www.yesterdaysmathsexam.com

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 8 (a) | $(2+a x)^{8} \quad$ Attempts the term in $x^{5}={ }^{8} C_{5} 2^{3}(a x)^{5}=448 a^{5} x^{5}$ | $\begin{gathered} \hline \text { M1 } \\ \text { A1 } \end{gathered}$ | $\begin{aligned} & \hline 1.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$ |
|  | Sets $448 a^{5}=3402 \Rightarrow a^{5}=\frac{243}{32}$ | M1 | 1.1b |
|  | $\Rightarrow a=\frac{3}{2}$ | A1 | 1.1b |
|  |  | (4) |  |
| (b) | Attempts either term. So allow for $2^{8}$ or ${ }^{8} C_{4} 2^{4} a^{4}$ | M1 | 1.1b |
|  | Attempts the sum of both terms $2^{8}+{ }^{8} C_{4} 2^{4} a^{4}$ | dM1 | 2.1 |
|  | $=256+5670=5926$ | A1 | 1.1b |
|  |  | (3) |  |

(7 marks)

## Notes

(a)

M1: An attempt at selecting the correct term of the binomial expansion. If all terms are given then the correct term must be used. Allow with a missing bracket ${ }^{8} C_{5} 2^{3} a x^{5}$ and left without the binomial coefficient expanded

A1: $448 a^{5} x^{5}$ Allow unsimplified but ${ }^{8} C_{5}$ must be "numerical"
M1: Sets their $448 a^{5}=3402$ and proceeds to $\Rightarrow a^{k}=\ldots$ where $k \in \mathbb{N} \quad k \neq 1$
A1: Correct work leading to $a=\frac{3}{2}$
(b)

M1: Finds either term required. So allow for $2^{8}$ or ${ }^{8} C_{4} 2^{4} a^{4}$ (even allowing with $a$ )
dM1: Attempts the sum of both terms $2^{8}+{ }^{8} C_{4} 2^{4} a^{4}$
A1: cso 5926


| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 8(a) | $2^{6}$ or 64 as the constant term | B1 | 1.1b |
|  | $\begin{aligned} \left(2+\frac{3 x}{4}\right)^{6} & =\ldots+{ }^{6} \mathrm{C}_{1} 2^{5}\left(\frac{3 x}{4}\right)^{1}+{ }^{6} \mathrm{C}_{2} 2^{4}\left(\frac{3 x}{4}\right)^{2}+\ldots \\ & =\ldots+6 \times 2^{5}\left(\frac{3 x}{4}\right)^{1}+\frac{6 \times 5}{2} \times 2^{4}\left(\frac{3 x}{4}\right)^{2}+\ldots \end{aligned}$ | M1 A1 | $\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$ |
|  | $=64+144 x+135 x^{2}+\ldots$ | A1 | 1.1b |
|  |  | (4) |  |
| (b) | $\frac{3 x}{4}=-0.075 \Rightarrow x=-0.1$ <br> So find the value of $64+144 x+135 x^{2}$ with $x=-0.1$ | B1ft | 2.4 |
|  |  | (1) |  |

## Notes

## (a)

B1: Sight of either $2^{6}$ or 64 as the constant term
M1: An attempt at the binomial expansion. This may be awarded for a correct attempt at either the second OR third term. Score for the correct binomial coefficient with the correct power of 2 and the correct power of $\frac{3 x}{4}$ condoning slips. Correct bracketing is not essential for this M mark.
Condone ${ }^{6} \mathrm{C}_{2} 2^{4} \frac{3 x^{2}}{4}$ for this mark
A1: Correct (unsimplified) second AND third terms.
The binomial coefficients must be processed to numbers /numerical expression e.g $\frac{6!}{4!2!}$ or $\frac{6 \times 5}{2}$ They cannot be left in the form ${ }^{6} \mathrm{C}_{1}$ and/or $\binom{6}{2}$
A1: $64+144 x+135 x^{2}+\ldots \quad$ Ignore any terms after this. Allow to be written $64,144 x, 135 x^{2}$
(b)

B1ft: $x=-0.1$ or $-\frac{1}{10}$ with a comment about substituting this into their $64+144 x+135 x^{2}$
If they have written (a) as $64,144 x, 135 x^{2}$ candidate would need to say substitute $x=-0.1$ into the sum of the first three terms.
As they do not have to perform the calculation allow
Set $2+\frac{3 x}{4}=1.925$, solve for $x$ and then substitute this value into the expression from (a) If a value of $x$ is found then it must be correct

Alternative to part (a)

$$
\left(2+\frac{3 x}{4}\right)^{6}=2^{6}\left(1+\frac{3 x}{8}\right)^{6}=2^{6}\left(1+{ }^{6} \mathrm{C}_{1}\left(\frac{3 x}{8}\right)^{1}+{ }^{6} \mathrm{C}_{2}\left(\frac{3 x}{8}\right)^{2}+\ldots\right)
$$

B1: Sight of either $2^{6}$ or 64

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 6 (a) | $(1+k x)^{10}=1+\binom{10}{1}(k x)^{1}+\binom{10}{2}(k x)^{2}+\binom{10}{3}(k x)^{3} \ldots$ | $\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$ | $\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$ |
|  | $=1+10 k x+45 k^{2} x^{2}+120 k^{3} x^{3} \ldots$ | A1 | 1.1b |
|  |  | (3) |  |
| (b) | Sets $120 k^{3}=3 \times 10 k$ | B1 | 1.2 |
|  | $4 k^{2}=1 \Rightarrow k=\ldots$ | M1 | 1.1 b |
|  | $k= \pm \frac{1}{2}$ | A1 | 1.1b |
|  |  | (3) |  |
| (6 marks) |  |  |  |

(a)

M1: An attempt at the binomial expansion. This may be awarded for either the second or third term or fourth term. The coefficients may be of the form ${ }^{10} \mathrm{C}_{1},\binom{10}{2}$ etc or eg $\frac{10 \times 9 \times 8}{3!}$
A1: A correct unsimplified binomial expansion. The coefficients must be numerical so cannot be of the form ${ }^{10} \mathrm{C}_{1},\binom{10}{2}$. Coefficients of the form $\frac{10 \times 9 \times 8}{3!}$ are acceptable for this mark. The bracketing must be correct on $(k x)^{2}$ but allow recovery
A1: $\quad 1+10 k x+45 k^{2} x^{2}+120 k^{3} x^{3} \ldots$ or $1+10(k x)+45(k x)^{2}+120(k x)^{3} \ldots$
Allow if written as a list.
(b)

B1: Sets their $120 k^{3}=3 \times$ their $10 k$ (Seen or implied)
For candidates who haven't cubed allow $120 k=3 \times$ their $10 k$
If they write $120 k^{3} x^{3}=3 \times$ their $10 k x$ only allow recovery of this mark if $x$ disappears afterwards.

M1: Solves a cubic of the form $A k^{3}=B k$ by factorising out/cancelling the $k$ and proceeding correctly to at least one value for $k$. Usually $k=\sqrt{\frac{B}{A}}$
A1: $\quad k= \pm \frac{1}{2}$ o.e ignoring any reference to 0

| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 7(a) | $\left(2-\frac{x}{2}\right)^{7}=2^{7}+\binom{7}{1} 2^{6} \cdot\left(-\frac{x}{2}\right)+\binom{7}{2} 2^{5} \cdot\left(-\frac{x}{2}\right)^{2}+\ldots$ | M1 | 1.1b |
|  | $\left(2-\frac{x}{2}\right)^{7}=128+\ldots$ | B1 | 1.1b |
|  | $\left(2-\frac{x}{2}\right)^{7}=\ldots-224 x+\ldots$ | A1 | 1.1b |
|  | $\left(2-\frac{x}{2}\right)^{7}=\ldots+\ldots+168 x^{2}(+\ldots)$ | A1 | 1.1b |
|  |  | (4) |  |
| (b) | Solve $\left(2-\frac{x}{2}\right)=1.995$ so $x=0.01$ and state that 0.01 would be substituted for $x$ into the expansion | B1 | 2.4 |
|  |  | (1) |  |
| (5 marks) |  |  |  |
| Notes: |  |  |  |
| (a)  <br> M1: N <br>  Co <br> B1: Co <br> A1: Co <br> A1: Co | correct binomial coefficient with correct power of 2 and correct ficients may be given in any correct form; e.g. 1, 7, 21 or ${ }^{7} C_{0},{ }^{7} C$ ect answer, simplified as given in the scheme ct answer, simplified as given in the scheme ct answer, simplified as given in the scheme | of $x$. <br> or equiv |  |
| (b) <br> B1: is | Needs a full explanation i.e. to state $x=0.01$ and that this would be substituted and that it is a solution of $\left(2-\frac{x}{2}\right)=1.995$ |  |  |


| Question <br> Number | Scheme ${ }^{\text {a }}$ Marks |
| :---: | :---: |
| 1. | $\begin{aligned} & \left(3-\frac{1}{3} x\right)^{5}- \\ & 3^{5}+{ }^{5} C_{1} 3^{4}\left(-\frac{1}{3} x\right)+{ }^{5} C_{2} 3^{3}\left(-\frac{1}{3} x\right)^{2}+{ }^{5} C_{3} 3^{2}\left(-\frac{1}{3} x\right)^{3} \ldots \end{aligned}$ <br> First term of 243 $\begin{aligned} & \left({ }^{5} C_{1} \times \ldots \times x\right)+\left({ }^{5} C_{2} \times \ldots \times x^{2}\right)+\left({ }^{5} C_{3} \times \ldots \times x^{3}\right) \ldots \\ & =(243 . .)-\frac{405}{3} x+\frac{270}{9} x^{2}-\frac{90}{27} x^{3} \ldots \\ & =(243 \ldots)-135 x+30 x^{2}-\frac{10}{3} x^{3} . . \end{aligned}$ |
| Alternative method | $\begin{aligned} & \left(3-\frac{1}{3} x\right)^{5}=3^{5}\left(1-\frac{x}{9}\right)^{5} \\ & 3^{5}\left(1+{ }^{5} C_{1}\left(-\frac{1}{9} x\right)+{ }^{5} C_{2}\left(-\frac{1}{9} x\right)^{2}+{ }^{5} C_{3}\left(-\frac{1}{9} x\right)^{3} \ldots\right) \end{aligned}$ <br> Scheme is applied exactly as before |
|  | Notes <br> B1: The constant term should be 243 in their expansion <br> M1: Two of the three binomial coefficients must be correct and must be with the correct power of $x$. Accept ${ }^{5} C_{1}$ or $\binom{5}{1}$ or 5 as a coefficient, and ${ }^{5} C_{2}$ or $\binom{5}{2}$ or 10 as another and ${ }^{5} C_{3}$ or $\binom{5}{3}$ or 10 as another........ Pascal's triangle may be used to establish coefficients. NB: If they only include the first two of these terms then the M1 may be awarded. <br> A1: Two of the final three terms correct - may be unsimplified i.e. two of $-135 x+30 x^{2}-\frac{10}{3} x^{3}$ correct, or two of $-\frac{405}{3} x+\frac{270}{9} x^{2}-\frac{90}{27} x^{3}$ (may be just two terms) <br> A1: All three final terms correct and simplified. (Can be listed with commas or appear on separate lines. Accept in reverse order.) Accept correct alternatives to $-\frac{10}{3}$ e.g. $-3 \frac{1}{3}$ or -3.3 the recurring must be clear. 3.3 is not acceptable. Allow e.g. $+-135 x$ |
|  | e.g. The common error $3^{5}+{ }^{5} C_{1} 3^{4}\left(-\frac{1}{3}\right) x+{ }^{5} C_{2} 3^{3}\left(-\frac{1}{3}\right) x^{2}+{ }^{5} C_{3} 3^{2}\left(-\frac{1}{3}\right) x^{3}=(243)-135 x-90 x^{2}-30 x^{3}$ would earn B1, M1, A0, A0, so $2 / 4$ <br> If extra terms are given then isw <br> No negative signs in answer also earns B1, M1, A0, A0 <br> If the series is divided through by 3 at the final stage after an error or omission resulting in all multiple of three coefficients then apply scheme to series before this division and ignore subsequent work (isw) <br> Special Case: Only gives first three terms $=(243$.. $)-135 x+30 x^{2} \ldots$ or $243-\frac{405}{3} x+\frac{270}{9} x^{2}$ <br> Follow the scheme to give B1 M1 A1 A0 special case. (Do not treat as misread.) <br> Answers such as $243+405-\frac{1}{3} x+270-\frac{1}{9} x^{2}+90-\frac{1}{27} x^{3}$.. gain no credit as the binomial coefficients are not linked to the x terms. |


| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| 5. | (a) $(2-9 x)^{4}=2^{4}+{ }^{4} C_{1} 2^{3}(-9 x)+{ }^{4} C_{2} 2^{2}(-9 x)^{2}$, (b) $\mathrm{f}(x)=$ | (1+kx)(2-9x ${ }^{4}=A-232 x+B x^{2}$ |  |
| (a) | First term of 16 in their final series |  | B1 |
| Way 1 | At least one of $\left({ }^{4} C_{1} \times \ldots \times x\right)$ or $\left({ }^{4} C_{2} \times \ldots \times x^{2}\right)$ |  | M1 |
|  | $=(16)-288 x+1944 x^{2}$ | At least one of $-288 x$ or $+1944 x^{2}$ | A1 |
|  |  | Both $-288 x$ and $+1944 x^{2}$ | A1 |
|  |  |  | [4] |
| (a) | $(2-9 x)^{4}=\left(4-36 x+81 x^{2}\right)\left(4-36 x+81 x^{2}\right)$ |  |  |
|  |  | First term of 16 in their final series | B1 |
| Way 2 | $=16-144 x+324 x^{2}-144 x+1296 x^{2}+324 x^{2}$$=(16)-288 x+1944 x^{2}$ | Attempts to multiply a 3 term quadratic by the same 3 term quadratic to achieve either 2 terms in $x$ or at least 2 terms in $x^{2}$. | M1 |
|  |  | At least one of $-288 x$ or $+1944 x^{2}$ | A1 |
|  |  | Both $-288 x$ and $+1944 x^{2}$ | A1 |
|  |  |  | [4] |
| (a) <br> Way 3 | $\begin{aligned} \left\{(2-9 x)^{4}\right. & =\} 2^{4}\left(1-\frac{9}{2} x\right)^{4} \\ & =2^{4}\left(1+\frac{4\left(-\frac{9}{2} x\right)+\frac{4(3)}{2}\left(-\frac{9}{2} x\right)^{2}+\ldots}{}\right) \\ & =(16)-288 x+1944 x^{2} \end{aligned}$ | First term of 16 in final series | B1 |
|  |  | (4×...xx) or ( $\left.\frac{4(3)}{2} \times \ldots \times x^{2}\right)$ | M1 |
|  |  | At least one of $-288 x$ or $+1944 x^{2}$ | A1 |
|  |  | Both $-288 x$ and $+1944 x^{2}$ | A1 |
|  |  |  | [4] |
|  | Parts (b), (c) and (d) may be marked together |  |  |
| (b) | $A=" 16$ | Follow through their value from (a) | B1ft |
|  |  |  | [1] |
| (c) | $\begin{aligned} & \left\{(1+k x)(2-9 x)^{4}\right\}=(1+k x)\left(16-288 x+\left\{1944 x^{2}+\ldots\right\}\right) \\ & x \text { terms: }-288 x+16 k x=-232 x \\ & \text { giving, } 16 k=56 \Rightarrow k=\frac{7}{2} \end{aligned}$ | May be seen in part (b) or (d) and can be implied by work in parts (c) or (d). | M1 |
|  |  |  |  |
|  |  | $k=\frac{7}{2}$ | A1 |
|  |  |  | [2] |
| (d) | $x^{2}$ terms: $1944 x^{2}-288 k x^{2}$ <br> So, $B=1944-288\left(\frac{7}{2}\right) ;=1944-1008=936$ |  |  |
|  |  | See notes | M1 |
|  |  | 936 | A1 |
|  |  |  | [2] |
|  |  |  | 9 |


| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 11.(a) | $(3+a x)^{5}=3^{5}+\binom{5}{1} 3^{4} \cdot(a x)+\binom{5}{2} 3^{3} \cdot(a x)^{2}+\ldots$ |  |
| $=243,+405 a x+270 a^{2} x^{2}+\ldots$ | M1 |  |
| (b) | $\mathrm{f}(x)=(a-x)(3+a x)^{5}=(a-x)\left(243+405 a x+270 a^{2} x^{2}+\ldots\right)$ | B1, A1, A1 |
|  | $-243+405 a^{2}=0 \Rightarrow a^{2}=\frac{243}{405} \Rightarrow a=\sqrt{\frac{3}{5}}$ or equivalent | M1, dM1A1 |
|  | [3] |  |
|  |  | (7 marks) |

(a)

M1 This method mark is awarded for an attempt at a Binomial expansion to get the second and/or third term - it requires a correct binomial coefficient combined with correct power of 3 and the correct power of $x$. Ignore bracketing errors. Accept any notation for ${ }^{5} C_{1},{ }^{5} C_{2}$, e.g. as on scheme or 5, and 10 from Pascal's triangle. This mark may be given if no working is shown, if either or both of the terms including $x$ is correct.
An alternative is $(3+a x)^{5}=3^{5}\left\{1+\frac{a x}{3}\right\}^{5}=3^{5}\left\{1+5 \times \frac{a x}{3}+\frac{5 \times 4}{2(!)} \times\left(\frac{a x}{3}\right)^{2}\right.$
In this method it is scored for the correct attempt at a binomial expansion to get the second and/or third term in the bracket of $3^{n}\left\{1+5 \times \frac{a x}{3}+\frac{5 \times 4}{2(!)} \times\left(\frac{a x}{3}\right)^{2} \ldots \ldots.\right\}$
Score for binomial coefficient with the correct power of $\left(\frac{x}{3}\right)$ Eg. $5 \times \frac{\ldots x}{3}$ or $10 \times\left(\frac{\ldots x}{3}\right)^{2}$
B1 Must be simplified to 243 (writing just $3^{5}$ is B0).
A1 cao and is for one correct from 405ax, and $270 a^{2} x^{2}$ Also allow $270(a x)^{2}$ with the bracket
A1 cao and is for both of $405 a x$, and $270 a^{2} x^{2}$.
Allow $270(a x)^{2}$ with the bracket correct (ignore extra terms). Allow listing for all marks
It is possible to score 1011 in (a)
There are a minority of students who attempt this in (a)
$\mathrm{f}(x)=(a-x)(3+a x)^{5}=(a-x)\left(243+405 a x+270 a^{2} x^{2}+\ldots\right)$ and go on to expand this.
They can have all the marks in part (a)
(b)

M1 Attempt to set the coefficient of $x$ in the expansion of $(a-x)(3+a x)^{5}$ equal to 0
$(a-x)(3+a x)^{5}=(a-x)\left(P+Q a x+R a^{2} x^{2}+\ldots\right)=a P+\left(a^{2} Q-P\right) x+\ldots$
For this to be scored you must see an equation of the form $\pm P \pm Q a^{2}=0$ You are condoning slips/ sign errors
$\mathrm{dM} 1 \quad$ For $\pm P \pm Q a^{2}=0 \Rightarrow a=\ldots$ using a correct method. This cannot be scored for an attempt at sq rooting a negative number
A1 $\quad a=\sqrt{\frac{3}{5}}$ or exact equivalent such as $a=\frac{\sqrt{15}}{5}$ You may ignore any reference to $a=-\sqrt{\frac{3}{5}}$

| Question <br> Number | Scheme | Marks |
| :---: | :--- | :--- |
| $\mathbf{1 0 ~ ( a ) ~}$ | $\left(2-\frac{x}{8}\right)^{10}=2^{10}+{ }^{10} C_{1} 2^{9}\left(-\frac{x}{8}\right)^{1}+{ }^{10} C_{2} 2^{8}\left(-\frac{x}{8}\right)^{2}+$ <br> $=1024-640 x+180 x^{2}$ | B1 |
|  | $\left(2-\frac{x}{8}\right)^{10}(a+b x)=\left(1024-640 x+180 x^{2}\right)(a+b x)$ <br> $1024 a=256 \Rightarrow a=\frac{1}{4}$ oe | M1A1 |
| (b) | $1024 b-640 a=352 \Rightarrow b=\frac{1}{2}$ | M1A1 |
| (c) | (8 marks) |  |

(a)

B1 $\quad 2^{10}$ OR 1024 seen as the constant term
M1 For a correct attempt at the binomial expansion for $(a+b)^{n}$ with a $=2, b= \pm \frac{x}{8}$ and $n=10$
Condone missing brackets. Accept any unsimplified term in $x$ as evidence
Accept a power series expansion on $(1 \pm k x)^{10}=1+10( \pm k x)+\frac{10 \times 9}{2}( \pm k x)^{2}$ condoning missing brackets. Again accept any unsimplified term in $x$ as evidence
A1 A completely correct unsimplified solution.
Accept $=2^{10}+{ }^{10} C_{1} 2^{9}\left(-\frac{x}{8}\right)^{1}+{ }^{10} C_{2} 2^{8}\left(-\frac{x}{8}\right)^{2}+$
Accept $=2^{10}\left(1+10 \times\left(-\frac{x}{16}\right)+\frac{10 \times 9 \times\left(-\frac{x}{16}\right)^{2}}{2!}+..\right)$
A1 $1024-640 x+180 x^{2} \quad$ Accept $1024+-640 x+180 x^{2}$
Can be listed with commas or appear on separate lines. Accept in reverse order.
(b)

M1 Sets their ' 1024 ' $\times a=256$
A1 $\quad a=\frac{1}{4}$. Accept equivalents such as 0.25 .
Accept this for both marks (it can be done by substituting $x=0$ into both sides of the expression) as long as it is not found from an incorrect method
(c)

M1 Sets their ' 1024 ' $\times b \pm$ their' 640 ' $a=352$
A1 $b=\frac{1}{2}$ or 0.5

| Question Number | Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
|  | Mark (a) and (b) together |  |  |
| 10(a) | $(1+a x)^{20}=1^{20}+{ }^{20} C_{1} 1^{19}(a x)^{1}+{ }^{20} C_{2} 1^{18}(a x)^{2} .$ <br> Note that the notation $\binom{20}{1}$ may be seen for ${ }^{20} C_{1}$ etc. |  |  |
|  | ${ }^{20} C_{1}{ }^{19}(a x){ }^{1}=4 x \Rightarrow 20 a=4 \Rightarrow a=0.2$ | M1: Uses either ${ }^{20} C_{1}\left(1^{19}\right)(a x)^{1}=4 x^{1}$ or $20 a=4$ to obtain a value for $a$. <br> A1: $a=0.2$ or equivalent | M1A1 |
|  |  |  | (2) |
| (b) | Uses ${ }^{20} C_{2}\left(1^{18}\right)(a x)^{2}=p x^{2}$ and their$\begin{gathered} { }^{20} C_{2} 1^{18}(a x)^{2}=p x^{2} \\ \Rightarrow \frac{20 \times 19}{2} \times\left({ }^{\prime} 0.2^{\prime}\right)^{2}=p \\ \Rightarrow p=\ldots \end{gathered}$ value of $a$ to find a value for $p$. Condone the use of $a$ rather than $a^{2}$ in finding $p$. Maybe implied by an attempt to find a value for $190 a^{2}$ or 190a. Note: ${ }^{20} C_{18}$ can be used for ${ }^{20} \mathrm{C}_{2}$ |  | M1 |
|  | $p=7.6$ | Accept equivalents such as $\frac{38}{5}, \frac{190}{25}$ | A1 |
|  |  |  | (2) |
| (c) | Term is ${ }^{20} C_{4} 1^{16}(a x)^{4} \Rightarrow q=\ldots \quad$Identifies the correct term and uses <br> their value of $a$ to find a value for $q$. <br> Condone the use of $a$ rather than $a^{4}$. <br> Must be an attempt to calculate <br> ${ }^{20} C_{4} a^{4}$ or ${ }^{20} C_{4} a$ or ${ }^{20} C_{16} a^{4}$ or ${ }^{20} C_{16} a$ |  | M1 |
|  | $q={ }^{20} C_{4} \times 0.2^{4}=\frac{969}{125}=(7.752)$ | $q=\frac{969}{125}$ or exact equivalent e.g. <br> 7.752, $7 \frac{94}{125}$. <br> $q=\frac{969}{125} x^{4}$ scores A0 but $q x^{4}=\frac{969}{125} x^{4} \text { scores A1 }$ | A1 |
|  |  |  | (2) |
|  |  |  | (6 marks) |


| Question | Scheme | Marks |
| :---: | :---: | :---: |
| 5. | $\text { (a) } \begin{aligned} \left(3-\frac{a x}{2}\right)^{5}=3^{5} & +\binom{5}{1} 3^{4} \cdot\left(-\frac{a x}{2}\right)+\binom{5}{2} 3^{3} \cdot\left(-\frac{a x}{2}\right)^{2}+\binom{5}{3} 3^{2} \cdot\left(-\frac{a x}{2}\right)^{3} \ldots \\ & =243,-\frac{405}{2} a x+\frac{135}{2} a^{2} x^{2}-\frac{45}{4} a^{3} x^{3} \ldots \end{aligned}$ | M1 $\mathrm{B} 1, \mathrm{~A} 1, \mathrm{~A} 1$ |
|  | $\text { (b) } \begin{aligned} \frac{405}{2} a & =\frac{45}{4} a^{3} \\ a^{2} & =\frac{810}{45}=18 \text { or equivalent } \end{aligned}$ | M1 <br> A1 <br> A1 |
|  |  | [3] |
|  |  | 7 marks |
|  | Notes |  |

(a)

M1: The method mark is awarded for an attempt at Binomial to get the second and/or third and/or fourth term.
You need to see the correct binomial coefficient combined with correct power of $x$. e.g. $\binom{5}{2} . . x^{2}$
Condone bracket errors. Accept any notation for ${ }^{5} C_{1},{ }^{5} C_{2}$ and ${ }^{5} C_{3}$, e.g. $\binom{5}{1},\binom{5}{2}$ and $\binom{5}{3}$ or 5, 10 and 10 from Pascal's triangle.
The mark can be applied in the same way if $3^{5}$ is taken out as a factor.
B1: For the first term of 243 . (writing just $3^{5}$ is B0 ).
A1: is cao and is for two correct and simplified terms from $-\frac{405}{2} a x,+\frac{135}{2} a^{2} x^{2}$ and $-\frac{45}{4} a^{3} x^{3} \ldots$
Allow two correct from $-\frac{405}{2}(a x),+\frac{135}{2}(a x)^{2}$ and $-\frac{45}{4}(a x)^{3} \ldots$ with the brackets.
Allow decimals. Allow lists
A1: is c.a.o and is for all of the terms correct and simplified.
Allow $+\frac{135}{2}(a x)^{2}$ and $-\frac{45}{4}(a x)^{3} \ldots$ (ignore $x^{4}$ terms)
Allow decimal equivalents $-202.5 a x+67.5 a^{2} x^{2}-11.25 a^{3} x^{3}$... Allow listing.
(b)

M1: Puts their coefficient of $x$ equal to their coefficient of $x^{3}$ (There should be no $x$ terms)
A1: This is cao for obtaining $a^{2}$ or $a$ correctly (may be unsimplified)
A1: This is cao for $a=3 \sqrt{2} \quad$ Condone $a= \pm 3 \sqrt{2}$
We will condone all 3 marks to be scored in (b) from a solution in (a) where all signs are + ve

$$
=243+\frac{405}{2} a x+\frac{135}{2} a^{2} x^{2}+\frac{45}{4} a^{3} x^{3} \ldots
$$

| Question <br> Number | Scheme | Marks |
| :---: | :--- | :--- |
| $\mathbf{1}$ | $(1+p x)^{8}=1+8(p x)+\frac{8 \times 7}{2!}(p x)^{2}$ | M1 |
|  | Compares coefficients in $x \Rightarrow 8 p=12 \Rightarrow p=1.5$ | M1A1 |
|  | Compares coefficients in $x^{2} \Rightarrow q=28 p^{2} \Rightarrow q=63$ | M1A1 |
|  |  | $\mathbf{( 5 \text { marks }} \mathbf{~ ( 5 ) ~}$ |

(a)

M1 Uses the power series expansion/ binomial expansion with the correct form for terms 2 and 3.
You may ignore the first term in this question.
Accept the correct coefficient with the correct power of $x$ for terms 2 and 3 .
$(1+p x)^{8}=1+8(\ldots x)+\frac{8 \times 7}{2!}(\ldots x)^{2}$
Allow missing bracket on $x^{2}$ term.
Allow for $(1+p x)^{8}=1+\binom{8}{1}(\ldots x)+\binom{8}{2}(\ldots x)^{2}$ or equivalent.
Allow sight of $\binom{8}{1}(\ldots x)$ and $\binom{8}{2}(\ldots x)^{2}$ separated by commas
M1 Sets their coefficient in $x$ equal to $12 \Rightarrow 8 p=12 \Rightarrow p=\ldots$
It is not dependent on the previous M but it must be of the form $k p=12 \Rightarrow p=\ldots$
A1 $\quad p=1.5$ or equivalent such as $\frac{12}{8}$
M1 Sets $q$ equal to their coefficient of $x^{2}$ (which must include a $p$ or a $p^{2}$ ) then substitutes in their value of $p$ leading to $q=$
A1 $q=63$

| Question Number | Scheme ${ }^{\text {a }}$ Marks |
| :---: | :---: |
| 7(a) | $(1+k x)^{8}=1+\binom{8}{1}(k x)+\binom{8}{2}(k x)^{2}+\binom{8}{3}(k x)^{3} \cdots!!!$ M ${ }^{\text {a }}$, |
|  | $=1+8 k x,+28 k^{2} x^{2},+56 k^{3} x^{3}+\ldots!$ B1, A1, A1 |
|  | [4] |
| (b) | Sets " $56 k^{3}$ " $=1512$ and obtains! $k^{3}=\frac{1512}{56} \quad$ M1 A1 |
|  | So $k=3$ A1 |
|  | [3] |
|  | 7 marks |
|  | Notes |
| (a) | M1: The method mark is awarded for an attempt at the Binomial expansion to get the third and/or fourth term. The correct binomial coefficient needs to be combined with the correct power of $x$. Ignore bracket errors and omission of or incorrect powers of $k$. Accept any notation for ${ }^{8} C_{2}$ or ${ }^{8} C_{3}$, e.g. $\binom{8}{2}$ or $\binom{8}{3}$ or 28 or 56 from Pascal's triangle. <br> This mark may be given if no working is shown, but either or both of $28 k^{2} x^{2}$ and $56 k^{3} x^{3}$ is found. <br> B1: This is for $1+8 k x$ and not for just $1+\binom{8}{1}(k x)$ <br> A1: is cao and is for $28 k^{2} x^{2}$ or for $28(k x)^{2}$ <br> A1: is cao and is for $56 k^{3} x^{3}$ or for $56(k x)^{3}$ <br> Any extra terms in higher powers of $x$ should be ignored. <br> Allow terms separated by commas or given as a list for all the marks. |
| (b) | M1: Sets their coefficient of $x^{3}=1512$ and obtains $k^{n}=.$. where $n$ is 1 or 3 <br> A1: $k^{3}=\frac{1512}{56}$ or equivalent e.g. 27 (May be implied by their final answer) <br> A1: $k=3$ cao ( $\pm 3$ is A0) <br> Note (b) can be marked independently of part (a) so part (a) might be incorrect or not attempted but they have $56 k^{3}=1512$ etc. in (b) |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 6.(a) | $\begin{aligned} &(2+a x)^{6}=2^{6}+\binom{6}{1} 2^{5} \cdot(a x)+\binom{6}{2} 2^{4} \cdot(a x)^{2}+\ldots \\ &=64,+192 a x+240 a^{2} x^{2}+\ldots \end{aligned}$ | $\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~B} 1, \mathrm{~A} 1, \mathrm{~A} 1 \end{aligned}$ |
| (b) | $\begin{aligned} 192 a & =240 a^{2} \\ a & =\frac{192}{240}=0.8 \text { or equivalent } \end{aligned}$ | $\begin{array}{ll} \text { M1 } \\ \text { A1 } & {[4]} \\ \hline \end{array}$ |
|  |  | $6 \text { marks }$ |
| Alt 6.(a) | $\begin{aligned} (2+a x)^{6}=2^{6}\left(1+\frac{a}{2} x\right)^{6} & =2^{6}\left(1+6 \times \frac{a}{2} x+\frac{6 \times 5}{2}\left(\frac{a}{2} x\right)^{2}+\ldots\right) \\ & =64,+192 a x+240 a^{2} x^{2}+\ldots \end{aligned}$ | $\begin{gathered} \mathrm{M} 1 \\ \mathbf{B 1}, \mathrm{~A} 1, \mathrm{~A} 1 \end{gathered}$ |
|  |  | [4] |

(a)

M1 The method mark is awarded for an attempt at a Binomial expansion to get an unsimplified second or third term Look for a correct binomial coefficient multiplied by a correct power of $x$. Eg ${ }^{6} C_{1} \ldots x$ or ${ }^{6} C_{2} \ldots x^{2}$
Condone bracket errors or errors (or omissions) in the powers of 2.
Accept any notation for ${ }^{6} C_{1},{ }^{6} C_{2}$, e.g. as on scheme or 6 , and 15 from Pascal's triangle.
This mark may be given if no working is shown, if either or both of the terms including $x$ is correct.
If the candidate attempts the expansion in descending powers allow ${ }^{6} C_{5} \ldots x^{5}$ or ${ }^{6} C_{4} . . x^{4}$ oe.
In the alternative it is for the correct form inside the bracket accepting either $1+6 \times \frac{a}{2} x+\frac{6 \times 5}{2}\left(\frac{a}{2} x\right)^{2}$ or $1+6 \times \frac{a}{2} x+\frac{6 \times 5}{2} \frac{a}{2} x^{2}$
B1 Must be simplified to 64 (writing just $2^{6}$ is B 0 ).
A1 Score for either of $192 a x$ or $240 a^{2} x^{2}$ correct. Allow $240 a^{2} x^{2}$ appearing as $240(a x)^{2}$ with the bracket
A1 Score for both of $192 a x$ and $240 a^{2} x^{2}$ correct. Allow $240 a^{2} x^{2}$ appearing as $240(a x)^{2}$ with the bracket Allow listing of terms $64,192 a x, 240 a^{2} x^{2}$ for all 4 marks.
(b)

M1 Score for setting the coefficients of their $x$ and $x^{2}$ terms equal. They must reach an equation not involving $x$ 's.
A1 This is cso for any equivalent fraction or decimal to 0.8 . Ignore any reference to $a=0$.

