

Mark Scheme (Results) January 2011

GCE

GCE Core Mathematics C1 (6663) Paper 1

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011 Publications Code US026232 All the material in this publication is copyright © Edexcel Ltd 2011

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark

January 2011 Core Mathematics C1 6663 Mark Scheme

Question Number	Scheme	Marks	
1. (a)	$16^{\frac{1}{4}} = 2$ or $\frac{1}{16^{\frac{1}{4}}}$ or better	M1	
	$\left(16^{-\frac{1}{4}}\right) = \frac{1}{2} \text{ or } 0.5 \qquad (\text{ignore } \pm)$	A1	
			(2)
(b)	$\left(2x^{-\frac{1}{4}}\right)^4 = 2^4 x^{-\frac{4}{4}}$ or $\frac{2^4}{x^{\frac{4}{4}}}$ or equivalent	M1	
	$x\left(2x^{-\frac{1}{4}}\right)^4 = 2^4$ or 16	A1 cao	
			(2) 4
	Notes		
(a)	M1 for a correct statement dealing with the $\frac{1}{4}$ or the – power		
	This may be awarded if 2 is seen or for reciprocal of their $16^{\frac{1}{4}}$		
	s.c $\frac{1}{4}$ is M1 A0, also 2^{-1} is M1 A0		
	$\pm \frac{1}{2}$ is not penalised so M1 A1		
(b)	M1 for correct use of the power 4 on both the 2 and the <i>x</i> terms		
	A1 for cancelling the <i>x</i> and simplifying to one of these two forms. Correct answers with no working get full marks		

Question Number	Scheme	Marks	
2.	$\left(\int = \right) \frac{12x^{6}}{6}, -\frac{3x^{3}}{3}, +\frac{4x^{\frac{4}{3}}}{\frac{4}{3}}, (+c)$ $= \underline{2x^{6} - x^{3} + 3x^{\frac{4}{3}} + c}$	M1A1,A1,A1	
	$= \underline{2x^6 - x^3 + 3x^{\frac{4}{3}} + c}$	A1 5	
	Notes		
		11	
	M1 for some attempt to integrate: $x^n \to x^{n+1}$ i.e ax^6 or ax^3 or $ax^{\frac{4}{3}}$ or	$ax^{\frac{1}{3}}$, where <i>a</i> is	
	a non zero constant		
	$1^{\text{st}} \text{A1} \text{for } \frac{12x^6}{6} \text{ or better}$		
	$2^{nd} A1$ for $-\frac{3x^3}{3}$ or better		
	3^{rd}A1 for $\frac{4x^{\frac{4}{3}}}{\frac{4}{3}}$ or better		
	4^{th} A1 for each term correct and simplified and the + <i>c</i> occurring in the fin	al answer	

Question Number	Scheme	Marks
3.	$\frac{5-2\sqrt{3}}{\sqrt{3}-1} \times \frac{\left(\sqrt{3}+1\right)}{\left(\sqrt{3}+1\right)}$	M1
	$={2}$ denominator of 2	A1
	Numerator = $5\sqrt{3} + 5 - 2\sqrt{3}\sqrt{3} - 2\sqrt{3}$	M1
	So $\frac{5-2\sqrt{3}}{\sqrt{3}-1} = -\frac{1}{2} + \frac{3}{2}\sqrt{3}$	A1
		4
	Alternative: $(p+q\sqrt{3})(\sqrt{3}-1) = 5 - 2\sqrt{3}$, and form simultaneous	M1
	equations in p and q - $p + 3q = 5$ and p - $q = -2$	A1
	Solve simultaneous equations to give $p = -\frac{1}{2}$ and $q = \frac{3}{2}$.	M1 A1
	Notes	
	1 st M1 for multiplying numerator and denominator by same correct expression 1^{st} A1 for a correct denominator as a single number (NB depends on M mar 2^{nd} M1 for an attempt to multiply the numerator by $(\sqrt{3} \pm 1)$ and get 4 terms with the second sec	k)
	correct. 2^{nd} A1 for the answer as written or $p = -\frac{1}{2}$ and $q = \frac{3}{2}$. Allow -0.5 and 1.5. correct answer seen, then slip writing $p = , q = $)	
	Answer only (very unlikely) is full marks if correct – no part marks	

Question Number	Scheme		
4 (a)	$(a_2 =) 6 - c$	B1	(1)
(b)	$a_3 = 3$ (their a_2) - c (= 18 - 4c) $a_1 + a_2 + a_3 = 2 + "(6 - c)" + "(18 - 4c)"$ "26 - 5c" = 0 So $c = 5.2$	M1 M1 A1ft A1 o.a.e	(4)
	Notes		_
(b)	1 st M1 for attempting a_3 . Can follow through their answer to (a) but it must be an expression in c. 2 nd M1 for an attempt to find the sum $a_1 + a_2 + a_3$ must see evidence of sum 1 st A1ft for their sum put equal to 0. Follow through their values but answer must be in the form $p + qc = 0$ A1 – accept any correct equivalent answer		

Question Number	Scheme	Marks
5. (a)	yCorrect shape with a single crossing of each axis $y=1$ $y=1$ $x=3$ $y = 1$ labelled or stated $x = 3$ labelled or stated	B1 B1 B1 (3)
(b)	Horizontal translation so crosses the x-axis at (1, 0) New equation is $(y =) \frac{x \pm 1}{(x \pm 1) - 2}$ When $x = 0$ $y = = \frac{1}{3}$	B1 M1 M1 A1 (4)
	Notes	(4)
(b)	B1 for point (1,0) identified - this may be marked on the sketch as 1 on x axis. Accept $x = 1$. 1^{st} M1 for attempt at new equation and either numerator or denominator correct 2^{nd} M1 for setting $x = 0$ in their new equation and solving as far as $y =$ A1 for $\frac{1}{3}$ or exact equivalent. Must see $y = \frac{1}{3}$ or $(0, \frac{1}{3})$ or point marked on y-axis. Alternative $f(-1) = \frac{-1}{-1-2} = \frac{1}{3}$ scores M1M1A0 unless $x = 0$ is seen or they write the point as $(0, \frac{1}{3})$ or give $y = 1/3$ Answers only: $x = 1$, $y = 1/3$ is full marks as is (1,0) (0, 1/3) Just 1 and 1/3 is B0 M1 M1 A0 Special case : Translates 1 unit to left (a) B0, B1, B0 (b) Mark (b) as before May score B0 M1 M1 A0 so 3/7 or may ignore sketch and start again scoring full marks for this part.	

Question Number	Scheme	Marks	
6. (a)	$S_{10} = \frac{10}{2} [2a + 9d]$ or	M1	
	$S_{10} = a + a + d + a + 2d + a + 3d + a + 4d + a + 5da + 6d + a + 7d + a + 8d + a + 9d$ 162 = 10a + 45d *	A1cso	(2)
(b)	$(u_n = a + (n-1)d \implies)17 = a + 5d$	B1	(1)
	10×(b) gives $10a + 50d = 170$ (a) is $10a + 45d = 162$	M1	
	Subtract $5d = 8$ so $d = \underline{1.6}$ o.e.	A1	
	Solving for a $a = 17 - 5d$	M1	
	so $a = \underline{9}$	A1	
			(4) 7
	Notes		
(a)	M1 for use of S_n with $n = 10$		
(b)	1^{st} M1 for an attempt to eliminate <i>a</i> or <i>d</i> from their two linear equations 2^{nd} M1 for using their value of <i>a</i> or <i>d</i> to find the other value.		

Question Number	Scheme	Marks
7.	$ (f(x) =) \frac{12x^3}{3} - \frac{8x^2}{2} + x(+c) (f(-1) = 0 \Rightarrow) 0 = 4 \times (-1) - 4 \times 1 - 1 + c c = 9 $	M1 A1 A1 M1 A1
	$\left[f(x) = 4x^3 - 4x^2 + x + 9\right]$	5
	Notes	
	1 st M1 for an attempt to integrate $x^n \to x^{n+1}$ 1 st A1 for at least 2 terms in <i>x</i> correct - needn't be simplified, ignore + <i>c</i> 2 nd A1 for all the terms in <i>x</i> correct but they need not be simplified. No need for + <i>c</i> 2 nd M1 for using <i>x</i> = -1 and <i>y</i> =0 to form a linear equation in <i>c</i> . No + <i>c</i> gets M0A0 3 rd A1 for <i>c</i> = 9. Final form of f(<i>x</i>) is not required.	
8 . (a)	$b^{2} - 4ac = (k-3)^{2} - 4(3-2k)$ $k^{2} - 6k + 9 - 4(3-2k) > 0 \text{or} (k-3)^{2} - 12 + 8k > 0 \text{or better}$ $\underline{k^{2} + 2k - 3 > 0} \qquad *$	M1 M1 A1cso (3)
(b)	(k+3)(k-1)[=0] Critical values are $k = 1 or -3(choosing "outside" region) \underline{k > 1 \text{ or } k < -3}$	M1 A1 M1 A1 cao (4) 7
	Notes	
(a)	1^{st} M1 for attempt to find $b^2 - 4ac$ with one of b or c correct 2^{nd} M1 for a correct inequality symbol and an attempt to expand. A1cso no incorrect working seen	
(b)	1^{st} M1for an attempt to factorize or solve leading to $k = (2 \text{ values})$ 2^{nd} M1for a method that leads them to choose the "outside" region. Can follow through their critical values. 2^{nd} A1Allow "," instead of "or" \geq loses the final A1 $1 < k < -3$ scores M1A0 unless a correct version is seen before or after this one.	

Question Number	Scheme	Marks	
9. (a)	$(8-3-k=0) \text{so } \underline{k=5}$	B1	(1)
(b)	2y = 3x + k $y = \frac{3}{2}x +$ and so $m = \frac{3}{2}$ o.e.	M1 A1	
			(2)
(c)	Perpendicular gradient = $-\frac{2}{3}$	B1ft	
	Equation of line is: $y-4 = -\frac{2}{3}(x-1)$	M1A1ft	
	$\frac{3y + 2x - 14 = 0}{0.6}$ o.e.	A1	(4)
(d)	$y = 0$, $\Rightarrow B(7,0)$ or $x = 7$ or $-\frac{c}{a}$	M1A1ft	(2)
(e)	$AB^{2} = (7-1)^{2} + (4-0)^{2}$ $AB = \sqrt{52} \text{ or } 2\sqrt{13}$	M1 A1	(2)
	$AB = \sqrt{32}$ or $2\sqrt{13}$		(2) 11
	Notes		
(b)	M1 for an attempt to rearrange to $y =$ A1 for clear statement that gradient is 1.5, can be $m = 1.5$ o.e.		
(c)	B1ft for using the perpendicular gradient rule correctly on their "1.5"		
	M1 for an attempt at finding the equation of the line through A using their gradient. Allow a sign slip 1^{st} A1ft for a correct equation of the line follow through their changed gradient		
	2^{nd} A1 as printed or equivalent with integer coefficients – allow 3y+2x=14 or $3y=14-2x$		
(d)	M1 for use of $y = 0$ to find $x =$ in their equation A1ft for $x = 7$ or $-\frac{c}{a}$		
(e)	M1 for an attempt to find AB or AB^2 A1 for any correct surd form- need not be simplified		

Questic Numbe	Schama	Marks
10. ((i) correct shape (-ve cubic) Crossing at (-2, 0) Through the origin Crossing at (3,0) (ii) 2 branches in correct quadrants not crossing axes One intersection with cubic on each branch	B1 B1 B1 B1 B1 B1
("2" solutions Since only "2" intersections 	(6) B1ft dB1ft (2)
	Notes	8
	 B1ft for a value that is compatible with their sketch dB1ft This mark is dependent on the value being compatible with their sketch. For a comment relating the number of solutions to the number of intersections. [Only allow 0, 2 or 4] 	
11. ((a) $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{3}{2}x^2 - \frac{27}{2}x^{\frac{1}{2}} - 8x^{-2}$	M1A1A1A1 (4)
((b) $x = 4 \implies y = \frac{1}{2} \times 64 - 9 \times 2^3 + \frac{8}{4} + 30$ = 32 - 72 + 2 + 30 = <u>-8</u> *	M1 A1cso (2)
($x = 4 \implies y' = \frac{3}{2} \times 4^2 - \frac{27}{2} \times 2 - \frac{8}{16}$ $= 24 - 27 - \frac{1}{2} = -\frac{7}{2}$ Gradient of the normal = $-1 \div "\frac{7}{2}"$ Equation of normal: $y8 = \frac{2}{7}(x - 4)$	M1 A1 M1 M1 M1A1ft
	Equation of normal: $y8 = \frac{-7}{7}(x - 4)$ $\frac{7y - 2x + 64 = 0}{2}$	A1 (6) 12

Question Number		Scheme	Marks
		Notes	
(a)	1^{st}A1	for an attempt to differentiate $x^n \rightarrow x^{n-1}$ for one correct term in x	
		for 2 terms in x correct	
	3 rd A1	for all correct <i>x</i> terms. No 30 term and no $+c$.	
(b)	M1	for substituting $x = 4$ into $y =$ and attempting $4^{\frac{3}{2}}$	
	A1	note this is a printed answer	
(c)	1 st M1	Substitute $x = 4$ into y' (allow slips)	
	A1	Obtains –3.5 or equivalent	
	2 nd M1		
		gradient. (May be slip doing the division) Their gradient must	
		have come from y'	
	3^{rd} M1	for an attempt at equation of tangent or normal at P	
	2 nd A1ft	for correct use of their changed gradient to find normal at <i>P</i> . Depends on 1^{st} , 2^{nd} and 3^{rd} Ms	
	3 rd A1	for any equivalent form with integer coefficients	
	3 AI	for any equivalent form with integer coefficients	

www.yesterdaysmathsexam.com

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code US026232 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH