Question	Scheme	Marks	AOs
12 (i)	$\begin{array}{ll}\text { Uses } & \cos ^{2} \theta=1-\sin ^{2} \theta \\ & 5 \cos ^{2} \theta=6 \sin \theta \Rightarrow 5 \sin ^{2} \theta+6 \sin \theta-5=0\end{array}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} \hline 1.2 \\ 1.1 \mathrm{~b} \\ \hline \end{gathered}$
	$\Rightarrow \sin \theta=\frac{-3+\sqrt{34}}{5} \Rightarrow \theta=\ldots$	dM1	3.1a
	$\Rightarrow \theta=34.5^{\circ}, 145.5^{\circ}, 394.5^{\circ}$	$\begin{aligned} & \hline \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \hline 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
		(5)	
(ii) (a)	One of - They cancel by $\sin x$ (and hence they miss the solution $\sin x=0 \Rightarrow x=0$) - They do not find all the solutions of $\cos x=\frac{3}{5}$ (in the given range) or they missed the solution $x=-53.1^{\circ}$	B1	2.3
	Both of the above	B1	2.3
		(2)	
(ii) (b)	Sets $5 \alpha+40^{\circ}=720^{\circ}-53.1^{\circ}$	M1	3.1a
	$\alpha=125^{\circ}$	A1	1.1b
		(2)	
(9 marks)			
(i)	Notes		

M1: Uses $\cos ^{2} \theta=1-\sin ^{2} \theta$ to form a $3 T \mathrm{Q}$ in $\sin \theta$
A1: Correct $3 \mathrm{TQ}=05 \sin ^{2} \theta+6 \sin \theta-5=0$
dM1: Solves their 3TQ in $\sin \theta$ to produce one value for θ. It is dependent upon having used $\cos ^{2} \theta= \pm 1 \pm \sin ^{2} \theta$

A1: Two of awrt $\theta=34.5^{\circ}, 145.5^{\circ}, 394.5^{\circ} \quad$ (or if in radians two of awrt $0.60,2.54,6.89$)

A1: All three of awrt $\theta=34.5^{\circ}, 145.5^{\circ}, 394.5^{\circ}$ and no other values
(i) (a)

See scheme

(ii)(b)

M1: Sets $5 \alpha+40^{\circ}=666.9^{\circ}$ o.e.
A1: awrt $\alpha=125^{\circ}$

B1: For 512
A1: For $-144 x$
A1: For $+18 x^{2}$ Allow even following $\left(+\frac{x}{16}\right)^{2}$
Listing is acceptable for all 4 marks
(b)

M1: For setting their $512 a=128$ and proceeding to find a value for a. Alternatively they could substitute $x=0$ into both sides of the identity and proceed to find a value for a.
A1 ft: $a=\frac{1}{4}$ oe Follow through on $\frac{128}{\text { their } 512}$
(c)

M1: Condone $512 b \pm 144 \times a=36$ following through on their 512 , their -144 and using their value of " a " to find a value for " b "
A1: $b=\frac{9}{64}$ oe

Question	Scheme	Marks	AOs
$\mathbf{1 2}$ (a)	$4 \cos \theta-1=2 \sin \theta \tan \theta \Rightarrow 4 \cos \theta-1=2 \sin \theta \times \frac{\sin \theta}{\cos \theta}$	M1	1.2

	$\Rightarrow 4 \cos ^{2} \theta-\cos \theta=2 \sin ^{2} \theta \quad$ oe	A1	1.1b
	$\Rightarrow 4 \cos ^{2} \theta-\cos \theta=2\left(1-\cos ^{2} \theta\right)$	M1	1.1b
	$6 \cos ^{2} \theta-\cos \theta-2=0$ *	A1*	2.1
		(4)	
(b)	For attempting to solve given quadratic	M1	1.1 b
	$(\cos 3 x)=\frac{2}{3},-\frac{1}{2}$	B1	1.1b
	$x=\frac{1}{3} \arccos \left(\frac{2}{3}\right)$ or $\frac{1}{3} \arccos \left(-\frac{1}{2}\right)$	M1	1.1b
	$x=40^{\circ}, 80^{\circ}$, awrt 16.1°	A1	2.2 a
		(4)	
(8 marks)			
(a) M1: Recall and use the identity $\tan \theta=\frac{\sin \theta}{\cos \theta} \quad$ Note that it cannot just be stated. A1: $4 \cos ^{2} \theta-\cos \theta=2 \sin ^{2} \theta$ oe. This is scored for a correct line that does not contain any fractional terms. It may be awarded later in the solution after the identity $1-\cos ^{2} \theta=\sin ^{2} \theta$ has been used Eg for $\cos \theta(4 \cos \theta-1)=2\left(1-\cos ^{2} \theta\right)$ or equivalent			

M1: Attempts to use the correct identity $1-\cos ^{2} \theta=\sin ^{2} \theta$ to form an equation in just $\cos \theta$
$\mathbf{A 1 *}$: Proceeds to correct answer through rigorous and clear reasoning. No errors in notation or bracketing. For example $\sin ^{2} \theta=\sin \theta^{2}$ is an error in notation
(b)

M1: For attempting to solve the given quadratic " $6 y^{2}-y-2=0$ " where y could be $\cos 3 x, \cos x$, or even just y. When factorsing look for $(a y+b)(c y+d)$ where $a c= \pm 6$ and $b d= \pm 2$
This may be implied by the correct roots (even award for $\left(y \pm \frac{2}{3}\right)\left(y \pm \frac{1}{2}\right)$), an attempt at factorising, an attempt at the quadratic formula, an attempt at completing the square and even \pm the correct roots.
B1: For the roots $\frac{2}{3},-\frac{1}{2}$ oe
M1: Finds at least one solution for x from $\cos 3 x$ within the given range for their $\frac{2}{3},-\frac{1}{2}$
A1: $x=40^{\circ}, 80^{\circ}$, awrt 16.1° only Withhold this mark if there are any other values even if they are outside the range. Condone 40 and 80 appearing as 40.0 and 80.0

Question	Scheme	Marks	AOs
$\mathbf{1 3 (a)}$	For a correct equation in p or $q \quad p=10^{4.8}$ or $q=10^{0.05}$	M1	1.1 b

Question	Scheme	Marks	AOs
12(a)	$\frac{10 \sin ^{2} \theta-7 \cos \theta+2}{3+2 \cos \theta} \equiv \frac{10\left(1-\cos ^{2} \theta\right)-7 \cos \theta+2}{3+2 \cos \theta}$	M1	1.1b
	$\equiv \frac{12-7 \cos \theta-10 \cos ^{2} \theta}{3+2 \cos \theta}$	A1	1.1b
	$\equiv \frac{(3+2 \cos \theta)(4-5 \cos \theta)}{3+2 \cos \theta}$	M1	1.1b
	$\equiv 4-5 \cos \theta$ *	A1*	2.1
		(4)	
(b)	$4+3 \sin x=4-5 \cos x \Rightarrow \tan x=-\frac{5}{3}$	M1	2.1
	$x=\operatorname{awrt} 121^{\circ}, 301^{\circ}$	A1 A1	$\begin{aligned} & \hline 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
		(3)	
(7 marks)			
Notes			

(a)

M1: Uses the identity $\sin ^{2} \theta=1-\cos ^{2} \theta$ within the fraction
A1: Correct (simplified) expression in just $\cos \theta \frac{12-7 \cos \theta-10 \cos ^{2} \theta}{3+2 \cos \theta}$ or exact equivalent such as $\frac{(3+2 \cos \theta)(4-5 \cos \theta)}{3+2 \cos \theta}$ Allow for $\frac{12-7 u-10 u^{2}}{3+2 u}$ where they introduce $u=\cos \theta$

We would condone mixed variables here.
M1: A correct attempt to factorise the numerator, usual rules. Allow candidates to use $u=\cos \theta$ oe
A1*: A fully correct proof with correct notation and no errors.
Only withhold the last mark for (1) Mixed variable e.g. θ and x 's (2) Poor notation $\cos \theta^{2} \leftrightarrow \cos ^{2} \theta$ or $\sin ^{2}=1-\cos ^{2}$ within the solution.
Don't penalise incomplete lines if it is obvious that it is just part of their working
E.g. $\frac{10 \sin ^{2} \theta-7 \cos \theta+2}{3+2 \cos \theta} \equiv \frac{10\left(1-\cos ^{2} \theta\right)-7 \cos \theta+2}{}=\frac{12-7 \cos \theta-10 \cos ^{2} \theta}{3+2 \cos \theta}$
(b)

M1: Attempts to use part (a) and proceeds to an equation of the form $\tan x=k, \quad k \neq 0$
Condone $\theta \leftrightarrow x$ Do not condone $a \tan x=0 \Rightarrow \tan x=b \Rightarrow x=\ldots$
Alternatively squares $3 \sin x=-5 \cos x$ and uses $\sin ^{2} x=1-\cos ^{2} x$ oe to reach $\sin x=A,-1<A<1$ or $\cos x=B,-1<B<1$
A1: Either $x=$ awrt 121° or 301°. Condone awrt 2.11 or 5.25 which are the radian solutions
A1: Both $x=$ awrt 121° and 301° and no other solutions.
Answers without working, or with no incorrect working in (b).
Question states hence or otherwise so allow
For 3 marks both $x=\operatorname{awrt} 121^{\circ}$ and 301° and no other solutions.
For 1 marks scored SC 100 for either $x=$ awrt 121° or 301°

Question	Scheme	Marks	AOs
9 (a)	$\left(-180^{\circ},-3\right)$	B1	1.1b
		(1)	
(b)	(i) $\left(-720^{\circ},-3\right)$	B1ft	2.2a
	(ii) $\left(-144^{\circ},-3\right)$	B1 ft	2.2a
		(2)	
(c)	Attempts to use both $\tan \theta=\frac{\sin \theta}{\cos \theta}, \sin ^{2} \theta+\cos ^{2} \theta=1$ and solves a quadratic equation in $\sin \theta$ to find at least one value of θ	M1	3.1a
	$3 \cos \theta=8 \tan \theta \Rightarrow 3 \cos ^{2} \theta=8 \sin \theta$	B1	1.1b
	$\begin{aligned} & 3 \sin ^{2} \theta+8 \sin \theta-3=0 \\ & (3 \sin \theta-1)(\sin \theta+3)=0 \end{aligned}$	M1	1.1b
	$\sin \theta=\frac{1}{3}$	A1	2.2a
	awrt 520.5° only	A1	2.1
		(5)	
(8 marks)			

(a)

B1: Deduces that $P\left(-180^{\circ},-3\right)$ or $c=-180^{(0)}, d=-3$
(b)(i)

B1ft: Deduces that $P^{\prime}\left(-720^{\circ},-3\right)$ Follow through on their $(c, d) \rightarrow(4 c, d)$ where d is negative (b)(ii)

B1ft: Deduces that $P^{\prime}\left(-144^{\circ},-3\right)$ Follow through on their $(c, d) \rightarrow\left(c+36^{\circ}, d\right)$ where d is negative
(c)

M1: An overall problem solving mark, condoning slips, for an attempt to

- use $\tan \theta=\frac{\sin \theta}{\cos \theta}$,
- use $\pm \sin ^{2} \theta \pm \cos ^{2} \theta= \pm 1$
- find at least one value of θ from a quadratic equation in $\sin \theta$

B1: Uses the correct identity and multiplies across to give $3 \cos \theta=8 \tan \theta \Rightarrow 3 \cos ^{2} \theta=8 \sin \theta$ oe
M1: Uses the correct identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ to form a 3 TQ in $\sin \theta$ which they attempt to solve using an appropriate method. It is OK to use a calculator to solve this
A1: $\sin \theta=\frac{1}{3}$ Accept sight of $\frac{1}{3}$. Ignore any reference to the other root even if it is "used"
A1: Full method with all identities correct leading to the answer of awrt 520.5° and no other values.

Question	Scheme	Marks	AOs
9	Uses $\sin ^{2} x=1-\cos ^{2} x \Rightarrow 12\left(1-\cos ^{2} x\right)+7 \cos x-13=0$	M1	3.1a
	$\Rightarrow 12 \cos ^{2} x-7 \cos x+1=0$	A1	1.1b
	Uses solution of quadratic to give $\cos x=$	M1	1.1b
	Uses inverse cosine on their values, giving two correct follow through values (see note)	M1	1.1b
	$\Rightarrow x=430.5^{\circ}, 435.5^{\circ}$	A1	1.1b
(5 marks)			
Notes:			
M1: Uses correct identity A1: Correct three term quadratic M1: Solves their three term quadratic to give values for $\cos x$. (The correct answers are $\cos x=\frac{1}{3}$ or $\frac{1}{4}$ but this is not necessary for this method mark)			
M1: Uses inverse cosine on their values, giving two correct follow through values - may be outside the given domain			

Question Number		Scheme	Marks
8. (a)	$\begin{aligned} & \text { Way } 1 \\ & 1-\sin ^{2} x=8 \sin ^{2} x-6 \sin x \\ & \text { E.g. } 9 \sin ^{2} x-6 \sin x=1 \text { or } \\ & 9 \sin ^{2} x-6 \sin x-1=0 \text { or } \\ & 9 \sin ^{2} x-6 \sin x+1=2 \\ & \text { So } 9 \sin ^{2} x-6 \sin x+1=2 \text { or } \\ & (3 \sin x-1)^{2}-2=0 \\ & \text { so }(3 \sin x-1)^{2}=2 \text { or } \\ & 2=(3 \sin x-1)^{2} * \end{aligned}$	Way 2 $2=(3 \sin x-1)^{2}$ gives $9 \sin ^{2} x-6 \sin x+1=2$ so $\sin ^{2} x+8 \sin ^{2} x-6 \sin x+1=2$ so $8 \sin ^{2} x-6 \sin x=1-\sin ^{2} x$ $8 \sin ^{2} x-6 \sin x=\cos ^{2} x *$	B1 M1 A1cso*
(b)	Way 1: $(3 \sin x-1)=(\pm) \sqrt{2}$ $\begin{aligned} & \sin x=\frac{1 \pm \sqrt{2}}{3} \text { or awrt } 0.80 \\ & x=53.58,126.42(\text { or } 126.41), 35 \end{aligned}$	Way 2: Expands $(3 \sin x-1)^{2}=2$ and uses quadratic formula on 3 TQ awrt-0.1381 187.94	M1 A1 dM1A1 A1 (5) [8]
(a)	Way 1 B1: Uses $\cos ^{2} x=1-\sin ^{2} x$ M1: Collects $\sin ^{2} x$ terms to form May be sign slips in the collection A1*: cso This needs an intermedia answer stated but allow $2=(3 \sin x$ Way 2 B1: Needs correct expansion and M1: Collects $1-\sin ^{2} x$ together A1*: Conclusion and no errors see	Notes ee term quadratic or into a suitable completed squa ms. p from 3 term quadratic and no errors in answer and $)^{2}$. If \sin is used throughout instead of $\sin x$ it is A0.	ormat. inted
(b)	M1: Square roots both sides(Way factorization after expanding are M A1: Both correct answers for $\sin x$ dM1: Uses inverse sin to give one $1^{\text {st }} \mathrm{A} 1$: Need two correct angles (al though 126.42 is preferred A1: All four solutions correct (Ex (Premature approximation:- in mark) Do not require degrees symbol for Special case: Working in radian M1A1A0 for the correct $0.94,2.2$	expands and uses quadratic formula (Way 2) Attemp plus and minus). Need not be simplified. e given correct answers awrt) Note that the scheme allows 126.41 in place of lutions in range lose this A mark, but outside range nal three marks lose first A1 then ft other angles for s marks 4, 3.28	at 6.42 nore) ond A

Question Number	Scheme	Marks
13(a)	$\begin{aligned} & 5 \cos x+1=\sin x \tan x \Rightarrow 5 \cos x+1=\sin x \times \frac{\sin x}{\cos x} \\ & 5 \cos ^{2} x+\cos x=\sin ^{2} x \\ & 5 \cos ^{2} x+\cos x=1-\cos ^{2} x \\ & 6 \cos ^{2} x+\cos x-1=0 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{M} 1 \\ & \mathrm{~A} 1^{*} \end{aligned}$
(b)	$\begin{aligned} 6 \cos ^{2} k+\cos k-1=0 \Rightarrow & (3 \cos k-1)(2 \cos k+1)=0 \\ & \Rightarrow \cos k=\frac{1}{3},-\frac{1}{2} \end{aligned}$	(4) M1 A1
	$\begin{aligned} \text { Either } \cos 2 \theta=\frac{1}{3} & \Rightarrow 2 \theta=70.53,289.47 \text { Or } \cos 2 \theta=-\frac{1}{2} \Rightarrow 2 \theta=120,240 \\ & \Rightarrow \theta=35.3^{\circ}, 144.7^{\circ}, 60^{\circ}, 120^{\circ} \end{aligned}$	M1A1M1A1 (6) (10 marks)

(a)

M1 Uses $\tan x=\frac{\sin x}{\cos x}$ in the given equation. You may see it used in the form $\tan x \cos x=\sin x$
A1 A correct equation (not involving fractions) in both sin and cos. Eg $5 \cos ^{2} x+\cos x=\sin ^{2} x$ oe
M1 Replaces $\sin ^{2} x$ by $1-\cos ^{2} x$ to produce a quadratic equation/expression in just $\cos x$
A1* Proceeds correctly to the given answer $6 \cos ^{2} x+\cos x-1=0$
All notation should be consistent and correct including $\cos x$ instead of \cos and $\sin ^{2} x$ instead of $\sin x^{2}$

Question	Scheme	Marks
10. (a)	Use $\frac{\sin x}{\cos x}=\tan x$ to give $8 \sin x=-3 \cos ^{2} x$ Use $\cos ^{2} x=1-\sin ^{2} x$ i.e. $8 \sin x=-3\left(1-\sin ^{2} x\right)$ So $8 \sin x=-3+3 \sin ^{2} x$ and $3 \sin ^{2} x-8 \sin x-3=0$ * Solves the three term quadratic " $3 \sin ^{2} x-8 \sin x-3=0$ " $\begin{aligned} & \text { So } \left.(\sin x)=-\frac{1}{3} \quad \text { (or } 3\right) \\ & \qquad \begin{aligned} (2 \theta) & =-19.47 \text { or } 199.47 \text { or } 340.53 \\ \theta & =99.7,170.3,279.7 \text { or } 350.3 \end{aligned} \end{aligned}$	M1 M1 A1 * [3] M1 A1 dM1 A1, A1 [5]
		8 marks
	Notes	
(a) M1: Use $\frac{\sin x}{\cos x}=\tan x$ to give $8 \sin x=-3 \cos ^{2} x$ or equivalent M1: Use $\cos ^{2} x=1-\sin ^{2} x$ i.e. $8 \sin x=-3\left(1-\sin ^{2} x\right)$ May also be seen $8 \tan x=-3 \cos x \Rightarrow 8 \tan x=-3 \sqrt{1-\sin ^{2} x}$ A1: Proceeds to given answer with no errors. (This is a given answer so do not tolerate bracketing or notation errors such as $\cos ^{2} x$ written as $\cos x^{2}$ or $\sin x$ appearing as \sin) (b) M1: Solving quadratic by usual methods (see notes). If the formula is quoted it must be correct but allow solutions from calculators. A1: You only need to see $-1 / 3$. This is an intermediate answer so condone $-1 / 3$ appearing as awrt -0.333 Condone errors on the lhs so accept for this mark $x / a / \theta=-\frac{1}{3}, \sin x=-\frac{1}{3}, \sin 2 x=-\frac{1}{3}$ dM1: Uses inverse sine to obtain an answer for 2θ. This may appear as answers for x. The only stipulation is that invsin $k,\|k\|<1$ It is dependent upon seeing a correct method of solving their quadratic Accept answers rounding to 1 dp for 2θ e.g. awrt -19.5 or 199.5 or 340.5 . It may also be implied by a correct answer for θ e.g. awrt -9.7 or 99.7 or 170.2 A1: Two correct, awrt one dp $\theta=99.7,170.3,279.7$ or 350.3 A1: All four correct, awrt one dp $\theta=99.7,170.3,279.7$ or 350.3		

Question Number	Scheme	Marks
8(a)	$\left(\frac{5+\sin \theta}{3 \cos \theta}=2 \cos \theta\right) \Rightarrow 5+\sin \theta=6 \cos ^{2} \theta$	M1
	$\Rightarrow 5+\sin \theta=6\left(1-\sin ^{2} \theta\right) \Rightarrow 6 \sin ^{2} \theta+\sin \theta-1=0$	dM1A1* (3)
(b)	$6 \sin ^{2} \theta+\sin \theta-1=0 \Rightarrow(3 \sin \theta-1)(2 \sin \theta+1)=0$	M1
	$\begin{gathered} (\sin \theta)=+\frac{1}{3},-\frac{1}{2} \\ \theta=19.5^{\circ},-30^{\circ} \end{gathered}$	A1 $\mathrm{dM} 1, \mathrm{~A} 1$
		(7 marks)

(a)

M1 Attempts to cross multiply to form an equation in the form $5+\sin \theta=A \cos ^{2} \theta$
dM1 Dependent upon previous M. For using $\cos ^{2} \theta= \pm 1 \pm \sin ^{2} \theta$ to get an equation in just $\sin \theta$
A1* This is a given answer. All aspects must be correct.
Mixed variables, say x 's and θ^{\prime} s would lose this mark.
An otherwise correct solution with $\cos ^{2} \theta$ or $(\cos \theta)^{2}$ written as $\cos \theta^{2}$ would also be M1 dM1 A0
(b)

M1 Attempts to factorise, usual rules. Accept answers by formula or just written down from a calculator. Accept answers/factors given in terms of x for this mark
A1 For the values $+\frac{1}{3},-\frac{1}{2}$
These do not have to be simplified and can be implied by correct answers for θ
dM1 Calculates at least one value of θ from their $\sin \theta^{\prime}$.
It is dependent upon the previous M . You may have to check with a calculator.
This may be implied by either $\theta=19.5^{\circ},-30^{\circ}$ from a correct quadratic
A1 Both $\theta=19.5^{\circ}$ and -30° with this accuracy and no additional solutions inside the range.
Condone the answer $\theta=19.5^{\circ}$ and -30.0°
Ignore any solutions outside the range.

Question Number	Scheme Marks
	$7 \sin x=3 \cos x$
8(a)	$(\tan x=) \frac{3}{7} \quad$ B1
	[1]
(b)	$\tan (2 \theta+30)=\frac{3}{7} \quad$ B1ft
	$\tan ^{-11} \frac{3}{7}{ }^{\prime \prime}(\alpha) \quad$ M1
	One of $\theta=$ awrt 87 or awrt 177 or awrt 267 or awrt 357
	Follow through any of their final θ s for $\theta \pm 90 n$ within range ${ }^{\text {a }}$ A1ft
	[5]
	6 marks
	Notes
(a)	B1: $(\tan x=) \frac{3}{7}$ or exact equivalent so accept recurring decimal $(0.428571 \ldots)$ but not rounded answer
(b)	B1ft: Correct equation as shown or follow through their value for $\tan x$ from part (a). Must be $\tan (2 \theta+30)=\ldots$ but $2 \theta+30$ may be implied later by an attempt to subtract 30 and then divide by 2 . If the processing is unclear or incorrect and $2 \theta+30$ is never seen, score B 0 here. M1: Finds arctan of their $\frac{3}{7}$. Could be implied by their value e.g. 23.19.. or just $\tan ^{-12} \frac{3}{7}$ A1: For one of either $\theta=$ awrt 87 or awrt 177 or awrt 267 or awrt 357 A1ft: Follow through any of their final answers to which an integer multiple of 90 has been added or subtracted to give another solution in range but not for adding a multiple of $\mathbf{9 0}$ to just $\boldsymbol{\alpha}$. A1: For all 4 correct answers to the required accuracy as stated in the scheme. Ignore extra answers outside range but lose last A mark for extra answers inside range.

Question Number	Scheme	Marks
13. (i)	$\begin{aligned} & (\sin x+\cos x)(1-\sin x \cos x) \equiv \sin x+\cos x-\sin ^{2} x \cos x-\cos ^{2} x \sin x \\ & (\sin x+\cos x)(1-\sin x \cos x) \equiv \sin x+\cos x-\left(1-\cos ^{2} x\right) \cos x-\left(1-\sin ^{2} x\right) \sin x \\ & (\sin x+\cos x)(1-\sin x \cos x) \equiv \sin ^{3} x+\cos ^{3} x \end{aligned} \quad * \quad .$	$\begin{gathered} 1^{\text {st }} \mathrm{M} 1 \\ 2^{\text {nd }} \mathrm{M} 1 \\ \mathrm{~A} 1 * \end{gathered}$
Alt I (i)	$\begin{aligned} & \text { Use LHS }=(\sin x+\cos x)\left(\sin ^{2} x+\cos ^{2} x-\sin x \cos x\right) \\ & \equiv \sin ^{3} x+\sin x \cos ^{2} x-\sin ^{2} x \cos x+\sin ^{2} x \cos x-\cos ^{2} x \sin x+\cos ^{3} x \\ & (\sin x+\cos x)(1-\sin x \cos x) \equiv \sin ^{3} x+\cos ^{3} x \end{aligned}$	$\begin{array}{\|l} \quad[3] \\ 2^{\text {nd }} \mathrm{M} 1 \\ 1^{\text {st }} \mathrm{M} 1 \\ \mathrm{~A} 1 \end{array} \quad \text { [3] }$
Alt II (i)	$\begin{aligned} \text { Use RHS } & \equiv \sin ^{3} x+\cos ^{3} x=(\sin x+\cos x)\left(\sin ^{2} x+\cos ^{2} x-\sin x \cos x\right) \\ & =(\sin x+\cos x)(1-\sin x \cos x) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 A1 } \\ & \\ & \end{aligned}$
(ii)	Use $\tan \theta=\frac{\sin \theta}{\cos \theta}$ to give $3 \sin \theta=\frac{\sin \theta}{\cos \theta}$ $\cos \theta=\frac{1}{3} \quad$ and $\quad \sin \theta=0$ So $\theta=70.5,289.5$, or 0 and 180 (do not require degrees symbol)	$\begin{aligned} & \text { M1 } \\ & \text { A1 A1 } \\ & \text { M1 A1, } \\ & \underline{B 1} \quad[6] \\ & \text { 9 marks } \end{aligned}$

(i)

M1 Expands bracket to form 4 terms - condone sign slips but terms must be correct.
Allow $\sin x \sin x \cos x$ for $\sin ^{2} x \cos x \quad$ and condone $\cos x^{2}$ for $\cos ^{2} x$
M1 Replaces $\sin ^{2} x$ by $\left(1-\cos ^{2} x\right)$ and $\cos ^{2} x$ by $\left(1-\sin ^{2} x\right)$
Condone $\cos x^{2}$ for $\cos ^{2} x$. This mark could be seen proceeding the line $\sin x\left(1-\cos ^{2} x\right)+\cos x\left(1-\sin ^{2} x\right)$.
A1* Completes proof with no errors. This is a given answer. Withhold this mark if poor notation or mixed
variables are seen. Examples would be $\sin x+\cos x-\left(1-\cos ^{2}\right) \cos x-\left(1-\sin ^{2} \theta\right) \sin x$
Don't accept for the $\mathrm{A} 1 * \cos x^{2}$ for $\cos ^{2} x$ unless it is clearly bracketed.
(ii)

M1 Uses $\tan \theta=\frac{\sin \theta}{\cos \theta}$ or equivalent to give $3 \sin \theta=\frac{\sin \theta}{\cos \theta}$ or $3 \cos \theta=1$
A1 Achieves $\cos \theta=\frac{1}{3}$
A1 Achieves $\sin \theta=0$
M1 For $\arccos \left(\right.$ their $\left.\frac{1}{3}\right)$ leading to one value of θ to the nearest degree. (You may need a calculator to check this)
A1 For $\theta=$ awrt $70.5^{\circ}, 289.5^{\circ}$. This mark is withheld for extra solutions of $\arccos \left(\frac{1}{3}\right)$ in the range.
Ignore extra solutions outside the range.
B1 $\theta=0,180^{\circ}$ This mark is withheld for extra solutions arising from $\sin \theta=0$ in the range. Ignore extra solutions outside the range.
Note: Students who proceed from $\frac{\sin \theta}{\tan \theta}=\cos \theta$ can score M1A1A0M1A1B0 for 4 out of 6
Radian solutions, withhold only the final A1 mark. For your information solutions are awrt $2 \mathrm{dp} 1.23,5.05,0,3.14=(\mathrm{pi})$

(a)

B1 $\quad h_{\max }=6.2(\mathrm{~m})$. The units are not important.
M1 Solves either $30 t-40=0 \Rightarrow t=$.. or $30 t-40=360 \Rightarrow t=\ldots$. It may be implied by $t=\frac{40}{30}, \frac{400}{30}$ oe
A1 $\quad t=\frac{40}{30}$, or exact equivalents like $\frac{4}{3}, 1.3$.
A1 1:20am or $(01: 20)$ The exact time of day is required. $1: 20$ or $1: 20 \mathrm{pm}$ is incorrect.
Special case: Candidates who solve this part by differentiation can be allowed full marks
B1 $\quad h_{\max }=6.2(m)$. The units are not important
M1 For $h^{\prime}=A \sin (30 t-40)^{\circ}=0 \Rightarrow t=$. .
A1 $t=\frac{40}{30}$, or exact equivalents like $\frac{4}{3}, 1.3$.
A1 1:20am Accept $01: 20$ or 0120 The exact time of day is required. $1: 20$ or $1: 20 \mathrm{pm}$ is incorrect
(b)

M1 Sets $h=3$ and proceeds to $\cos (30 t-40)^{\circ}=$.. Accept inequalities in place of $=$ sign
A1 Proceeds by taking invcos to reach either $30 t-40=$ awrt 106.3 , or $30 t-40=$ awrt 253.7
Accept inequalities in place of $=$ sign. This may be implied by a correct answer for $t=$ awrt 4.9, (9.8)
A1 One value for t correct. Accept either awrt $1 \mathrm{dp} t=4.9$ or 9.8
M1 For the correct method of finding a second value of t.
Accept $30 t-40=(360-\alpha) \Rightarrow t=\ldots$ where α is their principal value
A1 Both values of t correct awrt $1 \mathrm{dp} . t=4.9$ and 9.8 . Ignore any values where $t \geqslant 12$ but withhold this mark for extra values in the range. These may be implied by 293 minutes and 587 minutes
A1 cso Both 04:53 and 09:47. Accept both 0453 and 0947
Accept 4:53 and 9:47 without the am as the question requires morning times.
Accept 293 and 587 minutes
If they state between 0 and 293 minutes and 587 and ... minutes it is A0

Question Number	Scheme	Marks
7. (a)	$12 \sin ^{2} x-\cos x-11=0$ $12\left(1-\cos ^{2} x\right)-\cos x-11=0 \text { and so } 12 \cos ^{2} x+\cos x-1=0 \text { * }$ Solve quadratic to obtain $(\cos x)=\frac{1}{4}$ or $-\frac{1}{3}$ $x=75.5,109.5,250.5,284.5$ Answers in radians (see notes)	B1 * [1] M1 A1 M1 A1cao [4]
		5 marks
	Notes	
(a) (b)	B1: Replaces $\sin ^{2} x$ by $\left(1-\cos ^{2} x\right)$ - or replace 11 by $11\left(\sin ^{2} x+\cos ^{2} x\right)$ and no errors seen to give printed answer including $=0$ M1: Solving the correct quadratic equation (allow sign errors), by the usual methods (see notes) - implied by correct answers A1: Both answers needed - allow 0.25 and awrt -0.33 M1 Uses inverse cosine to obtain two correct values for x for their values of $\cos x$ e.g. (75.5 and 109.4 or 109.5) or (75.5 and 284.5) or (109.5 and 250.5) - allow truncated answers or awrt here. A1: All four correct - allow awrt. Ignore extra answers outside range but lose last A mark for extra answers inside range Answers in radians are 1.3, 5.0, 1.9 and 4.4 Allow M1A0 for two or more correct asnwers	

