx = 7.25 only csoA12.2a(3)(3)(4) $\{\text{their } h^{-1}(x)\} = \pm 2\pm \sqrt{x\pm 1}$ M11.1bWay 2Attempts to solve $\pm 2\pm \sqrt{x\pm 1} = -\frac{1}{2} \Rightarrow \pm \sqrt{x\pm 1} =$ M11.1b $\Rightarrow x = 7.25$ only csoA12.2a(10 marks)Notes for Question 6(a)(10 marks)Notes for Question 6(a)(10 marks)Notes for Question 6(a)(10 marks)Notes for Question 6(a)(a)(a)(a)(a)Notes for Question 6(a)(a)(a)(b)M1:See schemeA1:gg(0) = 13(b)M1:See schemeA1:See schemeA1:See schemeA1:See schemeA1: </td <th>(c)</th> <td></td> <td>B1</td> <td>2.4</td>	(c)		B1	2.4	
$ \begin{array}{ c c c c c } \hline x = \left(-\frac{1}{2}-2\right)^2 + 1 \text{Note: Condone} x = \left(\frac{1}{2}-2\right)^2 + 1 \text{M1} & 1.1\text{ b} \\ \hline \Rightarrow x = 7.25 \text{ only} \text{cso} & \text{A1} & 2.2a \\ \hline & & (3) \\ \hline \\ $			(1)		
(d) Way 2 $ \begin{array}{c c c c c c c c c c c c c c c c c c c $. ,	$\left\{\mathbf{h}^{-1}(x) = -\frac{1}{2} \implies\right\} x = \mathbf{h}\left(-\frac{1}{2}\right)$		1.1b	
(d) Way 2 (1) (1) (1) (1) (d) Way 2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (3) (3) (1) (3) (1) (1) (1) (2) (3) (1) (3) (3) (1) (3) (1) (2) (1) (2) (2) (2) (1) (2) (3) (1) (1) (3) (1) (3) <td< td=""><th></th><td>$x = \left(-\frac{1}{2}-2\right)^2 + 1$ Note: Condone $x = \left(\frac{1}{2}-2\right)^2 + 1$</td><td>M1</td><td>1.1b</td></td<>		$x = \left(-\frac{1}{2}-2\right)^2 + 1$ Note: Condone $x = \left(\frac{1}{2}-2\right)^2 + 1$	M1	1.1b	
(d) Way 2{their h^{-1}(x)} = $\pm 2 \pm \sqrt{x \pm 1}$ M11.1bWay 2Attempts to solve $\pm 2 \pm \sqrt{x \pm 1} = -\frac{1}{2} \Rightarrow \pm \sqrt{x \pm 1} =$ M11.1b $\Rightarrow x = 7.25$ onlycsoA12.2a(3)(3)(3)(10 marks)Notes for Question 6(a)(10 marks)Notes for Question 6(a)(10 marks)MarksNotes for Question 6(a)(10 marks)MarksNotes for Question 6(a)(10 marks)MarksNotes for Question 6(a)Substituting $x = 0$ into $(0 - 2)^2 + 1$ and the result of this into the relevant part of $g(x)$ •Attempts to substitute $x = 0$ into $4((x-2)^2 + 1) - 7$ or $4(x-2)^2 - 3$ A1:gg(0) = 13(b)(b)M1:See schemeA1:See schemeA1:See schemeA1:Brings all the strands of the problem together to give a correct solution.Note:You can ignore inequality symbols for any of the M marksNote:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)		$\Rightarrow x = 7.25$ only cso	A1	2.2a	
Way 2Attempts to solve $\pm 2 \pm \sqrt{x \pm 1} = -\frac{1}{2} \Rightarrow \pm \sqrt{x \pm 1} =$ M11.1b $\Rightarrow x = 7.25$ onlycsoA12.2a(3)(10 marks)Notes for Question 6(a)M1:Uses a complete method to find gg(0). E.g•Substituting $x = 0$ into $(0-2)^2 + 1$ and the result of this into the relevant part of $g(x)$ •Attempts to substitute $x = 0$ into $4((x-2)^2+1) - 7$ or $4(x-2)^2 - 3$ A1:gg(0) = 13(b)M1:See schemeA1:See schemeA1:See schemeA1:Brings all the strands of the problem together to give a correct solution.Note:You can ignore inequality symbols for any of the M marksNote:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)			(3)		
Attempts to solve $\pm 2 \pm \sqrt{x} \pm 1 = -\frac{2}{2} \pm \sqrt{x} \pm 1 =$ M11.16 $\Rightarrow x = 7.25$ onlycsoA12.2a(3)(3)(3)(10 marks)Notes for Question 6(a)(10 marks)Mitempts to substituting $x = 0$ into $(0-2)^2 + 1$ and the result of this into the relevant part of $g(x)$ • Attempts to substitute $x = 0$ into $4((x-2)^2+1) - 7$ or $4(x-2)^2 - 3$ A1:gg(0) = 13(b)M1:See schemeA1:See scheme<	(d)	$\{\text{their } h^{-1}(x)\} = \pm 2 \pm \sqrt{x \pm 1}$	M1	1.1b	
(3)(10 marks)Notes for Question 6(a)(10 marks)M1:Uses a complete method to find $gg(0)$. E.g. • Substituting $x = 0$ into $(0-2)^2 + 1$ and the result of this into the relevant part of $g(x)$ • Attempts to substitute $x = 0$ into $4((x-2)^2 + 1) - 7$ or $4(x-2)^2 - 3$ A1: $gg(0) = 13$ (b)(11)M1:See schemeA1:See schemeA1:See schemeA1:Brings all the strands of the problem together to give a correct solution.Note:You can ignore inequality symbols for any of the M marksNote:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)	Way 2	Attempts to solve $\pm 2 \pm \sqrt{x \pm 1} = -\frac{1}{2} \implies \pm \sqrt{x \pm 1} =$	M1	1.1b	
(10 marks)Notes for Question 6(a)(10 marks)M1:Uses a complete method to find $gg(0)$. E.g.• Substituting $x = 0$ into $(0-2)^2 + 1$ and the result of this into the relevant part of $g(x)$ • Attempts to substitute $x = 0$ into $4((x-2)^2 + 1) - 7$ or $4(x-2)^2 - 3$ A1: $gg(0) = 13$ (b)(10)M1:See schemeA1:See schemeA1:See schemeM1:See schemeA1:Brings all the strands of the problem together to give a correct solution.Note:You can ignore inequality symbols for any of the M marksNote:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)		$\Rightarrow x = 7.25$ only cso	A1	2.2a	
Notes for Question 6(a)Uses a complete method to find $gg(0)$. E.g.M1:Uses a complete method to $(0-2)^2+1$ and the result of this into the relevant part of $g(x)$ •Substituting $x = 0$ into $(0-2)^2+1$ and the result of this into the relevant part of $g(x)$ •Attempts to substitute $x = 0$ into $4((x-2)^2+1) - 7$ or $4(x-2)^2 - 3$ A1: $gg(0) = 13$ (b)M1:M1:See schemeA1:See schemeA1:Brings all the strands of the problem together to give a correct solution.Note:You can ignore inequality symbols for any of the M marksNote:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)					
(a)Uses a complete method to find $gg(0)$. E.g.• Substituting $x = 0$ into $(0-2)^2 + 1$ and the result of this into the relevant part of $g(x)$ • Attempts to substitute $x = 0$ into $4((x-2)^2+1) - 7$ or $4(x-2)^2 - 3$ A1: $gg(0) = 13$ (b)M1:See schemeA1:See schemeM1:See schemeA1:Brings all the strands of the problem together to give a correct solution.Note:You can ignore inequality symbols for any of the M marksNote:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)			(1	0 marks)	
M1:Uses a complete method to find gg(0). E.g. • Substituting $x = 0$ into $(0-2)^2+1$ and the result of this into the relevant part of $g(x)$ • Attempts to substitute $x = 0$ into $4((x-2)^2+1) - 7$ or $4(x-2)^2 - 3$ A1:gg(0) = 13(b)M1:M1:See schemeA1:See schemeM1:See schemeM1:See schemeM1:Stee schemeM2:Wrot can ignore inequality symbols for any of the M marksNote:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)	(a)	Notes for Question 6			
• Substituting $x = 0$ into $(0-2)^2 + 1$ and the result of this into the relevant part of $g(x)$ • Attempts to substitute $x = 0$ into $4((x-2)^2 + 1) - 7$ or $4(x-2)^2 - 3$ A1: $gg(0) = 13$ (b) M1: See scheme A1: See scheme A1: See scheme A1: Brings all the strands of the problem together to give a correct solution. Note: You can ignore inequality symbols for any of the M marks Note: If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given. Note: Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)		Uses a complete method to find $gg(0) \in g$			
• Attempts to substitute $x = 0$ into $4((x-2)^2+1) - 7$ or $4(x-2)^2 - 3$ A1: $gg(0) = 13$ (b) $M1:$ M1:See schemeA1:See schemeM1:See schemeA1:Brings all the strands of the problem together to give a correct solution.Note:You can ignore inequality symbols for any of the M marksNote:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)	1711.		ant part of	$g(\mathbf{x})$	
A1: $gg(0) = 13$ (b) $M1:$ See schemeA1:See schemeM1:See schemeA1:Brings all the strands of the problem together to give a correct solution.Note:You can ignore inequality symbols for any of the M marksNote:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)			une pure or	5(**)	
(b)M1:See schemeA1:See schemeM1:See schemeM1:See schemeA1:Brings all the strands of the problem together to give a correct solution.Note:You can ignore inequality symbols for any of the M marksNote:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)	۵1۰				
M1:See schemeA1:See schemeM1:See schemeA1:Brings all the strands of the problem together to give a correct solution.Note:You can ignore inequality symbols for any of the M marksNote:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)	-				
A1:See schemeM1:See schemeA1:Brings all the strands of the problem together to give a correct solution.Note:You can ignore inequality symbols for any of the M marksNote:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)		See scheme			
A1:Brings all the strands of the problem together to give a correct solution.Note:You can ignore inequality symbols for any of the M marksNote:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)					
Note:You can ignore inequality symbols for any of the M marksNote:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)					
Note:If a 3TQ is formed (e.g. $x^2 - 4x - 23 = 0$) then a correct method for solving a 3TQ is required for the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)					
the relevant method mark to be given.Note:Writing $(x-2)^2 + 1 = 28 \Rightarrow (x-2) + 1 = \sqrt{28} \Rightarrow x = -1 + \sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)					
each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)			3TQ is requ	ired for	
each term to solve $(x-2)^2 + 1 = 28$ is not considered to be an acceptable method)	Note:	Writing $(x-2)^2 + 1 = 28 \implies (x-2) + 1 = \sqrt{28} \implies x = -1 + \sqrt{28}$ (i.e. taking the	e square-roo	ot of	
Note: Allow set notation. E.g. { $x \in \mathbb{R}$: $x < 2 - 3\sqrt{3} \cup x > 8.75$ } is fine for the final A mark			_		
	Note:	Allow set notation. E.g. { $x \in \mathbb{R}$: $x < 2 - 3\sqrt{3} \cup x > 8.75$ } is fine for the fina	l A mark		

Question	Scheme	Marks	AOs
4 (a)	Either attempts $\frac{3x-7}{x-2} = 7 \implies x =$ Or attempts $f^{-1}(x)$ and substitutes in $x = 7$	M1	3.1a
	$\frac{7}{4}$ oe	A1	1.1b
		(2)	
(b)	Attempts $\text{ff}(x) = \frac{3 \times \left(\frac{3x-7}{x-2}\right) - 7}{\left(\frac{3x-7}{x-2}\right) - 2} = \frac{3 \times (3x-7) - 7(x-2)}{3x - 7 - 2(x-2)}$	M1, dM1	1.1b 1.1b
	$=\frac{2x-7}{x-3}$	A1	2.1
		(3)	
		((5 marks)
Notes:			

M1: For either attempting to solve $\frac{3x-7}{x-2} = 7$. Look for an attempt to multiply by the (x-2) leading to a value for *x*.

Or score for substituting in x = 7 in $f^{-1}(x)$. FYI $f^{-1}(x) = \frac{2x-7}{x-3}$

The method for finding $f^{-1}(x)$ should be sound, but you can condone slips.

A1:
$$\frac{7}{4}$$

M1: For an attempt at fully substituting $\frac{3x-7}{x-2}$ into f(x). Condone slips but the expression must

have a correct form. E.g.
$$\frac{3 \times \left(\frac{*-*}{*-*}\right) - a}{\left(\frac{*-*}{*-*}\right) - b}$$
 where *a* and *b* are positive constants.

dM1: Attempts to multiply **all** terms on the numerator and denominator by (x-2) to create a fraction $\frac{P(x)}{Q(x)}$ where both P(x) and Q(x) are linear expressions. Condone $\frac{P(x)}{Q(x)} \times \frac{x-2}{x-2}$

A1: Reaches $\frac{2x-7}{x-3}$ via careful and accurate work. Implied by a = 2, b = -7 following correct work. Methods involving $\frac{3x-7}{x-2} = a + \frac{b}{x-2}$ may be seen. The scheme can be applied in a similar way

$$FYI \quad \frac{3x-7}{x-2} \equiv 3 - \frac{1}{x-2}$$

Question	Scheme	Marks	AOs
7	Attempts equation of line Eg Substitutes $(-2,13)$ into $y = mx + 25$ and finds m	M1	1.1b
	Equation of <i>l</i> is $y = 6x + 25$	A1	1.1b
	Attempts equation of <i>C</i> Eg Attempts to use the intercept $(0,25)$ within the equation $y = a(x\pm 2)^2 + 13$, in order to find <i>a</i>	M1	3.1a
	Equation of C is $y = 3(x+2)^2 + 13$ or $y = 3x^2 + 12x + 25$	A1	1.1b
	Region <i>R</i> is defined by $3(x+2)^2 + 13 < y < 6x + 25$ o.e.	B1ft	2.5
		(5)	
			(5 marks)

Notes:

The first two marks are awarded for finding the equation of the line

M1: Uses the information in an attempt to find an equation for the line *l*.

E.g. Attempt using two points: Finds $m = \pm \frac{25-13}{2}$ and uses of one of the points in their y = mx + c or equivalent to find *c*. Alternatively uses the intercept as shown in main scheme.

A1: y = 6x + 25 seen or implied. This alone scores the first two marks. Do not accept l = 6x + 25It must be in the form y = ... but the correct equation can be implied from an inequality. E.g. < y < 6x + 25

The next two marks are awarded for finding the equation of the curve

- M1: A complete method to find the constant *a* in $y = a(x\pm 2)^2 + 13$ or the constants *a*, *b* in $y = ax^2 + bx + 25$. An alternative to the main scheme is deducing equation is of the form $y = ax^2 + bx + 25$ and setting and solving a pair of simultaneous equations in *a* and *b* using the point (-2, 13) the gradient being 0 at x = -2. Condone slips. Implied by $C = 3x^2 + 12x + 25$ or $3x^2 + 12x + 25$ FYI the correct equations are 13 = 4a - 2b + 25(2a - b = -6) and -4a + b = 0
- A1: $y = 3(x+2)^2 + 13$ or equivalent such as $y = 3x^2 + 12x + 25$, $f(x) = 3(x+2)^2 + 13$. Do not accept $C = 3x^2 + 12x + 25$ or just $3x^2 + 12x + 25$ for the A1 but may be implied from an inequality or from an attempt at the area, E.g. $\int 3x^2 + 12x + 25 \, dx$
- **B1ft:** Fully defines the region *R*. Follow through on their equations for *l* and *C*.

Allow strict or non -strict inequalities as long as they are used consistently.

E.g. Allow for example " $3(x+2)^2 + 13 < y < 6x + 25$ " " $3(x+2)^2 + 13 \le y \le 6x + 25$ "

Allow the inequalities to be given separately, e.g. y < 6x + 25, $y > 3(x + 2)^2 + 13$. Set notation may be used so

 $\{(x, y): y > 3(x+2)^2 + 13\} \cap \{(x, y): y < 6x+25\}$ is fine but condone with or without any of $(x, y) \leftrightarrow y \leftrightarrow x$

Incorrect examples include "y < 6x + 25 or $y > 3(x+2)^2 + 13$ ", $\{(x, y): y > 3(x+2)^2 + 13\} \cup \{(x, y): y < 6x + 25\}$

Values of x could be included but they must be correct. So $3(x+2)^2+13 < y < 6x+25$, x < 0 is fine If there are multiple solutions mark the final one.

Ques	tion	Scheme	Marks	AOs			
4 (8	a)	$gf(x) = 3\ln e^x$	M1	1.1b			
		$=3x, (x \in \mathbb{R})$	A1	1.1b			
			(2)				
(b))	$gf(x) = fg(x) \Longrightarrow 3x = x^3$	M1	1.1b			
		$\Rightarrow x^3 - 3x = 0 \Rightarrow x =$	M1	1.1b			
		$\Rightarrow x = (+)\sqrt{3}$ only as $\ln x$ is not defined at $x = 0$ and $-\sqrt{3}$	M1	2.2a			
			(3)				
			(5 n	narks)			
Notes	5:						
(a) M1:	For a	applying the functions in the correct order					
A1:		simplest form is required so it must be $3x$ and not left in the form $3\ln \theta$	e^x				
	An a	An answer of $3x$ with no working would score both marks					
(b)		~					
M1:	Allo	Allow the candidates to score this mark if they have $e^{3\ln x} = \text{their } 3x$					
M1:		solving their cubic in x and obtaining at least one solution.					
A1.	For	For either stating that $r = \sqrt{3}$ only as $\ln r (\operatorname{or } 3 \ln r)$ is not defined at $r = 0$ and $\sqrt{3}$					

A1:	For either stating that $x = \sqrt{3}$ only as $\ln x (\operatorname{or} 3 \ln x)$ is not defined at $x = 0$ and $-\sqrt{3}$
	or stating that $3x = x^3$ would have three answers, one positive one negative and one zero but $\ln x$ (or $3 \ln x$) is not defined for $x \le 0$ so therefore there is only one (real) answer.
	Note: Student who mix up fg and gf can score full marks in part (b) as they have already been penalised in part (a)

Question	Scheme		Marks
Number			IVIAIKS
7. (a)	$y = \frac{3x-5}{x+1}$ Method 1	$y = 3 - \frac{8}{x+1}$ Method 2	
	$y(x+1) = 3x - 5 \Longrightarrow xy + y = 3x - 5$	$\frac{8}{x+1} = 3-y$ so $x+1 = \frac{8}{3-y}$	M1
	$y + 5 = 3x - xy \implies y + 5 = x(3 - y)$ $\implies \frac{y + 5}{3 - y} = x$	$x = \frac{8}{3 - y} - 1$	M1
	Hence $(f^{-1}(x)) = \frac{x+5}{3-x}$ $(x \in \Box, x \neq 3)$	Hence $(f^{-1}(x)) = \frac{8}{3-x} - 1$ $(x \in \Box, x \neq 3)$	A1 oe
(b)	$ff(x) = \frac{3\left(\frac{3x-5}{x+1}\right) - 5}{\left(\frac{3x-5}{x+1}\right) + 1}$	$ff(x) = 3 - \frac{8}{3 - \frac{8}{x+1} + 1}$	[3] M1 A1
	$=\frac{\frac{3(3x-5)-5(x+1)}{x+1}}{\frac{(3x-5)+(x+1)}{x+1}}$	$ff(x) = 3 - \frac{8(x+1)}{4x-4}$	M1
	$= \frac{9x - 15 - 5x - 5}{3x - 5 + x + 1} = \frac{4x - 20}{4x - 4}$ $= \frac{x - 5}{x - 1} \text{(note that } a = -5.)$	$=\frac{x-5}{x-1}$	A1
(c)	$fg(2) = f(4-6) = f(-2) = \frac{3(-2) - "5"}{-2+1}$;=11 or sub	estitute 2 into $fg(x) = \frac{3(x^2 - 3x) - 5}{x^2 - 3x + 1}$; = 11	[4] M1; A1
(d)	$g(x) = x^2 - 3x = (x - 1.5)^2 - 2.25$. Hence $g_{\min} = -2.5$	25	[2] M1
		= 25 - 15 = 10	B1
	$-2.25 \leqslant g(x) \leqslant 10 \text{ or } -2.25 \leqslant y \leqslant 10$	- 20 10 - 10	
	$2.25 \leq 5(x) \leq 10$ or $2.25 \leq y \leq 10$		A1 [3] 12

Qu	Scheme	Marks	8
4.(a)	$0 < f(x) < \frac{4}{5}$	M1A1	(2)
(b)	$y = \frac{4}{3x+5} \qquad \Longrightarrow (3x+5)y = 4$	M1	
	$y = \frac{4}{3x+5} \qquad \Rightarrow (3x+5)y = 4$ $\Rightarrow x = \frac{4-5y}{3y}$	dM1	
	$f^{-1}(x) = \frac{4-5x}{3x} \qquad \left(0 < x < \frac{4}{5}\right)$	Alo.e.	
			(3)
(c)	$fg(x) = \frac{4}{\frac{3}{x} + 5}$	B1	(1)
(d)	$\frac{3x+5}{4} = \frac{4}{\frac{3}{x}+5}$	M1	
	$15x^2 + 18x + 15 = 0$	A1	
	Uses $18^2 < 4 \times 15 \times 15$ and so deduce no real roots	M1 A1 (10 ma	(4) rks)

M1: One limit such as y > 0 or y < 0.8. Condone for this mark both limits but with x (not y) or with the boundary included. For example $[0,0.8], 0 < x < 0.8, 0 \le y \le 0.8$

A1: Fully correct so accept $0 < f(x) < \frac{4}{5}$ and exact equivalents $0 < y < \frac{4}{5}$ (0,0.8)

(b)

M1: Set y = f(x) or x = f(y) and multiply both sides by denominator.

dM1:Make x (or a swapped y) the subject of the formula. Condone arithmetic slips

A1: o.e for example $y/f^{-1}(x) = \frac{1}{3}\left(\frac{4}{x}-5\right)$ or $y = \frac{\left(\frac{4}{x}-5\right)}{3}$ - do not need domain for this mark. ISW after a

correct answer.

(c) Mark parts c and d together

B1: $fg(x) = \frac{4}{\frac{3}{x} + 5}$ - allow any correct form then isw

(d)

M1: Sets fg(x) = gf(x) with both sides correct (but may be unsimplified) and forms a quadratic in x. Do not withhold this mark if fg or gf was originally correct but was "simplified" incorrectly and set equal to a correct gf A1: Correct 3TQ. It need not be all on one side of the equation. The =0 can be implied by later work
M1: Attempts the discriminant or attempts the formula or attempts to complete the square.

A1: Completely correct work (cso) and conclusion. If $b^2 - 4ac$ has been found it must be correct (-576)

Question Number	Scheme	Marks
3 (a)	0 < g < 3	M1A1
		(2)
(b)	$y = \frac{6x}{2x+3} \Longrightarrow 2xy+3y = 6x \Longrightarrow (6-2y)x = 3y \Longrightarrow x = \frac{3y}{(6-2y)}$	M1A1
	$\Rightarrow g^{-1}(x) = \frac{3x}{(6-2x)} \qquad 0 < x < 3$	A1ft
		(3)
(c)	$gg(x) = g\left(\frac{6x}{2x+3}\right) = \frac{6 \times \frac{6x}{2x+3}}{2 \times \frac{6x}{2x+3}+3}$	M1
	$=\frac{6\times 6x}{2\times 6x+3(2x+3)}$	dM1
	$=\frac{36x}{18x+9}=\frac{4x}{2x+1}$	A1
		(3)
		(8 marks)

M1: For one 'end' fully correct g(x) > 0 (not x > 0) or g(x) < 3 (not x < 3) or both ends (incorrect) eg. accept $0 \le g \le 3$. Accept incorrect notation such as 0 < x < 3 for this mark but not x > 0 or x < 3 on their own. Allow use of f rather than g for the M mark but not the A mark.

A1: Accept 0 < g < 3, 0 < y < 3, g(x) > 0 and g(x) < 3, (0,3)

(b)

M1: An attempt to make x or a replaced y the subject of the formula. The minimum expectation is that there is an attempt to cross multiply, expand and collect/factorise terms in x or a replaced y and

obtain $x = \frac{\pm 3y}{(\pm 6 \pm 2y)}$ or equivalent i.e. sign errors only on their algebra.

A1:
$$x = \frac{3y}{(6-2y)}$$
 or $\frac{-3y}{(2y-6)}$ or $y = \frac{3x}{(6-2x)}$ or $\frac{-3x}{(2x-6)}$ or $-\frac{3}{2} - \frac{9}{2(x-3)}$ etc. Allow $2(x-3)$ for $(2x-6)$.

A1ft: $g^{-1}(x) = \frac{3x}{(6-2x)} \left(\text{or } \frac{-3x}{(2x-6)} \right)$ and 0 < x < 3. You can follow through on any range from part (a) but

the domain must be in terms of x not in terms of e.g. g(x) or $g^{-1}(x)$. Do not allow $x \in \mathbb{R}$

Accept
$$y = \frac{3x}{(6-2x)} \left(\operatorname{or} \frac{-3x}{(2x-6)} \right)$$
 $0 < x < 3$. Allow $2(x-3)$ for $(2x-6)$.

(c)

M1: Attempts to find gg(x) by finding $g\left(\frac{6x}{2x+3}\right)$

dM1: Correct processing to obtain a single fraction of the form $\frac{a}{b}$. Achieved by,

• multiplying both numerator and denominator by (2x+3) (must multiply both terms in the denominator)

Question Number	Scheme	Marks
3.(a)	<i>y</i> 3	B1
		(1)
(b)	$y = 3 + \sqrt{x+2} \Longrightarrow y - 3 = \sqrt{x+2} \Longrightarrow x = (y-3)^2 - 2$	M1 A1
	\Rightarrow g ⁻¹ (x) = (x-3) ² - 2, with x3	A1
		(3)
(c)	$g(x) = x \Longrightarrow 3 + \sqrt{x+2} = x$	
	$\Rightarrow x+2=(x-3)^2 \Rightarrow x^2-7x+7=0$	M1, A1
	$\Rightarrow x = \frac{7 \pm \sqrt{21}}{2} \Rightarrow x = \frac{7 + \sqrt{21}}{2} \text{ only}$	M1, A1
		(4)
(d)	$a = \frac{7 + \sqrt{21}}{2}$	B1 ft
		(1)
		9 marks
(c) Alt	Solves $g^{-1}(x) = x \Longrightarrow (x-3)^2 - 2 = x$	
	$\Rightarrow x^2 - 7x + 7 = 0$	M1, A1
	$\Rightarrow x = \frac{7 \pm \sqrt{21}}{2} \Rightarrow x = \frac{7 + \sqrt{21}}{2} \text{ only}$	dM1, A1
		(4)

- B1 States the correct range for g Accept g(x) . . . 33g. . . 3, Range $. . . 3, [3, \infty)$ Range is greater than or equal to 3 Condone f . . 3 Do not accept $g(x) > 3, x . . . 3, (3, \infty)$
- (b)

A1 Achieves $x = (y-3)^2 - 2$ or if swapped $y = (x-3)^2 - 2$ or equivalent such as $x = y^2 - 6y + 7$

A1 Requires a correct function in x + correct domain or a correct function in x with a correct follow through on the range in (a) but do not follow through on $x \in \mathbb{R}$

M1 Attempts to make x or a swapped y the subject of the formula. The minimum expectation is that the 3 is moved over followed by an attempt to square both sides. Condone for this mark $\sqrt{x+2} = y \pm 3 \Rightarrow x+2 = y^2 \pm 9$

Question	Sc	heme	Marks
1(a)	$fg(x) = \frac{28}{x-2} - 1$ Sets $fg(x) = x \Rightarrow \frac{28}{x-2} - 1 = x$	$\left(=\frac{30-x}{x-2}\right)$	M1
	$\Rightarrow 28 = (x+1)(x-2)$ $\Rightarrow x^2 - x - 30 = 0$ $\Rightarrow (x-6)(x+5) = 0$		M1
	$\Rightarrow x = 6, x = -5$		dM1 A1 (4)
(b)	<i>a</i> = 6		B1 ft (1) 5 marks
Alt 1(a)	$fg(x) = x \Rightarrow g(x) = f^{-1}(x)$ $\frac{4}{x-2} = \frac{x+1}{7}$ $\Rightarrow x^2 - x - 30 = 0$ $\Rightarrow (x-6)(x+5) = 0$		M1 M1
	$\Rightarrow x = 6, x = -5$		dM1 A1 4 marks
S. Case	Uses $gf(x)$ instead $fg(x)$ $\frac{4}{7x-1-2} = x$	Makes an error on $fg(x)$ Sets $fg(x) = x \Rightarrow \frac{7 \times 4}{7 \times (x-2)} - 1 = x$	M0
	$\Rightarrow 7x^2 - 3x - 4 = 0$ $\Rightarrow (7x + 4)(x - 1) = 0$	$\Rightarrow x^2 - x - 6 = 0$ $\Rightarrow (x+2)(x-3) = 0$	M1
)	$\Rightarrow x = -\frac{4}{7}, x = 1$	$\Rightarrow x = -2, x = 3$	dM1 A0 2 out of 4 marks

M1 Sets or implies that
$$fg(x) = \frac{28}{x-2} - 1$$
 Eg accept $fg(x) = 7\left(\frac{4}{x-2}\right) - 1$ followed by $fg(x) = \frac{7 \times 4}{x-2} - 1$
Alternatively sets $g(x) = f^{-1}(x)$ where $f^{-1}(x) = \frac{x \pm 1}{7}$
Note that $fg(x) = 7\left(\frac{4}{x-2}\right) - 1 = \frac{28}{x-2} - 1$ is M0

Note that
$$fg(x) = 7\left(\frac{4}{x-2}\right) - 1 = \frac{28}{7(x-2)} - 1$$
 is M0

- M1 Sets up a 3TQ (= 0) from an attempt at fg(x) = x or $g(x) = f^{-1}(x)$
- dM1 Method of solving 3TQ (= 0) to find at least one value for x. See "General Priciples for Core Mathematics" on page 3 for the award of the mark for solving quadratic equations This is dependent upon the previous M. You may just see the answers following the 3TQ.
- A1 Both x = 6 and x = -5
- (b)
- B1ft For a = 6 but you may follow through on the largest solution from part (a) provided more than one answer was found in (a). Accept 6, a = 6 and even x = 6 Do not award marks for part (a) for work in part (b).

Question Number	Scheme	Marks
7.(a)	Applies $vu'+uv'$ to $(x^2-x^3)e^{-2x}$	
	$g'(x) = (x^2 - x^3) \times -2e^{-2x} + (2x - 3x^2) \times e^{-2x}$	M1 A1
	$g'(x) = (2x^3 - 5x^2 + 2x)e^{-2x}$	A1
		(3)
(b)	Sets $(2x^3 - 5x^2 + 2x)e^{-2x} = 0 \Longrightarrow 2x^3 - 5x^2 + 2x = 0$	M1
	$x\left(2x^2-5x+2\right)=0 \Rightarrow x=(0),\frac{1}{2},2$	M1,A1
	Sub $x = \frac{1}{2}$, 2 into $g(x) = (x^2 - x^3)e^{-2x} \Rightarrow g(\frac{1}{2}) = \frac{1}{8e}$, $g(2) = -\frac{4}{e^4}$	dM1,A1
	Range $-\frac{4}{e^4} \leqslant g(x) \leqslant \frac{1}{8e}$	A1 (6)
(c)	Accept $g(x)$ is NOT a ONE to ONE function	
	Accept $g(x)$ is a MANY to ONE function	B1
	Accept $g^{-1}(x)$ would be ONE to MANY	(1)
		(10 marks)

Note that parts (a) and (b) can be scored together. Eg accept work in part (b) for part (a) (a)

M1 Uses the product rule vu'+uv' with $u = x^2 - x^3$ and $v = e^{-2x}$ or vice versa. If the rule is quoted it must be correct. It may be implied by their u = ..v = ..u' = ..v' = ..followed by their <math>vu'+uv'. If the rule is not quoted nor implied only accept expressions of the form $(x^2 - x^3) \times \pm Ae^{-2x} + (Bx \pm Cx^2) \times e^{-2x}$ condoning bracketing issues

Method 2: multiplies out and **uses the product rule** on each term of $x^2e^{-2x} - x^3e^{-2x}$ Condone issues in the signs of the last two terms for the method mark Uses the product rule for uvw = u'vw + uv'w + uvw' applied as in method 1

Method 3:Uses **the quotient rule** with $u = x^2 - x^3$ and $v = e^{2x}$. If the rule is quoted it must be correct. It may be implied by their u = ..v = ..u' = ..v' = .. followed by their $\frac{vu'-uv'}{v^2}$ If the rule is not quoted nor implied accept expressions of the form $\frac{e^{2x}(Ax-Bx^2)-(x^2-x^3)\times Ce^{2x}}{(e^{2x})^2}$

condoning missing brackets on the numerator and e^{2x^2} on the denominator.

Method 4: Apply implicit differentiation to $ye^{2x} = x^2 - x^3 \Rightarrow e^{2x} \times \frac{dy}{dx} + y \times 2e^{2x} = 2x - 3x^2$ Condone errors on coefficients and signs

Question Number	Scheme	Marks
6.(a)	$\mathbf{f}(x) > k^2$	B1
(b)	$y = e^{2x} + k^2 \Longrightarrow e^{2x} = y - k^2$	(1) M1
	$\Rightarrow x = \frac{1}{2}\ln(y - k^2)$	dM1
	$\Rightarrow f^{-1}(x) = \frac{1}{2}\ln(x - k^2), x > k^2$	A1
	$\ln 2x + \ln 2x^2 + \ln 2x^3 = 6$	(3) M1
(c)	$\ln 2x + \ln 2x^{2} + \ln 2x^{2} = 6$ $\Rightarrow \ln 8x^{6} = 6$	M1 M1
	$\Rightarrow 8x^6 = e^6 \Rightarrow x =$	M1
	$\Rightarrow x = \left(\frac{e}{\sqrt[6]{8}}\right) = \frac{e}{\sqrt{2}} (\text{Ignore any reference to } -\frac{e}{\sqrt{2}})$	A1
		(4)
(d)	$fg(x) = e^{2 \times \ln(2x)} + k^2$	M1
	$\Rightarrow \mathrm{fg}(x) = (2x)^2 + k^2 = 4x^2 + k^2$	A1 (2)
(e)	$fg(x) = 2k^2 \Longrightarrow 4x^2 + k^2 = 2k^2$	(2)
	$\Rightarrow 4x^2 = k^2 \Rightarrow x = \dots$	M1
	$\Rightarrow x = \frac{k}{2}$ only	A1
		(2)
(alt c)	$\ln 2x + \ln 2x^2 + \ln 2x^3 = 6$	12 marks M1
($\Rightarrow \ln 2 + \ln 2 + \ln 2 + 2 \ln x + \ln 2 + 3 \ln x = 6$	
	$\Rightarrow 3 \ln 2 + 6 \ln x = 6$	
	$\Rightarrow \ln x = 1 - \frac{1}{2} \ln 2$	M1
	$\Rightarrow x = e^{1 - \frac{1}{2} \ln 2}, = \frac{e}{\sqrt{2}}$ (Ignore any reference to $-\frac{e}{\sqrt{2}}$)	M1, A1
(alt e)	$\Rightarrow 2\ln(2x) = \ln(2k^2 - k^2)$	(4)
	$\Rightarrow \ln(2x)^2 = \ln(k^2), \Rightarrow 4x^2 = k^2 \Rightarrow x = \frac{k}{2}$	M1, A1

Question Number	Scheme	Marks
5.(a)	$x^{2} + x - 6 = (x+3)(x-2)$ $\frac{x}{x+3} + \frac{3(2x+1)}{(x+3)(x-2)} = \frac{x(x-2) + 3(2x+1)}{(x+3)(x-2)}$	B1 M1
	$=\frac{x^2+4x+3}{(x+3)(x-2)}$	A1
	$=\frac{(x+3)(x+1)}{(x+3)(x-2)}$ $=\frac{(x+1)}{(x-2)}$ cso	A1*
(b)	One end either $(y) > 1, (y) \ge 1$ or $(y) < 4, (y) \le 4$ 1 < y < 4	(4) B1 B1 (2)
(c)	Attempt to set Either $g(x) = x$ or $g(x) = g^{-1}(x)$ or $g^{-1}(x) = x$ or $g^{2}(x) = x$	(2)
	$\frac{(x+1)}{(x-2)} = x \qquad \frac{x+1}{x-2} = \frac{2x+1}{x-1} \qquad \frac{2x+1}{x-1} = x \qquad \frac{\frac{x+1}{x-2}+1}{\frac{x+1}{x-2}-2} = x$	M1
	$x^{2}-3x-1=0 \Longrightarrow x = \dots$ $a = \frac{3+\sqrt{13}}{2} \operatorname{oe}\left(1.5+\sqrt{3.25}\right) \qquad \qquad$	A1, dM1 A1
	$2^{-2} = 2^{-30} (1.5 + \sqrt{5.25})^{-30}$	(4) (10 marks)

Question Number	Scheme	Marks
7(a)	$0 \leq f(x) \leq 10$	B1
(b)	ff(0) = f(5), = 3	(1) B1,B1
		(2)
(c)	$y = \frac{4+3x}{5-x} \Longrightarrow y(5-x) = 4+3x$	
	$\Rightarrow 5y - 4 = xy + 3x$	M1
	$\Rightarrow 5y-4 = x(y+3) \Rightarrow x = \frac{5y-4}{y+3}$	dM1
	$g^{-1}(x) = \frac{5x - 4}{3 + x}$	A1
		(3)
(d)	$gf(x) = 16 \implies f(x) = g^{-1}(16) = 4$ oe	M1A1
	$f(x) = 4 \Longrightarrow x = 6$	B1
	$f(x) = 4 \Rightarrow 5 - 2.5x = 4 \Rightarrow x = 0.4$ oe	M1A1
		(5)
		(11 marks)
Alt 1 to 7(d)	$gf(x) = 16 \Longrightarrow \frac{4 + 3(ax + b)}{5 - (ax + b)} = 16$	M1
	ax + b = x - 2 or 5 - 2.5x	A1
	$\Rightarrow x = 6$	B1
	$\frac{4+3(5-2.5x)}{5-(5-2.5x)} = 16 \Longrightarrow x = \dots$	M1
	$\Rightarrow x = 0.4$ oe	A1 (5)