Please write clearly, in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s) \qquad
Candidate signature

A-level

MATHEMATICS

Paper 1

Exam Date

Morning
Time allowed: 2 hours

Materials

For this paper you must have:

- The AQA booklet of formulae and statistical tables.
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should be used for drawing.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100 .

Advice

Unless stated otherwise, you may quote formulae, without proof, from the booklet.
You do not necessarily need to use all the space provided.

Answer all questions in the spaces provided.

1 Find the gradient of the line with equation $2 x+5 y=7$
Circle your answer.
$\frac{2}{5}$
$\frac{5}{2}$
$-\frac{2}{5}$
$-\frac{5}{2}$

2 A curve has equation $y=\frac{2}{\sqrt{x}}$
Find $\frac{d y}{d x}$
Circle your answer.

$$
\begin{array}{llll}
\frac{\sqrt{x}}{3} & \frac{1}{x \sqrt{x}} & -\frac{1}{x \sqrt{x}} & -\frac{1}{2 x \sqrt{x}}
\end{array}
$$

3 When θ is small, find an approximation for $\cos 3 \theta+\theta \sin 2 \theta$, giving your answer in the form $a+b \theta^{2}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question
$4 \quad \mathrm{p}(x)=2 x^{3}+7 x^{2}+2 x-3$

4 (a) Use the factor theorem to prove that $x+3$ is a factor of $\mathrm{p}(x)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4 (b) Simplify the expression $\frac{2 x^{3}+7 x^{2}+2 x-3}{4 x^{2}-1}, x \neq \pm \frac{1}{2}$
[4 marks]
\qquad

Turn over for the next question

The diagram shows a sector $A O B$ of a circle with centre O and radius $r \mathrm{~cm}$.

The angle $A O B$ is θ radians
The sector has area $9 \mathrm{~cm}^{2}$ and perimeter 15 cm .
5 (a) Show that r satisfies the equation $2 r^{2}-15 r+18=0$
\qquad

5 (b) Find the value of θ. Explain why it is the only possible value.
\qquad

Turn over for the next question
$6 \quad$ Sam goes on a diet. He assumes that his mass, $m \mathrm{~kg}$ after t days, decreases at a rate that is inversely proportional to the cube root of his mass.

6 (a) Construct a differential equation involving m, t and a positive constant k to model this situation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

6 (b) Explain why Sam's assumption may not be appropriate.
\qquad
\qquad
\qquad

7 Find the values of k for which the equation $(2 k-3) x^{2}-k x+(k-1)=0$ has equal roots. [4 marks]
\qquad

Turn over for the next question

8 (a) Given that $u=2^{x}$, write down an expression for $\frac{\mathrm{d} u}{\mathrm{~d} x}$
\qquad
\qquad
\qquad

8 (b) Find the exact value of $\int_{0}^{1} 2^{x} \sqrt{3+2^{x}} \mathrm{~d} x$

Fully justify your answer.
\qquad

9 A curve has equation $y=\frac{2 x+3}{4 x^{2}+7}$

9 (a) (i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9 (a) (ii) Hence show that y is increasing when $4 x^{2}+12 x-7<0$
\qquad

9 (b) Find the values of x for which y is increasing.
[2 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

10
The function f is defined by

$$
\mathrm{f}(x)=4+3^{-x}, x \in \mathbb{R}
$$

10 (a) Using set notation, state the range of f
\qquad
\qquad
\qquad
\qquad

10 (b) The inverse of f is f^{-1}

10 (b) (i) Using set notation, state the domain of f^{-1}
\qquad
\qquad

10 (b) (ii) Find an expression for $\mathrm{f}^{-1}(x)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10 (c) The function g is defined by

$$
\mathrm{g}(x)=5-\sqrt{x},(x \in \mathbb{R}: x>0)
$$

10 (c) (i) Find an expression for $\mathrm{gf}(x)$
\qquad
\qquad

10 (c) (ii) Solve the equation $\operatorname{gf}(x)=2$, giving your answer in an exact form.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11 A circle with centre C has equation $x^{2}+y^{2}+8 x-12 y=12$

11 (a) Find the coordinates of C and the radius of the circle.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11 (b) The points P and Q lie on the circle.
The origin is the midpoint of the chord $P Q$.
Show that $P Q$ has length $n \sqrt{3}$, where n is an integer.
\qquad

12 A sculpture formed from a prism is fixed on a horizontal platform, as shown in the diagram.

The shape of the cross-section of the sculpture can be modelled by the equation $x^{2}+2 x y+2 y^{2}=10$, where x and y are measured in metres.

The x and y axes are horizontal and vertical respectively.

Find the maximum vertical height above the platform of the sculpture.
\qquad

14 An open-topped fish tank is to be made for an aquarium.
It will have a square horizontal base, rectangular vertical sides and a volume of $60 \mathrm{~m}^{3}$
The materials cost:

- $£ 15$ per m^{2} for the base
- $£ 8$ per m^{2} for the sides.

14 (a) Modelling the sides and base of the fish tank as laminae, use calculus to find the height of the tank for which the overall cost of the materials has its minimum value.

Fully justify your answer.
\qquad

14 (b) (i) In reality, the thickness of the base and sides of the tank is 2.5 cm
Briefly explain how you would refine your modelling to take account of the thickness of the sides and base of the tank of the tank.
[1 mark]
\qquad
\qquad
\qquad
14 (b) (ii) How would your refinement affect your answer to part (a)?
[1 mark]
\qquad
\qquad
\qquad

The height x metres, of a column of water in a fountain display satisfies the differential equation $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{8 \sin 2 t}{3 \sqrt{x}}$, where t is the time in seconds after the display begins.

15 (a) Solve the differential equation, given that initially the column of water has zero height. Express your answer in the form $x=\mathrm{f}(t)$
\qquad

15 (b) Find the maximum height of the column of water, giving your answer to the nearest cm .
[1 mark]
\qquad
\qquad
\qquad

16 A student argues that when a rational number is multiplied by an irrational number the result will always be an irrational number.

16 (a) Identify the rational number for which the student's argument is not true.
\qquad
\qquad
\qquad

16 (b) Prove that the student is right for all rational numbers other than the one you have identified in part (a).
\qquad
$17 \mathrm{f}(x)=\sin x$
Using differentiation from first principles find the exact value of $\mathrm{f}^{\prime}\left(\frac{\pi}{6}\right)$ Fully justify your answer.
\qquad

There are no questions printed on this page

DO NOT WRUE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

