www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs	
12 (i)	Uses $\cos^2 \theta = 1 - \sin^2 \theta$ $5 \cos^2 \theta$ for $\theta \Rightarrow 5 \sin^2 \theta + 6 \sin \theta = 5$	M1	1.2	
	$\Rightarrow \sin \theta = \frac{-3 + \sqrt{34}}{5} \Rightarrow \theta = \dots$	dM1	3.1a	
	$\Rightarrow \theta = 34.5^{\circ}, 145.5^{\circ}, 394.5^{\circ}$	A1 A1	1.1b 1.1b	
		(5)		
(ii) (a)	 One of They cancel by sin x (and hence they miss the solution sin x = 0 ⇒ x = 0) They do not find all the solutions of cos x = 3/5 (in the given range) or they missed the solution x = -53.1° 	B1	2.3	
	Both of the above	B1	2.3	
		(2)		
(ii) (b)	Sets $5\alpha + 40^\circ = 720^\circ - 53.1^\circ$	M1	3.1a	
	$\alpha = 125^{\circ}$	A1	1.1b	
		(2)		
	N T /	()	marks)	
(i)	INOTES			
M1: Uses c	$\cos^2 \theta = 1 - \sin^2 \theta$ to form a 3TQ in $\sin \theta$			
A1: Correct	$3TQ=0 5\sin^2\theta + 6\sin\theta - 5 = 0$			
dM1: Solve $\cos^2 \theta = \pm 1$:	es their 3TQ in $\sin \theta$ to produce one value for θ . It is dependent up $\pm \sin^2 \theta$	on having	used	
A1: Two of	awrt $\theta = 34.5^{\circ}, 145.5^{\circ}, 394.5^{\circ}$ (or if in radians two of awrt 0.60, 2	.54, 6.89)		
A1: All three	A1: All three of awrt $\theta = 34.5^{\circ}, 145.5^{\circ}, 394.5^{\circ}$ and no other values			
(i) (a)				
See scheme				
(ii)(b)				
M1: Sets $5\alpha + 40^\circ = 666.9^\circ$ o.e.				
A1: awrt $\alpha = 125^{\circ}$				

B1: For 512 **A1:** For -144x **A1:** For $+ 18x^2$ Allow even following $\left(+\frac{x}{16}\right)^2$ Listing is acceptable for all 4 marks **(b) M1:** For setting their 512a = 128 and proceeding to find a value for *a*. Alternatively they could substitute x = 0 into both sides of the identity and proceed to find a value for *a*. **A1 ft:** $a = \frac{1}{4}$ oe Follow through on $\frac{128}{\text{their 512}}$ **(c) M1:** Condone $512b \pm 144 \times a = 36$ following through on their 512, their -144 and using their value of "a" to find a value for "b" **A1:** $b = \frac{9}{64}$ oe

Question	Scheme	Marks	AOs
12 (a)	$4\cos\theta - 1 = 2\sin\theta \tan\theta \Longrightarrow 4\cos\theta - 1 = 2\sin\theta \times \frac{\sin\theta}{\cos\theta}$	M1	1.2

	$\Rightarrow 4\cos^2\theta - \cos\theta = 2\sin^2\theta \text{oe}$	A1	1.1b
	$\Rightarrow 4\cos^2\theta - \cos\theta = 2\left(1 - \cos^2\theta\right)$	M1	1.1b
	$6\cos^2\theta - \cos\theta - 2 = 0 *$	A1*	2.1
		(4)	
(b)	For attempting to solve given quadratic	M1	1.1b
	$\left(\cos 3x\right) = \frac{2}{3}, -\frac{1}{2}$	B1	1.1b
	$x = \frac{1}{3}\arccos\left(\frac{2}{3}\right) \text{ or } \frac{1}{3}\arccos\left(-\frac{1}{2}\right)$	M1	1.1b
	$x = 40^{\circ}, 80^{\circ}, \text{ awrt } 16.1^{\circ}$	A1	2.2a
		(4)	
		(8	marks)
	Notes		
(a) M1: Recall	and use the identity $\tan \theta = \frac{\sin \theta}{\cos \theta}$ Note that it cannot just	be stated.	
A1: $4\cos^2\theta - \cos\theta = 2\sin^2\theta$ oe. This is scored for a correct line that does not contain any fractional terms. It may be awarded later in the solution after the identity $1 - \cos^2\theta = \sin^2\theta$ has been used Eg for $\cos\theta(4\cos\theta - 1) = 2(1 - \cos^2\theta)$ or equivalent			
M1: Attem A1*: Proce bracketing. (b)	pts to use the correct identity $1 - \cos^2 \theta = \sin^2 \theta$ to form an equation is reds to correct answer through rigorous and clear reasoning. No error For example $\sin^2 \theta = \sin \theta^2$ is an error in notation	in just cos s in notatio	heta on or
M1. For at	tempting to solve the given quadratic " $6v^2 - v - 2 = 0$ " where v could	d be	
$\cos 3x, \cos bd = +2$	<i>x</i> , or even just <i>y</i> . When factorsing look for $(ay+b)(cy+d)$ where <i>c</i>	$ac = \pm 6$ and	d
This may be implied by the correct roots (even award for $\left(y \pm \frac{2}{3}\right)\left(y \pm \frac{1}{2}\right)$), an attempt at			
factorising, an attempt at the quadratic formula, an attempt at completing the square and even \pm the correct roots.			
B1: For the roots $\frac{2}{3}, -\frac{1}{2}$ oe			
M1: Finds at least one solution for x from $\cos 3x$ within the given range for their $\frac{2}{3}, -\frac{1}{2}$			
A1: $x = 40^{\circ}$, 80°, awrt 16.1° only Withhold this mark if there are any other values even if they are outside the range. Condone 40 and 80 appearing as 40.0 and 80.0			

Question	Scheme	Marks	AOs
13(a)	For a correct equation in p or q $p = 10^{4.8}$ or $q = 10^{0.05}$	M1	1.1b

	www.yesterdaysmathsexam.com		
Question	Scheme	Marks	AOs
12(a)	$\frac{10\sin^2\theta - 7\cos\theta + 2}{3 + 2\cos\theta} = \frac{10(1 - \cos^2\theta) - 7\cos\theta + 2}{3 + 2\cos\theta}$	M1	1.1b
	$=\frac{12-7\cos\theta-10\cos^2\theta}{3+2\cos\theta}$	A1	1.1b
	$\equiv \frac{(3+2\cos\theta)(4-5\cos\theta)}{3+2\cos\theta}$	M1	1.1b
	$\equiv 4 - 5\cos\theta *$	A1*	2.1
		(4)	
(b)	$4+3\sin x = 4-5\cos x \Longrightarrow \tan x = -\frac{5}{3}$	M1	2.1
	$x = awrt 121^\circ, 301^\circ$	A1 A1	1.1b 1.1b
		(3)	7 marks)
	Notes	(7 mai K5j
M1: Uses the identity $\sin^2 \theta = 1 - \cos^2 \theta$ within the fraction A1: Correct (simplified) expression in just $\cos \theta = \frac{12 - 7\cos\theta - 10\cos^2\theta}{3 + 2\cos\theta}$ or exact equivalent such as $\frac{(3 + 2\cos\theta)(4 - 5\cos\theta)}{3 + 2\cos\theta}$ Allow for $\frac{12 - 7u - 10u^2}{3 + 2u}$ where they introduce $u = \cos\theta$ We would condone mixed variables here. M1: A correct attempt to factorise the numerator, usual rules. Allow candidates to use $u = \cos\theta$ oe A1*: A fully correct proof with correct notation and no errors. Only withhold the last mark for (1) Mixed variable e.g. θ and x's (2) Poor notation $\cos\theta^2 \leftrightarrow \cos^2 \theta$ or $\sin^2 = 1 - \cos^2$ within the solution. Don't penalise incomplete lines if it is obvious that it is just part of their working E.g. $\frac{10\sin^2\theta - 7\cos\theta + 2}{3 + 2\cos\theta} = \frac{10((1 - \cos^2\theta) - 7\cos\theta + 2)}{3 + 2\cos\theta} = \frac{12 - 7\cos\theta - 10\cos^2\theta}{3 + 2\cos\theta}$			
 M1: Attempts to use part (a) and proceeds to an equation of the form tan x = k, k ≠ 0 Condone θ↔ x Do not condone a tanx = 0 ⇒ tanx = b ⇒ x = Alternatively squares 3sin x = -5 cos x and uses sin² x = 1 - cos² x oe to reach sin x = A, -1 < A < 1 or cos x = B, -1 < B < 1 A1: Either x = awrt 121° or 301°. Condone awrt 2.11 or 5.25 which are the radian solutions A1: Both x = awrt 121° and 301° and no other solutions. Answers without working, or with no incorrect working in (b). Question states hence or otherwise so allow For 3 marks both x = awrt 121° and 301° and no other solutions 			

For 1 marks scored SC 100 for either $x = awrt 121^{\circ} \text{ or } 301^{\circ}$

www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
9 (a)	(-180°,-3)	B1	1.1b
		(1)	
(b)	(i) $(-720^\circ, -3)$	B1ft	2.2a
	(ii) (-144°,-3)	B1 ft	2.2a
		(2)	
(c)	Attempts to use both $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\sin^2 \theta + \cos^2 \theta = 1$ and solves	M1	3.1a
	a quadratic equation in $\sin \theta$ to find at least one value of θ		
	$3\cos\theta = 8\tan\theta \Longrightarrow 3\cos^2\theta = 8\sin\theta$	B1	1.1b
	$3\sin^2\theta + 8\sin\theta - 3 = 0$	M1	1 1b
	$(3\sin\theta - 1)(\sin\theta + 3) = 0$	1011	1.10
	$\sin\theta = \frac{1}{3}$	A1	2.2a
	awrt 520.5° only	A1	2.1
		(5)	
		(3	8 marks)

(a)

B1: Deduces that $P(-180^{\circ}, -3)$ or $c = -180^{(\circ)}, d = -3$

(b)(i)

B1ft: Deduces that $P'(-720^\circ, -3)$ Follow through on their $(c, d) \rightarrow (4c, d)$ where d is negative (b)(ii)

B1ft: Deduces that $P'(-144^\circ, -3)$ Follow through on their $(c, d) \rightarrow (c+36^\circ, d)$ where d is negative

(c)

- M1: An overall problem solving mark, condoning slips, for an attempt to
 - use $\tan \theta = \frac{\sin \theta}{\cos \theta}$,
 - use $\pm \sin^2 \theta \pm \cos^2 \theta = \pm 1$
 - find at least one value of θ from a quadratic equation in $\sin \theta$
- **B1:** Uses the correct identity and multiplies across to give $3\cos\theta = 8\tan\theta \Rightarrow 3\cos^2\theta = 8\sin\theta$ oe
- M1: Uses the correct identity $\sin^2 \theta + \cos^2 \theta = 1$ to form a 3TQ in $\sin \theta$ which they attempt to solve using an appropriate method. It is OK to use a calculator to solve this
- A1: $\sin \theta = \frac{1}{3}$ Accept sight of $\frac{1}{3}$. Ignore any reference to the other root even if it is "used"
- A1: Full method with all identities correct leading to the answer of awrt 520.5° and no other values.

Ques	tion	Scheme	Marks	AOs
9)	Uses $\sin^2 x = 1 - \cos^2 x \Longrightarrow 12(1 - \cos^2 x) + 7\cos x - 13 = 0$	M1	3.1a
		$\Rightarrow 12\cos^2 x - 7\cos x + 1 = 0$	A1	1.1b
		Uses solution of quadratic to give $\cos x =$	M1	1.1b
		Uses inverse cosine on their values, giving two correct follow through values (see note)	M1	1.1b
		$\Rightarrow x = 430.5^\circ, 435.5^\circ$	A1	1.1b
			(5 n	narks)
Notes	s:			
M1:	Uses	correct identity		
A1:	Corr	ect three term quadratic		
M1:	Solves their three term quadratic to give values for $\cos x$. (The correct answers are $\cos x = \frac{1}{3}$ or $\frac{1}{4}$ but this is not necessary for this method mark)			
M1:	Uses	s inverse cosine on their values, giving two correct follow through value	es - may b	e

outside the given domain

A1: Two correct answers in the given domain

Ouestion			
Number		Scheme	Marks
8. (a)	Way 1	Way 2	
	$1-\sin^2 x = 8\sin^2 x - 6\sin x$	$2 = (3\sin x - 1)^2 \text{ gives } 9\sin^2 x - 6\sin x + 1 = 2$	B1
		so $\sin^2 x + 8\sin^2 x - 6\sin x + 1 = 2$	
	E.g. $9\sin^2 x - 6\sin x = 1$ or		
	$9\sin^2 x - 6\sin x - 1 = 0 \text{or}$	so $8\sin^2 x - 6\sin x = 1 - \sin^2 x$	M1
	$9\sin^2 x - 6\sin x + 1 = 2$		
	So $9\sin^2 x - 6\sin x + 1 = 2$ or		
	$(3\sin x - 1)^2 - 2 = 0$	$9 \sin^2 y$, $6 \sin y = \cos^2 y$ *	A 1050*
	so $(3\sin x - 1)^2 = 2$ or	$\cos \sin x - \cos \pi x = \cos x^{-1}$	AICSU
	$2 = (3\sin x - 1)^2 *$		
			(3)
(b)	Way 1: $(3\sin x - 1) = (\pm)\sqrt{2}$	Way 2: Expands $(3\sin x - 1)^2 = 2$ and uses quadratic formula on 3TQ	M1
	$\sin x = \frac{1 \pm \sqrt{2}}{1 \pm \sqrt{2}}$ or awrt 0 8047 and	d awrt -0.1381	A1
	3		
	x = 53.58, 126.42 (or 126.41), 352.06	187.94	A1
			(5)
		Notes	[8]
(a)	Way 1	10005	
	B1: Uses $\cos^2 x = 1 - \sin^2 x$		
	M1: Collects $\sin^2 x$ terms to form a th May be sign slips in the collection of te A1* cso This needs an intermediate sto	ree term quadratic or into a suitable completed square erms.	format. rinted
	answer stated but allow $2 = (3 \sin x - $	$1)^2$. If sin is used throughout instead of sinx it is A0.	
	Way 2	,	
	B1: Needs correct expansion and split	t	
	M1: Collects $1 - \sin^2 x$ together		
	AT Conclusion and no errors seen		
(b)	M1: Square roots both sides(Way 1), or factorization after expanding are M0. A1: Both correct answers for sinx (need M1: Uses inverse sing to give one of the	r expands and uses quadratic formula (Way 2) Attempt d plus and minus). Need not be simplified.	s at
	1^{st} A1: Need two correct angles (allow	awrt) Note that the scheme allows 126.41 in place of 1	26.42
	though 126.42 is preferred		,
	A1: All four solutions correct (Extra so (Premature approximation :– in the fi	nal three marks lose first A1 then ft other angles for se	gnore) cond A
	Do not require degrees symbol for the	marks	
	Special case: Working in radians	4.2.20	
	MIAIA0 for the <i>correct</i> 0.94, 2.21, 6.1	4, 5.28	

Question Number	Scheme	Marks
13(a)	$5\cos x + 1 = \sin x \tan x \Longrightarrow 5\cos x + 1 = \sin x \times \frac{\sin x}{\cos x}$	M1
	$5\cos^2 x + \cos x = \sin^2 x$	A1
	$5\cos^2 x + \cos x = 1 - \cos^2 x$	M1
	$6\cos^2 x + \cos x - 1 = 0$	A1*
		(4)
(b)	$6\cos^2 k + \cos k - 1 = 0 \Longrightarrow (3\cos k - 1)(2\cos k + 1) = 0$	M1
	$\Rightarrow \cos k = \frac{1}{3}, -\frac{1}{2}$	A1
	Either $\cos 2\theta = \frac{1}{3} \Rightarrow 2\theta = 70.53, 289.47$ Or $\cos 2\theta = -\frac{1}{2} \Rightarrow 2\theta = 120, 240$	
	$\Rightarrow \theta = 35.3^{\circ}, 144.7^{\circ}, 60^{\circ}, 120^{\circ}$	M1A1M1A1
		(6) (10 marks)

(a)

M1 Uses $\tan x = \frac{\sin x}{\cos x}$ in the given equation. You may see it used in the form $\tan x \cos x = \sin x$

- A1 A correct equation (not involving fractions) in both sin and cos. Eg $5\cos^2 x + \cos x = \sin^2 x$ oe
- M1 Replaces $\sin^2 x$ by $1 \cos^2 x$ to produce a quadratic equation/expression in just $\cos x$

A1* Proceeds correctly to the given answer $6\cos^2 x + \cos x - 1 = 0$ All notation should be consistent and correct including $\cos x$ instead of $\cos x$ and $\sin^2 x$ instead of $\sin x^2$

Que	estion	Scheme	Marks
10.	(a)	Use $\frac{\sin x}{\cos x} = \tan x$ to give $8\sin x = -3\cos^2 x$	M1
		$\cos x$ Use $\cos^2 x = 1$, $\sin^2 x$, i.e. $8\sin x = -3(1 + \sin^2 x)$	M1
		$-5(1-\sin x)$	A1 *
		So $8\sin x = -3 + 3\sin^2 x$ and $3\sin^2 x - 8\sin x - 3 = 0*$	[3]
	(b)	Solves the three terms quedratic $(2, 2, 2, 0)$ $(2, 0)$	M1
		Solves the three term quadratic $3\sin^2 x - 8\sin x - 3 = 0$	IVI I
		So $(\sin x) = -\frac{1}{3}$ (or 3)	A1
		$(2\theta) = -19.47$ or 199.47 or 340.53	dM1
		$\theta = 99.7, 170.3, 279.7 \text{ or } 350.3$	A1, A1
			[5]
			8 marks
		Notes	
(a)			
M1:	Use <u>si</u>	$\frac{\ln x}{\ln x} = \tan x$ to give $8 \sin x = -3 \cos^2 x$ or equivalent	
M1•		$\cos x$ $\cos^2 x = 1 - \sin^2 x$ i.e. $8 \sin x = -3(1 - \sin^2 x)$	
1711.	May al	$s_{1} = 1 - \sin x + 1.0$	
A1:	Procee	$x = -5\sqrt{1-\sin^2 x}$ and $x = -5\sqrt{1-\sin^2 x}$	
	(This	is a given answer so do not tolerate bracketing or notation errors such as $\cos^2 x$ written	
	as cos	x^2 or sin x appearing as sin)	
(b) M1.	Solvin	a guadratia by usual matheda (gao notas)	
IVII:	If the f	ormula is quoted it must be correct but allow solutions from calculators	
A1:	You o	nly need to see $-\frac{1}{2}$.	
	This is	an intermediate answer so condone $-\frac{1}{2}$ appearing as awrt -0.333	
	11115 15	an intermediate answer so condone $-\frac{7}{3}$ appearing as a write 0.555	
	Condo	ne errors on the lhs so accept for this mark $x/a/\theta = -\frac{1}{3}$, $\sin x = -\frac{1}{3}$, $\sin 2x = -\frac{1}{3}$	
dM1	: Uses i	inverse sine to obtain an answer for 2θ .	
	This n	hay appear as answers for x. The only stipulation is that invisin k , $ k < 1$	
	It is de	ependent upon seeing a correct method of solving their quadratic	
	Accep	t answers rounding to 1 dp for 2θ e.g. awrt -19.5 or 199.5 or 340.5.	
۸1.	It may	also be implied by a correct answer for θ e.g. awrt -9.7 or 99.7 or $1/0.2$	
		$\frac{1}{1000} = \frac{1}{1000} = 1$	

Question Number	Scheme	Marks
8(a)	$\left(\frac{5+\sin\theta}{3\cos\theta}=2\cos\theta\right) \Longrightarrow 5+\sin\theta=6\cos^2\theta$	M1
	$\Rightarrow 5 + \sin\theta = 6(1 - \sin^2\theta) \Rightarrow 6\sin^2\theta + \sin\theta - 1 = 0$	dM1A1* (3)
(b)	$6\sin^2\theta + \sin\theta - 1 = 0 \Longrightarrow (3\sin\theta - 1)(2\sin\theta + 1) = 0$	M1
	$(\sin\theta) = +\frac{1}{2}, -\frac{1}{2}$	A1
	$\theta = 19.5^{\circ}, -30^{\circ}$	dM1,A1
		(4) (7 marks)

(a)

M1 Attempts to cross multiply to form an equation in the form $5 + \sin \theta = A \cos^2 \theta$

- dM1 Dependent upon previous M. For using $\cos^2 \theta = \pm 1 \pm \sin^2 \theta$ to get an equation in just $\sin \theta$
- A1* This is a given answer. All aspects must be correct. Mixed variables, say x's and θ 's would lose this mark. An otherwise correct solution with $\cos^2 \theta$ or $(\cos \theta)^2$ written as $\cos \theta^2$ would also be M1 dM1 A0

(b)

- M1 Attempts to factorise, usual rules. Accept answers by formula or just written down from a calculator. Accept answers/factors given in terms of *x* for this mark
- A1 For the values $+\frac{1}{3}, -\frac{1}{2}$

These do not have to be simplified and can be implied by correct answers for θ Calculates at least one value of θ from their 'sin θ '.

- dM1 Calculates at least one value of θ from their'sin θ '. It is dependent upon the previous M. You may have to check with a calculator. This may be implied by either $\theta = 19.5^{\circ}, -30^{\circ}$ from a correct quadratic
- A1 Both $\theta = 19.5^{\circ}$ and -30° with this accuracy and no additional solutions inside the range. Condone the answer $\theta = 19.5^{\circ}$ and -30.0° Ignore any solutions outside the range.

Question Number	Scheme	Marks
	$7\sin x = 3\cos x$	
8(a)	$(\tan x =)\frac{3}{7}$	B1
		[1]
(b)	$\tan\left(2\theta+30\right)=\frac{3}{7}$	B1ft
	$\tan^{-1}\frac{3}{7}$ " (α)	M1
	One of θ = awrt 87 or awrt 177 or awrt 267 or awrt 357	A1
	Follow through any of their final θ 's for $\theta \pm 90n$ within range	Alft
	All of $\theta = 86.6, 176.6, 266.6, 356.6$	A1
		[5]
		6 marks
	Notes	
(a)	B1: $(\tan x =)\frac{3}{7}$ or exact equivalent so accept recurring decimal (0.428571) but not round	led answer
(b)	B1ft: Correct equation as shown or follow through their value for tan x from part (a). Must be	e
	$\tan(2\theta+30) = \dots$ but $2\theta+30$ may be implied later by an attempt to subtract 30 and then d	ivide by 2.
	If the processing is unclear or incorrect and $2\theta + 30$ is never seen, score B0 here.	
	M1: Finds arctan of their $\frac{3}{7}$. Could be implied by their value e.g. 23.19 or just $\tan^{-1} \frac{3}{7}$ "	
	A1: For one of either θ = awrt 87 or awrt 177 or awrt 267 or awrt 357	
	A1ft: Follow through any of their final answers to which an integer multiple of 90 has been a	added or
	subtracted to give another solution in range but not for adding a multiple of 90 to just α .	
	A1: For all 4 correct answers to the required accuracy as stated in the scheme. Ignore ex	tra answers
	outside range but loss last A mark for extre answers inside range	

Ques Num	stion iber	Scheme	Marks	
13.	(i)	$(\sin r + \cos r)(1 - \sin r \cos r) = \sin r + \cos r - \sin^2 r \cos r - \cos^2 r \sin r$	1 st M1	
		$(\sin x + \cos x)(1 - \sin x \cos x) = \sin x + \cos x - (1 - \cos^2 x) \cos x - (1 - \sin^2 x) \sin x$	2 nd M1	
		$(\sin x + \cos x)(1 - \sin x \cos x) \equiv \sin^3 x + \cos^3 x$	A1 *	
Alt I ((i)	Use LHS = $(\sin x + \cos x)(\sin^2 x + \cos^2 x - \sin x \cos x)$	[3]	
		$\equiv \sin^3 x + \sin x \cos^2 x - \sin^2 x \cos x + \sin^2 x \cos x - \cos^2 x \sin x + \cos^3 x$	1 st M1	
		$(\sin x + \cos x)(1 - \sin x \cos x) \equiv \sin^3 x + \cos^3 x$	A1 *	
Alt II	(i)	Use RHS = $\sin^3 x + \cos^3 x = (\sin x + \cos x)(\sin^2 x + \cos^2 x - \sin x \cos x)$	M1	
		$= (\sin x + \cos x)(1 - \sin x \cos x)$	M1 A1	
(i	i)	Use ten $\theta = \frac{\sin \theta}{\cos \theta}$ to give $3\sin \theta = \frac{\sin \theta}{\cos \theta}$	[J] M1	
		Use $\tan \theta = \frac{1}{\cos \theta}$ to give $3\sin \theta = \frac{1}{\cos \theta}$	IVI I	
		$\cos \theta = \frac{1}{3}$ and $\sin \theta = 0$	A1 A1	
			M1 A1,	
		So θ = 70.5, 289.5, or <u>0 and 180</u> (do not require degrees symbol)	<u>B1</u> [6]	
			9 marks	
(1) M1	Expa	inds bracket to form 4 terms - condone sign slips but terms must be correct.		
	Allo	w $\sin x \sin x \cos x$ for $\sin^2 x \cos x$ and condone $\cos x^2$ for $\cos^2 x$		
M1	Repla	aces $\sin^2 x$ by $(1-\cos^2 x)$ and $\cos^2 x$ by $(1-\sin^2 x)$		
	Cond	done $\cos x^2$ for $\cos^2 x$. This mark could be seen proceeding the line $\sin x(1 - \cos^2 x) + \cos x(1 - \sin^2 x)$	$n^2 x$).	
A1*	Completes proof with no errors. This is a given answer. Withhold this mark if poor notation or mixed variables are seen. Examples would be $\sin x + \cos x - (1 - \cos^2) \cos x - (1 - \sin^2 \theta) \sin x$			
	Don'	't accept for the A1* $\cos x^2$ for $\cos^2 x$ unless it is clearly bracketed.		
(ii)		$\sin \theta$ $\sin \theta$		
M1	Uses $\tan \theta = \frac{\sin \theta}{\cos \theta}$ or equivalent to give $3\sin \theta = \frac{\sin \theta}{\cos \theta}$ or $3\cos \theta = 1$			
A1	Achieves $\cos \theta = \frac{1}{3}$			
A1	Achi	eves $\sin \theta = 0$		
M1	For a	$\operatorname{arccos}\left(\operatorname{their}\frac{1}{3}\right)$ leading to one value of θ to the nearest degree. (You may need a calculator to check	k this)	
A1	For <i>t</i>	$\theta = \text{awrt } 70.5^\circ, 289.5^\circ$. This mark is withheld for extra solutions of $\operatorname{arccos}\left(\frac{1}{3}\right)$ in the range.		
	Igno	ore extra solutions outside the range.		
B1	$\theta =$	0,180° This mark is withheld for extra solutions arising from $\sin \theta = 0$ in the range.		
	Igno	bre extra solutions outside the range.		
Note: S	Studen	ts who proceed from $\frac{\sin \theta}{\tan \theta} = \cos \theta$ can score M1A1A0M1A1B0 for 4 out of 6		
Radian	soluti	ions, withhold only the final A1 mark. For your information solutions are awrt 2dp 1.23, 5.05, 0, 3.	14 = (pi)	

Question Number	Scheme	Marks				
11						
(a)	$\left(0,-\frac{\sqrt{3}}{2}\right)$	B1				
	and $(60^{\circ}, 0)$ and $(240^{\circ}, 0)$ and $(-120^{\circ}, 0)$ and $(-300^{\circ}, 0)$	B1 B1				
(b)	$\sin(x - 60^\circ) = \frac{\sqrt{6} - \sqrt{2}}{4} (= 0.2588)$	M1				
	$x - 60^\circ = 15^\circ$ (or 165° or -195° or -345°) or 0.262 or $\frac{\pi}{12}$ radians	A1				
	So $x = 75^{\circ}$ or 225° or -135° or -285° (allow awrt)	M1 A1 A1				
		8 marks				
	Notes					
(a) B1	: Correct exact y intercept (not decimal) – allow on the diagram or in the text. Allow $y = -$	$-\frac{\sqrt{3}}{2}$				
B1 for 2 correct <i>x</i> intercepts then third B1 for all 4 correct <i>x</i> intercepts (may or may not be given as coordinates – may be given on graph) Must be in degrees. (Extra answers in the range lose the third B1)						
(b) M1: Divides by 4 first giving correct statement $\sin(x-60^\circ) = \frac{\sqrt{6}-\sqrt{2}}{4}$ but $(x-60^\circ) = \frac{\sqrt{6}-\sqrt{2}}{4}$ is M0 and $\sin x = \sin 60^\circ = \frac{\sqrt{6}-\sqrt{2}}{4}$ is also M0 and $\sin(x-60^\circ) = \frac{\sqrt{4}}{4}$ is M0 if not proceeded by correct						
4 4 4 4 4 4						
 A1: Obtains 15° (or 165° or – 195° or – 345°) M1: Adds 60° to their previous answer which should have been in degrees and obtained by using 						
inv A1	inverse sine A1: Two correct answers second A1: All four correct answers Extra answers outside range are					
ign	ignored. Lose final A mark for extra wrong answers in the range.					
If t An exa	It they approximate too early allow awrt answers given for full marks. (e.g. 75.01 etc) Answers in mixture, degrees and radians: Allow first M A1 only so M1A1M0A0A0 for 60.262 for example					

Question Number	Scheme	Marks
13(a)	$h = 3.7 + 2.5 \cos(30t - 40)^{\circ}, \qquad 0 \le t < 24$ Max = 3.7+2.5=6.2m Occurs when $30t - 40 = 0 \Longrightarrow t = \frac{40}{20}, = 1:20am(01:20)$	B1 M1A1,A1
(b)	$3.7 + 2.5\cos(30t - 40)^\circ = 3 \Longrightarrow \cos(30t - 40)^\circ = -\frac{0.7}{2.5} = (-0.28)$ $30t - 40 = 106.3, (253.7)$ $t = awrt 4.9 \text{ or } 9.8$	(4) M1 A1
	$2^{nd} \text{ Value } 30t - 40 = 253.7 \Rightarrow t =$ t = awrt 4.9 and 9.8Boat cannot enter the harbour between 04:53 and 09:47	M1 A1 A1 (6) (10 marks)

(a)

B1 $h_{\text{max}} = 6.2 (m)$. The units are not important.

M1 Solves either
$$30t - 40 = 0 \Rightarrow t = ..$$
 or $30t - 40 = 360 \Rightarrow t = ..$ It may be implied by $t = \frac{40}{30}, \frac{400}{30}$ of

A1 $t = \frac{40}{30}$, or exact equivalents like $\frac{4}{3}$, 1.3.

A1 1: 20am or (01: 20) The exact time of day is required. 1: 20 or 1: 20 pm is incorrect.

Special case: Candidates who solve this part by differentiation can be allowed full marks

B1 $h_{\text{max}} = 6.2 (m)$. The units are not important

M1 For
$$h' = A\sin(30t - 40)^\circ = 0 \Longrightarrow t = .$$

A1
$$t = \frac{40}{30}$$
, or exact equivalents like $\frac{4}{3}$, 1.3.

A1 1: 20am Accept 01: 20 or 0120 The exact time of day is required. 1: 20 or 1: 20 pm is incorrect

```
(b)
```

- M1 Sets h=3 and proceeds to $\cos(30t-40)^\circ = ..$ Accept inequalities in place of = sign
- A1 Proceeds by taking invcos to reach either 30t 40 = awrt 106.3, or 30t 40 = awrt 253.7Accept inequalities in place of = sign. This may be implied by a correct answer for t = awrt 4.9, (9.8)
- A1 One value for *t* correct. Accept either awrt 1 dp t = 4.9 or 9.8
- M1 For the correct method of finding a second value of t. Accept $30t - 40 = (360 - \alpha) \Rightarrow t = ...$ where α is their principal value
- A1 Both values of t correct awrt 1dp. t = 4.9 and 9.8. Ignore any values where $t \ge 12$ but withhold this mark for extra values in the range. These may be implied by 293 minutes and 587 minutes
- A1 cso Both 04:53 and 09:47. Accept both 0453 and 0947
 Accept 4:53 and 9:47 without the am as the question requires morning times.
 Accept 293 and 587 minutes
 If they state between 0 and 293 minutes and 587 and ... minutes it is A0

Question	Scheme	Marks
Number		IVIUIKS
7. (a)	$12\sin^{2} x - \cos x - 11 = 0$ $12(1 - \cos^{2} x) - \cos x - 11 = 0 \text{ and so } 12\cos^{2} x + \cos x - 1 = 0 *$	B1 * [1]
(b)	Solve quadratic to obtain $(\cos x) = \frac{1}{4}$ or $-\frac{1}{3}$ x = 75.5, 109.5, 250.5, 284.5 Answers in radians (see notes)	M1 A1 M1 A1cao
	NT-4	5 marks
	Notes	
(a)	B1: Replaces $\sin^2 x$ by $(1 - \cos^2 x)$ - or replace 11 by $11(\sin^2 x + \cos^2 x)$ and no errors seen to give printed answer including = 0	
(b)	M1: Solving the correct quadratic equation (allow sign errors), by the usual methods (see notes) – implied by correct answers A1: Both answers needed – allow 0.25 and awrt – 0.33 M1 Uses inverse cosine to obtain two correct values for x for their values of cosx e.g. (75.5 and 109.4 or 109.5) or (75.5 and 284.5) or (109.5 and 250.5) – allow truncated answers or awrt here. A1: All four correct – allow awrt. Ignore extra answers outside range but lose last A mark for extra answers inside range Answers in radians are 1.3, 5.0, 1.9 and 4.4 Allow M1A0 for two or more correct asnwers	