Question	Scheme	Marks	AOs
2(a)	$y \leqslant 7$	B1	2.5
		(1)	
(b)	$\mathrm{f}(1.8)=7-2 \times 1.8^{2}=0.52 \Rightarrow \mathrm{gf}(1.8)=\mathrm{g}(0.52)=\frac{3 \times 0.52}{5 \times 0.52-1}=\ldots$	M1	1.1b
	gf $(1.8)=0.975$ oe e.g. $\frac{39}{40}$	A1	1.1b
		(2)	
(c)	$y=\frac{3 x}{5 x-1} \Rightarrow 5 x y-y=3 x \Rightarrow x(5 y-3)=y$	M1	1.1b
	$\left(\mathrm{g}^{-1}(x)=\right) \frac{x}{5 x-3}$	A1	2.2a
		(2)	
(5 marks)			
Notes			
(a) B1: Correct range. Allow $\mathrm{f}(x)$ or f for y. Allow e.g. $\{y \in \mathbb{R}: y \leqslant 7\},-\infty<y \leqslant 7,(-\infty, 7]$ (b) M1: Full method to find $f(1.8)$ and substitutes the result into g to obtain a value. Also allow for an attempt to substitute $x=1.8$ into an attempt at $\mathrm{gf}(x)$. $\text { E.g. } \quad \operatorname{gf}(x)=\frac{3\left(7-2 x^{2}\right)}{5\left(7-2 x^{2}\right)-1}=\frac{3\left(7-2(1.8)^{2}\right)}{5\left(7-2 \times(1.8)^{2}\right)-1}=\ldots$ A1: Correct value (c) M1: Correct attempt to cross multiply, followed by an attempt to factorise out x from an $x y$ term and an x term. If they swap x and y at the start then it will be for an attempt to cross multiply followed by an attempt to factorise out y from an $x y$ term and a y term. A1: Correct expression. Allow equivalent correct expressions e.g. $\frac{-x}{3-5 x}, \frac{1}{5}+\frac{3}{25 x-15}$ Ignore any domain if given.			

Question	Scheme	Marks	AOs				
$\mathbf{1}$	$\mathrm{f}(1)=a(1)^{3}+10(1)^{2}-3 a(1)-4=0$	M 1	3.1 a				
	$6-2 a=0 \Rightarrow a=\ldots$	M 1	1.1 b				
	$a=3$	A 1	1.1 b				
	$\mathbf{(3)}$						
$\mathbf{(3 ~ m a r k s)}$							

Main method seen:
M1: Attempts $\mathrm{f}(1)=0$ to set up an equation in a It is implied by $a+10-3 a-4=0$
Condone a slip but attempting $\mathrm{f}(-1)=0$ is M0
M1: Solves a linear equation in a.
Using the main method it is dependent upon having set $\mathrm{f}(\pm 1)=0$
It is implied by a solution of $\pm a \pm 10 \pm 3 a \pm 4=0$.
Don't be concerned about the mechanics of the solution.
A1: $a=3$ (following correct work)

Answers without working scores 0 marks. The method must be made clear. Candidates cannot guess. However if a candidate states for example, when $a=3, \mathrm{f}(x)=3 x^{3}+10 x^{2}-9 x-4$ and shows that $(x-1)$ is a factor of this $\mathrm{f}(x)$ by an allowable method, they should be awarded M1 M1 A1
E.g. 1: $3 x^{3}+10 x^{2}-9 x-4=(x-1)\left(3 x^{2}+13 x+4\right)$ Hence $a=3$
E.g. 2: $\mathrm{f}(x)=3 x^{3}+10 x^{2}-9 x-4, \quad \mathrm{f}(1)=3+10-9-4=0$ Hence $a=3$

The solutions via this method must end with the value for a to score the A1

Question		Scheme	Marks	AOs
1		$\mathrm{g}(x)=\frac{2 x+5}{x-3}, x \geq 5$		
(a) Way 1		$\mathrm{g}(5)=\frac{2(5)+5}{5-3}=7.5 \Rightarrow \operatorname{gg}(5)=\frac{2(" 7.5 ")+5}{" 7.5 "-3}$	M1	1.1b
		$\operatorname{gg}(5)=\frac{40}{9} \quad\left(\right.$ or $4 \frac{4}{9}$ or 4.4$)$	A1	1.1b
			(2)	
(a) Way 2		$\operatorname{gg}(x)=\frac{2\left(\frac{2 x+5}{x-3}\right)+5}{\left(\frac{2 x+5}{x-3}\right)-3} \Rightarrow \operatorname{gg}(5)=\frac{2\left(\frac{2(5)+5}{(5)-3}\right)+5}{\left(\frac{2(5)+5}{(5)-3}\right)-3}$	M1	1.1b
		$\mathrm{gg}(5)=\frac{40}{9} \quad\left(\right.$ or $4 \frac{4}{9}$ or $\left.4 . \dot{4}\right)$	A1	1.1b
			(2)	
(b)		\{Range:\} $2<y \leq \frac{15}{2}$	B1	1.1b
			(1)	
(c) Way 1		$y=\frac{2 x+5}{x-3} \Rightarrow y x-3 y=2 x+5 \Rightarrow y x-2 x=3 y+5$	M1	1.1b
		$x(y-2)=3 y+5 \Rightarrow x=\frac{3 y+5}{y-2} \quad\left\{\right.$ or $\left.y=\frac{3 x+5}{x-2}\right\}$	M1	2.1
		$\mathrm{g}^{-1}(x)=\frac{3 x+5}{x-2}, \quad 2<x \leq \frac{15}{2}$	A1ft	2.5
			(3)	
(c) Way 2		$y=\frac{2 x-6+11}{x-3} \Rightarrow y=2+\frac{11}{x-3} \Rightarrow y-2=\frac{11}{x-3}$	M1	1.1b
		$x-3=\frac{11}{y-2} \Rightarrow x=\frac{11}{y-2}+3 \quad\left\{\right.$ or $\left.y=\frac{11}{x-2}+3\right\}$	M1	2.1
		$\mathrm{g}^{-1}(x)=\frac{11}{x-2}+3, \quad 2<x \leq \frac{15}{2}$	A1ft	2.5
			(3)	
(6 marks)				
Notes for Question 1				
(a)				
M1:	Full method of attempting $\mathrm{g}(5)$ and substituting the result into g			
Note:	Way 2: Attempts to substitute $x=5$ into $\frac{2\left(\frac{2 x+5}{x-3}\right)+5}{\left(\frac{2 x+5}{x-3}\right)-3}$, o.e. Note that $\operatorname{gg}(x)=\frac{9 x-5}{14-x}$			
A1:	Obtains $\frac{40}{9}$ or $4 \frac{4}{9}$ or $4 . \dot{4}$ or an exact equivalent			
Note:	Give A0 for 4.4 or $4.444 \ldots$ without reference to $\frac{40}{9}$ or $4 \frac{4}{9}$ or $4 . \dot{4}^{\circ}$			

Question	Scheme	Marks	AOs
1	Attempts $\mathrm{f}(-3)=3 \times(-3)^{3}+2 a \times(-3)^{2}-4 \times-3+5 a=0$	M1	3.1a
	Solves linear equation $23 a=69 \Rightarrow a=\ldots$	M1	1.1b
	$a=3 \quad$ cso	A1	1.1b
		(3)	
(3 marks)			

M1: Chooses a suitable method to set up a correct equation in a which may be unsimplified.
This is mainly applying $\mathrm{f}(-3)=0$ leading to a correct equation in a.
Missing brackets may be recovered.
Other methods may be seen but they are more demanding
If division is attempted must produce a correct equation in a similar way to the $f(-3)=0$ method

$$
\begin{aligned}
& x + 3 \longdiv { 3 x ^ { 2 } + (2 a - 9) x + 2 3 - 6 a } \begin{array} { l }
{ \frac { 3 x ^ { 3 } + 9 x ^ { 2 } } { (2 a - 9) x ^ { 2 } - 4 x } } \\
{ \frac { (2 a - 9) x ^ { 2 } + (6 a - 2 7) x } { (2 3 - 6 a) x + 5 a } } \\
{ (2 3 - 6 a) x + 6 9 - 1 8 a }
\end{array}
\end{aligned}
$$

So accept $5 a=69-18 a$ or equivalent, where it implies that the remainder will be 0
You may also see variations on the table below. In this method the terms in x are equated to -4

$3 x^{2}$		$(2 a-9) x$	$\frac{5 a}{3}$	
	$3 x^{3}$	$(2 a-9) x^{2}$	$\frac{5 a}{3} x$	
3	3			
	$9 x^{2}$	$(6 a-27) x$	$5 a$	

M1: This is scored for an attempt at solving a linear equation in a.
For the main scheme it is dependent upon having attempted $\mathrm{f}(\pm 3)=0$. Allow for a linear equation in a leading to $a=\ldots$. Don't be too concerned with the mechanics of this.
Via division accept $x + 3 \longdiv { 3 x ^ { 2 } \ldots } \begin{array} { l } { 3 x ^ { 3 } + 2 a x ^ { 2 } - 4 x + 5 a } \\ { \text { followed by a remainder in } a \text { set } = 0 \Rightarrow a = \ldots } \end{array}$
or two terms in a are equated so that the remainder $=0$
FYI the correct remainder via division is $23 a+12-81$ oe
A1: $a=3$ cso
An answer of 3 with no incorrect working can be awarded 3 marks

Question	Scheme	Marks	AOs
5 (a)	$2 x^{2}+4 x+9=2(x \pm k)^{2} \pm \ldots . \quad a=2$	B1	1.1b
	Full method $2 x^{2}+4 x+9=2(x+1)^{2} \pm \ldots \quad a=2 \& b=1$	M1	1.1b
	$2 x^{2}+4 x+9=2(x+1)^{2}+7$	A1	1.1b
		(3)	
(b)	U shaped curve any position but	B1	1.2
	- y - intercept at $(0,9)$	B1	1.1b
			2.2a
		(3)	
(c)	(i) Deduces translation with one correct aspect.	M1	3.1a
	Translate $\binom{2}{-4}$	A1	2.2a
	(ii) $\mathrm{h}(x)=\frac{21}{" 2(x+1)^{2}+7 "} \Rightarrow\left(\right.$ maximum) value $\frac{21}{77 "}(=3)$	M1	3.1a
	$0<\mathrm{h}(x) \leqslant 3$	A1ft	1.1b
		(4)	
(10 marks)			

(a)

B1: Achieves $2 x^{2}+4 x+9=2(x \pm k)^{2} \pm \ldots$ or states that $a=2$
M1: Deals correctly with first two terms of $2 x^{2}+4 x+9$.
Scored for $2 x^{2}+4 x+9=2(x+1)^{2} \pm \ldots$ or stating that $a=2$ and $b=1$
A1: $2 x^{2}+4 x+9=2(x+1)^{2}+7$
Note that this may be done in a variety of ways including equating $2 x^{2}+4 x+9$ with the expanded form of $a(x+b)^{2}+c \equiv a x^{2}+2 a b x+a b^{2}+c$

Questio	Scheme	Marks	AOs
6 (a)	$\mathrm{gg}(0)=\mathrm{g}\left((0-2)^{2}+1\right)=\mathrm{g}(5)=4(5)-7=13$	M1	2.1
		A1	1.1b
		(2)	
(b)	Solves either $(x-2)^{2}+1=28 \Rightarrow x=\ldots$ or $4 x-7=28 \Rightarrow x=\ldots$	M1	1.1b
	At least one critical value $x=2-3 \sqrt{3}$ or $x=\frac{35}{4}$ is correct	A1	1.1b
	Solves both $(x-2)^{2}+1=28 \Rightarrow x=\ldots$ and $4 x-7=28 \Rightarrow x=\ldots$	M1	1.1b
	Correct final answer of ' $x<2-3 \sqrt{3}, x>\frac{35}{4}$,	A1	2.1
	Note: Writing awrt -3.20 or a truncated -3.19 or a truncated -3.2 in place of $2-3 \sqrt{3}$ is accepted for any of the A marks	(4)	
(c)	h is a one-one \{function (or mapping) so has an inverse\} g is a many-one \{function (or mapping) so does not have an inverse\}	B1	2.4
		(1)	
(d) Way 1	$\left\{\mathrm{h}^{-1}(x)=-\frac{1}{2} \Rightarrow\right\} x=\mathrm{h}\left(-\frac{1}{2}\right)$	$\underset{\text { B1 on epen }}{\mathrm{M} 1}$	1.1b
	$x=\left(-\frac{1}{2}-2\right)^{2}+1 \quad$ Note: Condone $\quad x=\left(\frac{1}{2}-2\right)^{2}+1$	M1	1.1b
	$\Rightarrow x=7.25$ only cso	A1	2.2a
		(3)	
(d) Way 2	$\left\{\right.$ their $\left.\mathrm{h}^{-1}(x)\right\}= \pm 2 \pm \sqrt{x \pm 1}$	M1	1.1b
	Attempts to solve $\pm 2 \pm \sqrt{x \pm 1}=-\frac{1}{2} \Rightarrow \pm \sqrt{x \pm 1}=\ldots$	M1	1.1b
	$\Rightarrow x=7.25$ only cso	A1	2.2a
		(3)	
(10 marks)			
Notes for Question 6			
(a)			
M1:	Uses a complete method to find $\mathrm{gg}(0)$. E.g. - Substituting $x=0$ into $(0-2)^{2}+1$ and the result of this into the relevant part of $g(x)$ - Attempts to substitute $x=0$ into $4\left((x-2)^{2}+1\right)-7$ or $4(x-2)^{2}-3$		
A1:	$\operatorname{gg}(0)=13$		
(b)			
M1:	See scheme		
A1:	See scheme		
M1:	See scheme		
A1:	Brings all the strands of the problem together to give a correct solution.		
Note:	You can ignore inequality symbols for any of the M marks		
Note:	If a 3 TQ is formed (e.g. $x^{2}-4 x-23=0$) then a correct method for solving a 3 TQ is required for the relevant method mark to be given.		
Note:	Writing $(x-2)^{2}+1=28 \Rightarrow(x-2)+1=\sqrt{28} \Rightarrow x=-1+\sqrt{28}$ (i.e. taking the square-root of each term to solve $(x-2)^{2}+1=28$ is not considered to be an acceptable method)		
Note: A	Allow set notation. E.g. $\{x \in \mathbb{R}: x<2-3 \sqrt{3} \cup x>8.75\}$ is fine for the final A mark		

Question	Scheme	Marks	AOs
4 (a)	Either attempts $\frac{3 x-7}{x-2}=7 \Rightarrow x=\ldots$ Or attempts $\quad \mathrm{f}^{-1}(x)$ and substitutes in $x=7$	M1	3.1a
	$\frac{7}{4}$ oe	A1	1.1b
		(2)	
(b)	Attempts $\mathrm{ff}(x)=\frac{3 \times\left(\frac{3 x-7}{x-2}\right)-7}{\left(\frac{3 x-7}{x-2}\right)-2}=\frac{3 \times(3 x-7)-7(x-2)}{3 x-7-2(x-2)}$	$\begin{gathered} \mathrm{M} 1, \\ \mathrm{dM} 1 \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$=\frac{2 x-7}{x-3}$	A1	2.1
		(3)	
(5 marks)			
Notes:			

(a)

M1: For either attempting to solve $\frac{3 x-7}{x-2}=7$. Look for an attempt to multiply by the $(x-2)$ leading to a value for x.
Or score for substituting in $x=7$ in $\mathrm{f}^{-1}(x)$. FYI $\mathrm{f}^{-1}(x)=\frac{2 x-7}{x-3}$
The method for finding $\mathrm{f}^{-1}(x)$ should be sound, but you can condone slips.
A1: $\frac{7}{4}$
(b)

M1: For an attempt at fully substituting $\frac{3 x-7}{x-2}$ into $\mathrm{f}(x)$. Condone slips but the expression must have a correct form. E.g. $\frac{3 \times\left(\frac{*-*}{*-*}\right)-a}{\left(\frac{*-*}{*-*}\right)-b}$ where a and b are positive constants.
dM1: Attempts to multiply all terms on the numerator and denominator by $(x-2)$ to create a fraction $\frac{P(x)}{Q(x)}$ where both $P(x)$ and $Q(x)$ are linear expressions. Condone $\frac{P(x)}{Q(x)} \times \frac{x-2}{x-2}$
A1: Reaches $\frac{2 x-7}{x-3}$ via careful and accurate work. Implied by $a=2, b=-7$ following correct work.
Methods involving $\frac{3 x-7}{x-2} \equiv a+\frac{b}{x-2}$ may be seen. The scheme can be applied in a similar way FYI $\frac{3 x-7}{x-2} \equiv 3-\frac{1}{x-2}$

Question	Scheme	Marks	AOs
7	Attempts equation of line Eg Substitutes $(-2,13)$ into $y=m x+25$ and finds m	M1	1.1b
	Equation of l is $y=6 x+25$	A1	1.1b
	Attempts equation of C Eg Attempts to use the intercept $(0,25)$ within the equation $y=a(x \pm 2)^{2}+13, \quad$ in order to find a	M1	3.1a
	Equation of C is $y=3(x+2)^{2}+13$ or $y=3 x^{2}+12 x+25$	A1	1.1b
	Region R is defined by $3(x+2)^{2}+13<y<6 x+25$ o.e.	B1ft	2.5
		(5)	
(5 marks)			
Notes:			

The first two marks are awarded for finding the equation of the line
M1: Uses the information in an attempt to find an equation for the line l.
E.g. Attempt using two points: Finds $m= \pm \frac{25-13}{2}$ and uses of one of the points in their $y=m x+c$ or equivalent to find c. Alternatively uses the intercept as shown in main scheme.
A1: $y=6 x+25$ seen or implied. This alone scores the first two marks. Do not accept $l=6 x+25$
It must be in the form $y=\ldots$ but the correct equation can be implied from an inequality. E.g. $<y<6 x+25$
The next two marks are awarded for finding the equation of the curve
M1: A complete method to find the constant a in $y=a(x \pm 2)^{2}+13$ or the constants a, b in $y=a x^{2}+b x+25$.
An alternative to the main scheme is deducing equation is of the form $y=a x^{2}+b x+25$ and setting and solving a pair of simultaneous equations in a and b using the point $(-2,13)$ the gradient being 0 at $x=-2$. Condone slips. Implied by $C=3 x^{2}+12 x+25$ or $3 x^{2}+12 x+25$
FYI the correct equations are $13=4 a-2 b+25(2 a-b=-6)$ and $-4 a+b=0$
A1: $y=3(x+2)^{2}+13$ or equivalent such as $y=3 x^{2}+12 x+25, \mathrm{f}(x)=3(x+2)^{2}+13$.
Do not accept $C=3 x^{2}+12 x+25$ or just $3 x^{2}+12 x+25$ for the A1 but may be implied from an inequality or from an attempt at the area, E.g. $\int 3 x^{2}+12 x+25 \mathrm{~d} x$
B1ft: Fully defines the region R. Follow through on their equations for l and C.
Allow strict or non -strict inequalities as long as they are used consistently.
E.g. Allow for example $\quad 3(x+2)^{2}+13<y<6 x+25 " \quad " 3(x+2)^{2}+13 \leqslant y \leqslant 6 x+25 "$

Allow the inequalities to be given separately, e.g. $y<6 x+25, y>3(x+2)^{2}+13$. Set notation may be used so $\left\{(x, y): y>3(x+2)^{2}+13\right\} \cap\{(x, y): y<6 x+25\}$ is fine but condone with or without any of $(x, y) \leftrightarrow y \leftrightarrow x$ Incorrect examples include " $y<6 x+25$ or $y>3(x+2)^{2}+13$ ", $\left\{(x, y): y>3(x+2)^{2}+13\right\} \cup\{(x, y): y<6 x+25\}$

Values of x could be included but they must be correct. So $3(x+2)^{2}+13<y<6 x+25, x<0$ is fine If there are multiple solutions mark the final one.

Question	Scheme	Marks	AOs
4 (a)	$\operatorname{gf}(x)=3 \ln \mathrm{e}^{x}$	M1	1.1b
	$=3 x,(x \in \mathbb{R})$	A1	1.1b
		(2)	
(b)	$\mathrm{gf}(x)=\mathrm{fg}(x) \Rightarrow 3 x=x^{3}$	M1	1.1b
	$\Rightarrow x^{3}-3 x=0 \Rightarrow x=$	M1	1.1b
	$\Rightarrow x=(+) \sqrt{3}$ only as $\ln x$ is not defined at $x=0$ and $-\sqrt{3}$	M1	2.2a
		(3)	
(5 marks)			
Notes:			
(a) M1: For applying the functions in the correct order A1: The simplest form is required so it must be $3 x$ and not left in the form $3 \ln \mathrm{e}^{x}$ An answer of $3 x$ with no working would score both marks			
(b) M1: Allow the candidates to score this mark if they have $\mathrm{e}^{3 \ln x}=$ their $3 x$ M1: For solving their cubic in x and obtaining at least one solution. A1: For either stating that $x=\sqrt{3}$ only as $\ln x(\operatorname{or} 3 \ln x)$ is not defined at $x=0$ and $-\sqrt{3}$ or stating that $3 x=x^{3}$ would have three answers, one positive one negative and one zero but $\ln x(\operatorname{or} 3 \ln x)$ is not defined for $x \leqslant 0$ so therefore there is only one (real) answer. Note: Student who mix up fg and gf can score full marks in part (b) as they have already been penalised in part (a)			

Qu	Scheme	Marks
4.(a)	$0<\mathrm{f}(x)<\frac{4}{5}$	M1A1
(b)	$y=\frac{4}{3 x+5} \quad \Rightarrow(3 x+5) y=4$	M1
	$\Rightarrow x=\frac{4-5 y}{3 y}$	dM1
	$\mathrm{f}^{-1}(x)=\frac{4-5 x}{3 x} \quad\left(0<x<\frac{4}{5}\right)$	Alo.e.
		(3)
(c)	$\operatorname{fg}(x)=\frac{4}{\frac{3}{-}+5}$	B1 (1)
	x $3 x+5$	
	$\underline{3 x+5}=\frac{4}{3}$	
(d)	$\overline{4}=\overline{\frac{3}{x}+5}$	M1
	$15 x^{2}+18 x+15=0$	A1
	Uses $18^{2}<4 \times 15 \times 15$ and so deduce no real roots	M1 A1
		(10 marks)

(a)

M1: One limit such as $y>0$ or $y<0.8$. Condone for this mark both limits but with x (not y) or with the boundary included. For example $[0,0.8], 0<x<0.8,0 \leqslant y \leqslant 0.8$
A1: Fully correct so accept $0<\mathrm{f}(x)<\frac{4}{5}$ and exact equivalents $0<y<\frac{4}{5}(0,0.8)$
(b)

M1: Set $y=\mathrm{f}(x)$ or $x=\mathrm{f}(y)$ and multiply both sides by denominator.
dM1:Make x (or a swapped y) the subject of the formula. Condone arithmetic slips
A1: o.e for example $y / \mathrm{f}^{-1}(x)=\frac{1}{3}\left(\frac{4}{x}-5\right)$ or $y=\left(\frac{4}{x}-5\right) / 3$ - do not need domain for this mark. ISW after a correct answer.
(c) Mark parts c and d together

B1: $\operatorname{fg}(x)=\frac{4}{\frac{3}{x}+5}$ - allow any correct form then isw
(d)

M1: Sets $\operatorname{fg}(x)=\operatorname{gf}(x)$ with both sides correct (but may be unsimplified) and forms a quadratic in x. Do not withhold this mark if fg or gf was originally correct but was "simplified" incorrectly and set equal to a correct gf
A1: Correct 3TQ. It need not be all on one side of the equation. The $=0$ can be implied by later work
M1: Attempts the discriminant or attempts the formula or attempts to complete the square.
A1: Completely correct work (cso) and conclusion. If $b^{2}-4 a c$ has been found it must be correct (-576)

Question Number	Scheme	Marks
3 (a)	$0<\mathrm{g}<3$	M1A1
		(2)
(b)	$y=\frac{6 x}{2 x+3} \Rightarrow 2 x y+3 y=6 x \Rightarrow(6-2 y) x=3 y \Rightarrow x=\frac{3 y}{(6-2 y)}$	M1A1
	$\Rightarrow \mathrm{g}^{-1}(x)=\frac{3 x}{(6-2 x)} \quad 0<x<3$	A1ft
		(3)
(c)	$\operatorname{gg}(x)=\operatorname{g}\left(\frac{6 x}{2 x+3}\right)=\frac{6 \times \frac{6 x}{2 x+3}}{2 \times \frac{6 x}{2 x+3}+3}$	M1
	$=\frac{6 \times 6 x}{2 \times 6 x+3(2 x+3)}$	dM1
	$=\frac{36 x}{18 x+9}=\frac{4 x}{2 x+1}$	A1
		(3)
		(8 marks)

(a)

M1: For one 'end' fully correct $\mathrm{g}(x)>0(\operatorname{not} x>0)$ or $\mathrm{g}(x)<3(\operatorname{not} x<3)$ or both ends (incorrect) eg. accept $0 \leqslant \mathrm{~g} \leqslant 3$. Accept incorrect notation such as $0<x<3$ for this mark but not $x>0$ or $x<3$ on their own.
Allow use of f rather than g for the M mark but not the A mark.
A1: Accept $0<\mathrm{g}<3,0<y<3, \mathrm{~g}(x)>0$ and $\mathrm{g}(x)<3,(0,3)$
(b)

M1: An attempt to make x or a replaced y the subject of the formula. The minimum expectation is that there is an attempt to cross multiply, expand and collect/factorise terms in x or a replaced y and obtain $x=\frac{ \pm 3 y}{(\pm 6 \pm 2 y)}$ or equivalent i.e. sign errors only on their algebra.
A1: $x=\frac{3 y}{(6-2 y)}$ or $\frac{-3 y}{(2 y-6)}$ or $y=\frac{3 x}{(6-2 x)}$ or $\frac{-3 x}{(2 x-6)}$ or $-\frac{3}{2}-\frac{9}{2(x-3)}$ etc. Allow $2(x-3)$ for $(2 x-6)$.
A1ft: $\mathrm{g}^{-1}(x)=\frac{3 x}{(6-2 x)}\left(\right.$ or $\left.\frac{-3 x}{(2 x-6)}\right)$ and $0<x<3$. You can follow through on any range from part (a) but the domain must be in terms of x not in terms of e.g. $\mathrm{g}(x)$ or $\mathrm{g}^{-1}(x)$. Do not allow $x \in \mathbb{R}$
Accept $y=\frac{3 x}{(6-2 x)}\left(\right.$ or $\left.\frac{-3 x}{(2 x-6)}\right) \quad 0<x<3$. Allow $2(x-3)$ for $(2 x-6)$.
(c)

M1: Attempts to find $\operatorname{gg}(x)$ by finding $g\left(\frac{6 x}{2 x+3}\right)$
dM1: Correct processing to obtain a single fraction of the form $\frac{a}{b}$. Achieved by,

- multiplying both numerator and denominator by $(2 x+3)$ (must multiply both terms in the denominator)

Question Number	Scheme	Marks
3.(a)	$y . .3$	B1
(b)	$y=3+\sqrt{x+2} \Rightarrow y-3=\sqrt{x+2} \Rightarrow x=(y-3)^{2}-2$	M1 A1
	$\Rightarrow \mathrm{g}^{-1}(x)=(x-3)^{2}-2, \quad$ with $x . .3$	A1
(c)	$\mathrm{g}(x)=x \Rightarrow 3+\sqrt{x+2}=x$	
	$\Rightarrow x+2=(x-3)^{2} \Rightarrow x^{2}-7 x+7=0$	M1, A1
	$\Rightarrow x=\frac{7 \pm \sqrt{21}}{2} \Rightarrow x=\frac{7+\sqrt{21}}{2} \text { only }$	M1, A1
(d)	$a=\frac{7+\sqrt{21}}{2}$	B1 ft
		(1)
		9 marks
(c) Alt	Solves $\mathrm{g}^{-1}(x)=x \Rightarrow(x-3)^{2}-2=x$$\begin{aligned} \Rightarrow x^{2}-7 x+7 & =0 \\ & \Rightarrow x=\frac{7 \pm \sqrt{21}}{2} \Rightarrow x=\frac{7+\sqrt{21}}{2} \text { only } \end{aligned}$	
		M1, A1
		dM1, A1
		(4)

(a)

B1 States the correct range for g Accept $\mathrm{g}(x) . .33 g . .3$, Range.. $3,[3, \infty)$ Range is greater than or equal to 3
Condone f . . 3
Do not accept $\mathrm{g}(x)>3, x \ldots 3,(3, \infty)$
(b)

M1 Attempts to make x or a swapped y the subject of the formula. The minimum expectation is that the 3 is moved over followed by an attempt to square both sides. Condone for this mark $\sqrt{x+2}=y \pm 3 \Rightarrow x+2=y^{2} \pm 9$
A1 Achieves $x=(y-3)^{2}-2$ or if swapped $y=(x-3)^{2}-2$ or equivalent such as $x=y^{2}-6 y+7$
A1 Requires a correct function in $x+$ correct domain or a correct function in x with a correct follow through on the range in (a) but do not follow through on $x \in \mathrm{R}$

Question	Scheme		Marks
1(a) (b)	$\operatorname{fg}(x)=\frac{28}{x-2}-1$ Sets $\mathrm{fg}(x)=x \Rightarrow \frac{28}{x-2}-1=x$ $\begin{aligned} & \Rightarrow 28=(x+1)(x-2) \\ & \Rightarrow x^{2}-x-30=0 \\ & \Rightarrow(x-6)(x+5)=0 \\ & \Rightarrow x=6, x=-5 \end{aligned}$ $a=6$	$\left(=\frac{30-x}{x-2}\right)$	dM1 A1 (4) B1 ft (1) 5 marks
Alt 1(a)	$\begin{aligned} & \mathrm{fg}(x)=x \Rightarrow \mathrm{~g}(x)=\mathrm{f}^{-1}(x) \\ & \frac{4}{x-2}=\frac{x+1}{7} \\ & \Rightarrow x^{2}-x-30=0 \\ & \Rightarrow(x-6)(x+5)=0 \\ & \Rightarrow x=6, x=-5 \end{aligned}$		M1 M1 dM1 A1 4 marks
S. Case	Uses $\operatorname{gf}(x)$ instead $\operatorname{fg}(x)$ $\begin{aligned} & \frac{4}{7 x-1-2}=x \\ & \Rightarrow 7 x^{2}-3 x-4=0 \\ & \Rightarrow(7 x+4)(x-1)=0 \\ & \Rightarrow x=-\frac{4}{7}, \quad x=1 \end{aligned}$	Makes an error on $\operatorname{fg}(x)$ Sets $\mathrm{fg}(x)=x \Rightarrow \frac{7 \times 4}{7 \times(x-2)}-1=x$ $\begin{aligned} & \Rightarrow x^{2}-x-6=0 \\ & \Rightarrow(x+2)(x-3)=0 \\ & \Rightarrow x=-2, \quad x=3 \end{aligned}$	M0 M1 dM1 A0 2 out of 4 marks

(a)

M1 Sets or implies that $\mathrm{fg}(x)=\frac{28}{x-2}-1$ Eg accept $\mathrm{fg}(x)=7\left(\frac{4}{x-2}\right)-1$ followed by $\mathrm{fg}(x)=\frac{7 \times 4}{x-2}-1$
Alternatively sets $\mathrm{g}(x)=\mathrm{f}^{-1}(x)$ where $\mathrm{f}^{-1}(x)=\frac{x \pm 1}{7}$
Note that $\operatorname{fg}(x)=7\left(\frac{4}{x-2}\right)-1=\frac{28}{7(x-2)}-1$ is M0
M1 Sets up a 3TQ (=0) from an attempt at $\mathrm{fg}(x)=x$ or $\mathrm{g}(x)=\mathrm{f}^{-1}(x)$
dM1 Method of solving 3TQ (=0) to find at least one value for x. See "General Priciples for Core Mathematics" on page 3 for the award of the mark for solving quadratic equations This is dependent upon the previous M. You may just see the answers following the 3TQ.
A1 Both $x=6$ and $x=-5$
(b)

B1ft For $a=6$ but you may follow through on the largest solution from part (a) provided more than one answer was found in (a). Accept $6, a=6$ and even $x=6$
Do not award marks for part (a) for work in part (b).

Note that parts (a) and (b) can be scored together. Eg accept work in part (b) for part (a)
(a)

M1 Uses the product rule $v u^{\prime}+u v^{\prime}$ with $u=x^{2}-x^{3}$ and $v=e^{-2 x}$ or vice versa. If the rule is quoted it must be correct. It may be implied by their $u=. . v=. . u^{\prime}=. . v^{\prime}=.$. followed by their $v u^{\prime}+u v^{\prime}$. If the rule is not quoted nor implied only accept expressions of the form $\left(x^{2}-x^{3}\right) \times \pm A \mathrm{e}^{-2 x}+\left(B x \pm C x^{2}\right) \times \mathrm{e}^{-2 x}$ condoning bracketing issues
Method 2: multiplies out and uses the product rule on each term of $x^{2} \mathrm{e}^{-2 x}-x^{3} \mathrm{e}^{-2 x}$ Condone issues in the signs of the last two terms for the method mark
Uses the product rule for $u v w=u^{\prime} v w+u v^{\prime} w+u v w^{\prime}$ applied as in method 1
Method 3:Uses the quotient rule with $u=x^{2}-x^{3}$ and $v=e^{2 x}$. If the rule is quoted it must be correct. It may be implied by their $u=. . v=. . u^{\prime}=. . v^{\prime}=.$. followed by their $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$ If the rule is not quoted nor implied accept expressions of the form $\frac{\mathrm{e}^{2 x}\left(A x-B x^{2}\right)-\left(x^{2}-x^{3}\right) \times C \mathrm{e}^{2 x}}{\left(\mathrm{e}^{2 x}\right)^{2}}$ condoning missing brackets on the numerator and $\mathrm{e}^{2 x^{2}}$ on the denominator.

Method 4: Apply implicit differentiation to $y \mathrm{e}^{2 x}=x^{2}-x^{3} \Rightarrow \mathrm{e}^{2 x} \times \frac{\mathrm{d} y}{\mathrm{~d} x}+y \times 2 \mathrm{e}^{2 x}=2 x-3 x^{2}$
Condone errors on coefficients and signs

Question Number	Scheme	Marks
7(a)	$0 \leqslant \mathrm{f}(x) \leqslant 10$	B1
(b)	$\mathrm{ff}(0)=\mathrm{f}(5),=3$	B1,B1
(c)	$y=\frac{4+3 x}{5-x} \Rightarrow y(5-x)=4+3 x$	
	$\Rightarrow 5 y-4=x y+3 x$	M1
	$\Rightarrow 5 y-4=x(y+3) \Rightarrow x=\frac{5 y-4}{y+3}$	dM1
	$\mathrm{g}^{-1}(x)=\frac{5 x-4}{3+x}$	A1
		(3)
(d)	$\mathrm{gf}(x)=16 \Rightarrow \mathrm{f}(x)=\mathrm{g}^{-1}(16)=4$ oe	M1A1
	$\mathrm{f}(x)=4 \Rightarrow x=6$	B1
	$\mathrm{f}(x)=4 \Rightarrow 5-2.5 x=4 \Rightarrow x=0.4$ oe	M1A1
		(5)
		(11 marks)
$\begin{gathered} \text { Alt } 1 \\ \text { to } 7(\mathrm{~d}) \end{gathered}$	$\operatorname{gf}(x)=16 \Rightarrow \frac{4+3(a x+b)}{5-(a x+b)}=16$	M1
	$a x+b=x-2$ or 5-2.5x	A1
	$\Rightarrow x=6$	B1
	$\frac{4+3(5-2.5 x)}{5-(5-2.5 x)}=16 \Rightarrow x=\ldots$	M1
	$\Rightarrow x=0.4 \quad$ oe	A1 (5)

