Question	Scheme	Marks	AOs
8 (a)	$(2+ax)^8$ Attempts the term in $x^5 = {}^8C_5 2^3 (ax)^5 = 448a^5 x^5$	M1 A1	1.1a 1.1b
	Sets $448a^5 = 3402 \implies a^5 = \frac{243}{32}$	M1	1.1b
	$\Rightarrow a = \frac{3}{2}$	A1	1.1b
		(4)	
(b)	Attempts either term. So allow for 2^8 or ${}^8C_4 2^4 a^4$	M1	1.1b
	Attempts the sum of both terms $2^8 + {}^8C_4 2^4 a^4$	dM1	2.1
	= 256 + 5670 = 5926	A1	1.1b
		(3)	
		(7 marks)
	Notes		
(a) M1: An att the correct binomial co	tempt at selecting the correct term of the binomial expansion. If all term must be used. Allow with a missing bracket ${}^{8}C_{5}2^{3}ax^{5}$ and left officient expanded	erms are gi without the	ven then e
A1: 448 <i>a</i> ⁵	x^{5} Allow unsimplified but ${}^{8}C_{5}$ must be "numerical"		

www.yesterdaysmathsexam.com

M1: Sets their $448a^5 = 3402$ and proceeds to $\Rightarrow a^k = \dots$ where $k \in \mathbb{N}$ $k \neq 1$

A1: Correct work leading to $a = \frac{3}{2}$

(b)

M1: Finds either term required. So allow for 2^8 or ${}^8C_4 2^4 a^4$ (even allowing with *a*)

dM1: Attempts the sum of both terms $2^8 + {}^8C_4 2^4 a^4$

A1: cso 5926

Question	Scheme	Marks	AOs		
11(a)	$\left(2 - \frac{x}{16}\right)^9 = 2^9 + \binom{9}{1}2^8 \cdot \left(-\frac{x}{16}\right) + \binom{9}{2}2^7 \cdot \left(-\frac{x}{16}\right)^2 + \dots$	M1	1.1b		
	$\left(2-\frac{x}{16}\right)^9 = 512 + \dots$	B1	1.1b		
	$\left(2-\frac{x}{16}\right)^9 = \dots -144x + \dots$	A1	1.1b		
	$\left(2 - \frac{x}{16}\right)^9 = \dots + \dots + 18x^2 (+\dots)$	A1	1.1b		
		(4)			
(b)	Sets $512'a = 128 \Longrightarrow a = \dots$	M1	1.1b		
	$(a=)\frac{1}{4}$ oe	A1 ft	1.1b		
		(2)			
(c)	Sets $512'b + -144'a = 36 \implies b =$	M1	2.2a		
	$(b=)\frac{9}{64}$ oe	A1	1.1b		
		(2)			
		(8 marks)		
11(a) alt	$\left(2 - \frac{x}{16}\right)^9 = 2^9 \left(1 - \frac{x}{32}\right)^9 = 2^9 \left(1 + \binom{9}{1} \left(-\frac{x}{32}\right) + \binom{9}{2} \left(-\frac{x}{32}\right)^2 + \dots\right)$	M1	1.1b		
	= 512 +	B1	1.1b		
	$= \dots -144x + \dots$	Al	1.1b		
	$= \dots + \dots + 18x^2 (+ \dots)$	A1	1.1b		
	N. 4				
(a) M1: Attempts the binomial expansion. May be awarded on either term two and/or term three Scored for a correct binomial coefficient combined with a correct power of 2 and a correct power of $\left(\pm \frac{x}{16}\right)$ Condone $\binom{9}{2}2^7 \cdot \left(-\frac{x^2}{16}\right)$ for term three.					
Allow any form of the binomial coefficient. Eg $\binom{9}{2} = {}^9C_2 = \frac{9!}{7!2!} = 36$					
In the alternative it is for attempting to take out a factor of 2 (may allow 2^n outside bracket) and					

having a correct binomial coefficient combined with a correct power of $\left(\pm \frac{x}{32}\right)$

Question	Scheme	Marks	AOs
8(a)	2^6 or 64 as the constant term	B1	1.1b
	$\left(2+\frac{3x}{4}\right)^{6} = \dots + {}^{6}C_{1}2^{5}\left(\frac{3x}{4}\right)^{1} + {}^{6}C_{2}2^{4}\left(\frac{3x}{4}\right)^{2} + \dots$	M1	1.1b
	$= \dots + 6 \times 2^{5} \left(\frac{3x}{4}\right)^{1} + \frac{6 \times 5}{2} \times 2^{4} \left(\frac{3x}{4}\right)^{2} + \dots$	A1	1.1b
	$= 64 + 144x + 135x^2 + \dots$	A1	1.1b
		(4)	
(b)	$\frac{3x}{4} = -0.075 \Longrightarrow x = -0.1$	B1ft	2.4
	So find the value of $64+144x+135x^2$ with $x = -0.1$		
		(1)	
		(5 marks)
	Notes		
B1: Sight of either 2^6 or 64 as the constant term M1: An attempt at the binomial expansion. This may be awarded for a correct attempt at either the second OR third term. Score for the correct binomial coefficient with the correct power of 2 and the correct power of $\frac{3x}{4}$ condoning slips. Correct bracketing is not essential for this M mark. Condone ${}^{6}C_{2}2^{4}\frac{3x^{2}}{4}$ for this mark A1: Correct (unsimplified) second AND third terms. The binomial coefficients must be processed to numbers /numerical expression e.g $\frac{6!}{4!2!}$ or $\frac{6 \times 5}{2}$ They cannot be left in the form ${}^{6}C_{1}$ and/or $\binom{6}{2}$ A1: $64+144x+135x^{2}+$ Ignore any terms after this. Allow to be written $64, 144x, 135x^{2}$			
B1ft: $x = -0.1$ or $-\frac{1}{10}$ with a comment about substituting this into their $64 + 144x + 135x^2$ If they have written (a) as $64, 144x, 135x^2$ candidate would need to say substitute $x = -0.1$ into the sum of the first three terms. As they do not have to perform the calculation allow Set $2 + \frac{3x}{4} = 1.925$, solve for x and then substitute this value into the expression from (a) If a value of x is found then it must be correct			
Alternative to part (a) $\left(2 + \frac{3x}{4}\right)^{6} = 2^{6} \left(1 + \frac{3x}{8}\right)^{6} = 2^{6} \left(1 + {}^{6}C_{1} \left(\frac{3x}{8}\right)^{1} + {}^{6}C_{2} \left(\frac{3x}{8}\right)^{2} + \dots\right)$			

B1: Sight of either 2^6 or 64

www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
6 (a)	$(1+kx)^{10} = 1 + {\binom{10}{1}}(kx)^1 + {\binom{10}{2}}(kx)^2 + {\binom{10}{3}}(kx)^3 \dots$	M1 A1	1.1b 1.1b
	$= 1 + 10kx + 45k^2x^2 + 120k^3x^3$	A1	1.1b
		(3)	
(b)	Sets $120k^{3} = 3 \times 10k$	B1	1.2
	$4k^2 = 1 \Longrightarrow k = \dots$	M1	1.1b
	$k = \pm \frac{1}{2}$	A1	1.1b
		(3)	
		(6 marks)

- (a)
- M1: An attempt at the binomial expansion. This may be awarded for either the second or third term or fourth term. The coefficients may be of the form ${}^{10}C_1$, $\begin{pmatrix} 10\\2 \end{pmatrix}$ etc or eg $\frac{10 \times 9 \times 8}{3!}$
- A1: A correct unsimplified binomial expansion. The coefficients must be numerical so cannot be of the form ${}^{10}C_1$, $\binom{10}{2}$. Coefficients of the form $\frac{10 \times 9 \times 8}{3!}$ are acceptable for this mark. The bracketing must be correct on $(kx)^2$ but allow recovery
- A1: $1+10kx+45k^2x^2+120k^3x^3...$ or $1+10(kx)+45(kx)^2+120(kx)^3...$ Allow if written as a list.

(b)

- **B1:** Sets their $120k^3 = 3 \times \text{their } 10k$ (Seen or implied) For candidates who haven't cubed allow $120k = 3 \times \text{their } 10k$ If they write $120k^3x^3 = 3 \times \text{their } 10kx$ only allow recovery of this mark if x disappears afterwards.
- M1: Solves a cubic of the form $Ak^3 = Bk$ by factorising out/cancelling the k and proceeding correctly to at least one value for k. Usually $k = \sqrt{\frac{B}{A}}$
- A1: $k = \pm \frac{1}{2}$ o.e ignoring any reference to 0

Quest	ion Scheme	Marks	AOs
7(a	$\left(2 - \frac{x}{2}\right)^7 = 2^7 + \binom{7}{1} 2^6 \cdot \left(-\frac{x}{2}\right) + \binom{7}{2} 2^5 \cdot \left(-\frac{x}{2}\right)^2 + \dots$	M1	1.1b
	$\left(2-\frac{x}{2}\right)^7 = 128 + \dots$	B1	1.1b
	$\left(2-\frac{x}{2}\right)^7 = \dots -224x + \dots$	A1	1.1b
	$\left(2-\frac{x}{2}\right)^7 = \dots + \dots + 168x^2 (+\dots)$	A1	1.1b
		(4)	
(b)	Solve $\left(2 - \frac{x}{2}\right) = 1.995$ so $x = 0.01$ and state that 0.01 would be substituted for x into the expansion	B1	2.4
		(1)	
		(5 n	narks)
Notes	•		
(a) M1: B1: A1: A1:	 (a) M1: Need correct binomial coefficient with correct power of 2 and correct power of x. Coefficients may be given in any correct form; e.g. 1, 7, 21 or ⁷C₀, ⁷C₁, ⁷C₂ or equivalent B1: Correct answer, simplified as given in the scheme A1: Correct answer, simplified as given in the scheme A1: Correct answer, simplified as given in the scheme 		
(b) B1:	Needs a full explanation i.e. to state $x = 0.01$ and that this would be substituted and that it is a solution of $\left(2 - \frac{x}{2}\right) = 1.995$		

Question	Scheme	Marks	
Number	$(2 + 1 + 1)^5$		
1	$(3-\frac{1}{3}x)$ - $2^{5}+\frac{5}{3}C2^{4}(-1x)+\frac{5}{3}C2^{3}(-1x)^{2}+\frac{5}{3}C2^{2}(-1x)^{3}$		
1.	$5' + C_1 5 (-\frac{1}{3}x) + C_2 5 (-\frac{1}{3}x) + C_3 5 (-\frac{1}{3}x) \dots$ First term of 243	B1	
	$ ({}^{5}C_{1} \times \times x) + ({}^{5}C_{2} \times \times x^{2}) + ({}^{5}C_{3} \times \times x^{3}) $	M1	
	(242) 405 270 2 90 3		
	$=(243) - \frac{1}{3}x + \frac{1}{9}x - \frac{1}{27}x$	A1	
	$=(243)-135x+30x^2-\frac{10}{2}x^3$	A1 (4)	
		[4]	
Alternative method	$\left(3 - \frac{1}{3}x\right)^5 = 3^5 \left(1 - \frac{x}{9}\right)^5$		
	$3^{5}(1 + {}^{5}C_{1}(-\frac{1}{9}x) + {}^{5}C_{2}(-\frac{1}{9}x)^{2} + {}^{5}C_{3}(-\frac{1}{9}x)^{3} \dots)$		
	Scheme is applied exactly as before		
	Notes B1: The constant term should be 243 in their expansion		
	M1: Two of the three binomial coefficients must be correct and must be with the correct power of x .		
	Accept ${}^{5}C_{1}$ or $\begin{pmatrix} 5\\1 \end{pmatrix}$ or 5 as a coefficient, and ${}^{5}C_{2}$ or $\begin{pmatrix} 5\\2 \end{pmatrix}$ or 10 as another and ${}^{5}C_{3}$ or $\begin{pmatrix} 5\\3 \end{pmatrix}$ or 10 as		
	another Pascal's triangle may be used to establish coefficients. NB: If they only include the first two of these terms then the M1 may be awarded.		
	A1: Two of the final three terms correct – may be unsimplified i.e. two of $-135x + 30x^2 - \frac{10}{3}x^3$		
	correct, or two of $-\frac{405}{3}x + \frac{270}{9}x^2 - \frac{90}{27}x^3$ (may be just two terms)		
	A1: All three final terms correct and simplified. (Can be listed with commas or appear on separate lines.		
	Accept in reverse order.) Accept correct alternatives to $-\frac{10}{3}$ e.g. $-3\frac{1}{3}$ or -3.3 the recurring n	nust be	
	clear. 3.3 is not acceptable. Allow e.g. $+-135x$		
	e.g. The common error $3^5 + {}^5C_1 3^4 (-\frac{1}{3})x + {}^5C_2 3^3 (-\frac{1}{3})x^2 + {}^5C_3 3^2 (-\frac{1}{3})x^3 = (243) - 135x - 90x^2$ would earn B1, M1, A0, A0, so 2/4 If extra terms are given then isw No negative signs in answer also earns B1, M1, A0, A0 If the series is divided through by 3 at the final stage after an error or omission resulting in all of three coefficients then apply scheme to series before this division and ignore subsequent wo	$-30x^{3}$ multiple ork (isw)	
	Special Case. Only gives first three terms = $(243 \dots) -135x + 30x^2 \dots$ of $243 - \frac{3}{3}x + \frac{9}{9}x$	t	
	Follow the scheme to give B1 M1 A1 A0 special case. (Do not treat as misread.)	cc .	
	Answers such as $243 + 405 - \frac{1}{3}x + 270 - \frac{1}{9}x^2 + 90 - \frac{1}{27}x^3$. gain no credit as the binomial coe	micients	
	are not linked to the x terms.		

Question Number	Scheme		Marks
5.	(a) $(2-9x)^4 = 2^4 + {}^4C_1 2^3 (-9x) + {}^4C_2 2^2 (-9x)^2$, (b) $f(x) = (1+kx)(2-9x)^4 = A - 232x + Bx^2$		
(a)	First term of 16 in their final series	······································	B1
Way 1	At least one of $({}^{4}C_{1} \times \times x)$ or $({}^{4}C_{2} \times \times x^{2})$		M1
	$(10) 288 \dots 1044 \dots^2$	At least one of $-288x$ or $+1944x^2$	Al
	=(10) - 288x + 1944x	Both $-288x$ and $+1944x^2$	Al
			[4]
(a)	$(2-9x)^4 = (4-36x+81x^2)(4-36x+81x^2)$		
		First term of 16 in their final series	B1
W 2	16 - 144 + 224 + 144 + 1206 + 224	Attempts to multiply a 3 term	
way 2	= 10 - 144x + 524x - 144x + 1290x + 524x	guadratic by the same 5 terms in	M1
		x or at least 2 terms in x^2 .	
	(16) 200 1044 2	At least one of $-288x$ or $+1944x^2$	Al
	$= (16) - 288x + 1944x^{2}$	Both $-288x$ and $+1944x^2$	A1
	·		[4]
(a) Way 3	$\left\{ (2-9x)^4 = \right\} 2^4 \left(1 - \frac{9}{2}x \right)^4$	First term of 16 in final series	B1
	$\begin{pmatrix} & & & \\ & & & \end{pmatrix}$ $\lambda(2) \begin{pmatrix} & & & \\ & & & \end{pmatrix}^2$	At least one of	
	$= 2^{4} \left(1 + 4 \left(-\frac{9}{2}x \right) + \frac{4(3)}{2} \left(-\frac{9}{2}x \right) + \dots \right)$	$\frac{(4 \times \times x) \text{ or } \left(\frac{4(3)}{2} \times \times x^2\right)}{2}$	M1
	(10, 200, 1044)	At least one of $-288x$ or $+1944x^2$	Al
	$= (16) - 288x + 1944x^{2}$	Both $-288x$ and $+1944x^2$	A1
			[4]
	Parts (b), (c) and (d) may be marked together		
(b)	<i>A</i> = "16"	Follow through their value from (a)	B1ft
		May be seen in part (b) or (d)	[1]
(c)	$\left\{ (1+kx)(2-9x)^{2} \right\} = (1+kx)(16-288x+\{1944x^{2}+\})$	and can be implied by work in	M1
		parts (c) or (d).	
	x terms: $-288x + 16kx = -232x$		
	giving, $16k = 56 \implies k = \frac{7}{2}$	$k=\frac{7}{2}$	A1
(b)	x^2 torms: 1044 x^2 288 kx^2		
(a)	x (C11115) 1944 $x = 200 k x$	Saa notas	M1
	So, $B = 1944 - 288 \left(\frac{7}{2} \right); = 1944 - 1008 = 936$	026	
	(2) .	930	[2]
			<u>9</u>

Question Number	Scheme	Marks
11.(a)	$(3+ax)^5 = 3^5 + {5 \choose 1} 3^4 \cdot (ax) + {5 \choose 2} 3^3 \cdot (ax)^2 + \dots$	M1
	$= 243, +405ax + 270a^2x^2 + \dots$	B1, A1, A1
		[4]
(b)	$f(x) = (a - x)(3 + ax)^{5} = (a - x)(243 + 405ax + 270a^{2}x^{2} +)$	
	$-243 + 405a^2 = 0 \Rightarrow a^2 = \frac{243}{405} \Rightarrow a = \sqrt{\frac{3}{5}}$ or equivalent	M1,dM1A1
		[3]
		(7 marks)

M1 This method mark is awarded for an attempt at a Binomial expansion to get the second and/or third term – it requires a correct binomial coefficient combined with correct power of 3 and the correct power of *x*. Ignore bracketing errors. Accept any notation for ${}^{5}C_{1}$, ${}^{5}C_{2}$, e.g. as on scheme or 5, and 10 from Pascal's triangle. This mark may be given if no working is shown, if either or both of the terms including *x* is correct.

An alternative is
$$(3+ax)^5 = 3^5 \left\{ 1 + \frac{ax}{3} \right\}^5 = 3^5 \left\{ 1 + 5 \times \frac{ax}{3} + \frac{5 \times 4}{2(!)} \times \left(\frac{ax}{3} \right)^2 \right\}$$

In this method it is scored for the correct attempt at a binomial expansion to get the second and/or third term in the bracket of $3^n \left\{1+5 \times \frac{ax}{3} + \frac{5 \times 4}{2(!)} \times \left(\frac{ax}{3}\right)^2 \dots \right\}$

Score for binomial coefficient with the correct power of $\left(\frac{x}{3}\right)$ Eg. $5 \times \frac{..x}{3}$ or $10 \times \left(\frac{..x}{3}\right)^2$

- B1 Must be simplified to 243 (writing just 3^5 is B0).
- A1 cao and is for one correct from 405ax, and $270a^2x^2$ Also allow $270(ax)^2$ with the bracket
- A1 cao and is for both of 405a x, and $270a^2x^2$.

Allow $270(ax)^2$ with the bracket correct (ignore extra terms). Allow listing for all marks It is possible to score 1011 in (a)

There are a minority of students who attempt this in (a)

 $f(x) = (a-x)(3+ax)^5 = (a-x)(243+405ax+270a^2x^2+...)$ and go on to expand this.

They can have all the marks in part (a)

(b)

M1 Attempt to set the coefficient of x in the expansion of $(a - x)(3 + ax)^5$ equal to 0

$$(a-x)(3+ax)^{5} = (a-x)(P+Qax+Ra^{2}x^{2}+...) = aP + (a^{2}Q-P)x + ...$$

For this to be scored you must see an equation of the form $\pm P \pm Qa^2 = 0$ You are condoning slips/ sign errors

dM1 For $\pm P \pm Qa^2 = 0 \Rightarrow a = ...$ using a correct method. This cannot be scored for an attempt at sq rooting a negative number

A1
$$a = \sqrt{\frac{3}{5}}$$
 or exact equivalent such as $a = \frac{\sqrt{15}}{5}$ You may ignore any reference to $a = -\sqrt{\frac{3}{5}}$

Question Number	Scheme	Marks
10 (a)	2 ¹⁰ OR 1024 seen as the constant term $\left(2 - \frac{x}{2}\right)^{10} = 2^{10} + {}^{10}C_1 2^9 \left(-\frac{x}{2}\right)^1 + {}^{10}C_2 2^8 \left(-\frac{x}{2}\right)^2 + \frac{x}{2}$	B1 M1A1
	$=1024 - 640x + 180x^{2}$	A1 (4)
	$\left(2 - \frac{x}{8}\right)^{10} \left(a + bx\right) = \left(1024 - 640x + 180x^2\right) \left(a + bx\right)$	
(b)	$1024a = 256 \Longrightarrow a = \frac{1}{4}$ oe	M1A1 (2)
(c)	$1024b - 640a = 352 \Longrightarrow b = \frac{1}{2}$	M1A1
		(8 marks)

B1 2^{10} OR 1024 seen as the constant term

M1 For a correct attempt at the binomial expansion for $(a+b)^n$ with a=2, $b=\pm \frac{x}{8}$ and n=10Condone missing brackets. Accept any unsimplified term in x as evidence Accept a power series expansion on $(1\pm kx)^{10} = 1+10(\pm kx) + \frac{10\times 9}{2}(\pm kx)^2$ condoning missing brackets. Again accept any unsimplified term in x as evidence

A1 A completely correct unsimplified solution.

Accept =
$$2^{10} + {}^{10}C_1 2^9 \left(-\frac{x}{8}\right)^1 + {}^{10}C_2 2^8 \left(-\frac{x}{8}\right)^2 +$$

Accept = $2^{10} \left(1 + 10 \times \left(-\frac{x}{16}\right) + \frac{10 \times 9 \times \left(-\frac{x}{16}\right)^2}{2!} + ...\right)$

- A1 $1024-640x+180x^2$ Accept $1024+-640x+180x^2$ Can be listed with commas or appear on separate lines. Accept in reverse order.
- (b) M1

Sets their '1024' $\times a = 256$

A1 $a = \frac{1}{4}$. Accept equivalents such as 0.25.

Accept this for both marks (it can be done by substituting x = 0 into both sides of the expression) as long as it is not found from an incorrect method

- (c)
- M1 Sets their '1024' $\times b \pm$ their '640' a = 352

A1
$$b = \frac{1}{2}$$
 or 0.5

Question Number	Sche	eme	Marks
	Mark (a) and (b) together		
10(a)	$(1+ax)^{20} = 1^{20} + {}^{20}C_1 1^{11}$	$(ax)^{1} + {}^{20}C_{2}1^{18}(ax)^{2}.$	
	Note that the notation $\begin{pmatrix} 20\\1 \end{pmatrix}$) may be seen for ${}^{20}C_1$ etc.	
	$^{20}C_1 1^{19} (ax)^1 = 4x \Longrightarrow 20a = 4 \Longrightarrow a = 0.2$	M1: Uses either ${}^{20}C_1(1^{19})(ax)^1 = 4x^1$ or $20a = 4$ to obtain a value for <i>a</i> . A1: $a = 0.2$ or equivalent	M1A1
			(2)
(b)	$\Rightarrow \frac{20}{2}C_2 1^{18} (ax)^2 = px^2$ $\Rightarrow \frac{20 \times 19}{2} \times ('0.2')^2 = p$ $\Rightarrow p = \dots$	Uses ${}^{20}C_2(1^{18})(ax)^2 = px^2$ and their value of <i>a</i> to find a value for <i>p</i> . Condone the use of <i>a</i> rather than a^2 in finding <i>p</i> . Maybe implied by an attempt to find a value for $190a^2$ or $190a$. Note: ${}^{20}C_{18}$ can be used for ${}^{20}C_2$	M1
	<i>p</i> = 7.6	Accept equivalents such as $\frac{38}{5}, \frac{190}{25}$	A1
			(2)
(c)	Term is ${}^{20}C_4 1^{16} (ax)^4 \Longrightarrow q =$	Identifies the correct term and uses their value of <i>a</i> to find a value for <i>q</i> . Condone the use of <i>a</i> rather than a^4 . Must be an attempt to calculate ${}^{20}C_4a^4$ or ${}^{20}C_4a$ or ${}^{20}C_{16}a^4$ or ${}^{20}C_{16}a$	M1
	$q = {}^{20}C_4 \times 0.2^4 = \frac{969}{125} = (7.752)$	$q = \frac{969}{125} \text{ or exact equivalent e.g.}$ 7.752, $7\frac{94}{125}$. $q = \frac{969}{125}x^4 \text{ scores A0 but}$ $qx^4 = \frac{969}{125}x^4 \text{ scores A1.}$	A1
			(2)
			(6 marks)

Scheme	Marks		
(a) $\left(3-\frac{ax}{2}\right)^{5} = 3^{5} + {5 \choose 1} 3^{4} \cdot \left(-\frac{ax}{2}\right) + {5 \choose 2} 3^{3} \cdot \left(-\frac{ax}{2}\right)^{2} + {5 \choose 3} 3^{2} \cdot \left(-\frac{ax}{2}\right)^{5} \dots$	M1		
$= 243, -\frac{405}{2}ax + \frac{135}{2}a^2x^2 - \frac{45}{4}a^3x^3$	B1, A1, A1		
	[4]		
(b) $\frac{405}{2}a = \frac{45}{4}a^3$	M1		
2 4	4.1		
$a^2 = \frac{1}{45} = 18$ of equivalent	AI		
$a = 3\sqrt{2}$	A1 [2]		
	7 marks		
Notes			
	.1		
ethod mark is awarded for an attempt at Binomial to get the second and/or third and/or fo	ourth term.		
ed to see the correct binomial coefficient combined with correct power of x. e.g. $\begin{pmatrix} 3\\2 \end{pmatrix}$. x^2			
one bracket errors. Accept any notation for ${}^{5}C_{1}$, ${}^{5}C_{2}$ and ${}^{5}C_{3}$, e.g. $\begin{pmatrix} 5\\1 \end{pmatrix}$, $\begin{pmatrix} 5\\2 \end{pmatrix}$ and $\begin{pmatrix} 5\\3 \end{pmatrix}$			
0 and 10 from Pascal's triangle.			
ark can be applied in the same way if 3^5 is taken out as a factor.			
$\frac{1}{10} = \frac{1}{10} $			
and is for two correct and simplified terms from $-\frac{1}{2}ax$, $+\frac{1}{2}a^2x^2$ and $-\frac{1}{4}a^3x^3$			
Allow two correct from $-\frac{405}{2}(ax)$, $+\frac{135}{2}(ax)^2$ and $-\frac{45}{4}(ax)^3$ with the brackets.			
Allow decimals. Allow lists			
A1: is c.a.o and is for all of the terms correct and simplified.			
Allow $+\frac{155}{2}(ax)^2$ and $-\frac{45}{4}(ax)^3$ (ignore x^4 terms)			
Allow decimal equivalents $-202.5 ax + 67.5 a^2x^2 - 11.25 a^3x^3$ Allow listing.			
(b) M1: Puts their coefficient of r equal to their coefficient of r^3 (There should be no r terms)			
A1: This is cao for obtaining a^2 or a correctly (may be unsimplified)			
A1: This is cao for $a = 3\sqrt{2}$ Condone $a = \pm 3\sqrt{2}$			
We will condone all 3 marks to be scored in (b) from a solution in (a) where all signs are +ve			
$243 + \frac{405}{2}ax + \frac{135}{2}a^2x^2 + \frac{45}{4}a^3x^3 \dots$			
	Scheme (a) $\left(3 - \frac{ax}{2}\right)^5 = 3^5 + {\binom{5}{1}} 3^4 \cdot \left(-\frac{ax}{2}\right) + {\binom{5}{2}} 3^3 \cdot \left(-\frac{ax}{2}\right)^2 + {\binom{5}{3}} 3^2 \cdot \left(-\frac{ax}{2}\right)^3 \dots = 243, -\frac{405}{2} ax + \frac{135}{2} a^2 x^2 - \frac{45}{4} a^3 x^3 \dots = 243, -\frac{405}{2} ax + \frac{135}{2} a^2 x^2 - \frac{45}{4} a^3 x^3 \dots = 243, -\frac{405}{2} ax + \frac{135}{2} a^2 x^2 - \frac{45}{4} a^3 x^3 \dots = 243, -\frac{405}{2} ax + \frac{135}{2} a^2 x^2 - \frac{45}{4} a^3 x^3 \dots = 243, -\frac{405}{2} ax + \frac{135}{2} a^2 x^2 - \frac{45}{4} a^3 x^3 \dots = 243, -\frac{45}{4} a^3 x^3 \dots = 3\sqrt{2}$ Notes ethod mark is awarded for an attempt at Binomial to get the second and/or third and/or for ed to see the correct binomial coefficient combined with correct power of x. e.g. $\binom{5}{2} \dots x^3$ one bracket errors. Accept any notation for 5C_1 , 5C_2 and 5C_3 , e.g. $\binom{5}{1}$, $\binom{5}{2}$ and $\binom{5}{3}$ 0 and 10 from Pascal's triangle. ark can be applied in the same way if 3^5 is taken out as a factor. If first term of 243. (writing just 3^3 is B0). and is for two correct and simplified terms from $-\frac{405}{2}ax$, $+\frac{135}{2}a^2x^2$ and $-\frac{45}{4}a^2x^3 \dots$ two correct from $-\frac{405}{2}(ax)$, $+\frac{135}{2}(ax)^2$ and $-\frac{45}{4}(ax)^3 \dots$ with the brackets. decimals. Allow lists o and is for all of the terms correct and simplified. $+\frac{135}{2}(ax)^2$ and $-\frac{45}{4}(ax)^3 \dots$ (ignore x^4 terms) decimal equivalents $-202.5ax + 67.5a^2x^2 - 11.25a^3x^3 \dots$ Allow listing. neir coefficient of x equal to their coefficient of x^3 (There should be no x terms) cao for obtaining a^2 or a correctly (may be unsimplified) cao for $a = 3\sqrt{2}$ Condone $a = \pm 3\sqrt{2}$ Il condone all 3 marks to be scored in (b) from a solution in (a) where all signs are +ve $243 + \frac{405}{2}ax + \frac{135}{2}a^2x^2 + \frac{45}{4}a^3x^3 \dots$		

Question Number	Scheme	Marks
1	$(1+px)^8 = 1+8(px) + \frac{8\times7}{2!}(px)^2$	M1
	Compares coefficients in $x \Rightarrow 8p = 12 \Rightarrow p = 1.5$	M1A1
	Compares coefficients in $x^2 \implies q = 28 p^2 \implies q = 63$	M1A1
		(5)
		(5 marks)

M1 Uses the power series expansion/ binomial expansion with the correct form for terms 2 and 3. You may ignore the first term in this question.

Accept the correct coefficient with the correct power of *x* for terms 2 and 3.

$$(1+px)^8 = 1+8(...x) + \frac{8\times7}{2!}(...x)^2$$

Allow missing bracket on x^2 term.

Allow for $(1 + px)^8 = 1 + \binom{8}{1}(..x) + \binom{8}{2}(..x)^2$ or equivalent.

Allow sight of $\binom{8}{1}(..x)$ and $\binom{8}{2}(..x)^2$ separated by commas

M1 Sets their coefficient in x equal to $12 \Rightarrow 8p = 12 \Rightarrow p = ...$ It is not dependent on the previous M but it must be of the form $kp = 12 \Rightarrow p = ...$

A1
$$p = 1.5$$
 or equivalent such as $\frac{12}{8}$

M1 Sets q equal to their coefficient of x^2 (which must include a p or a p^2) then substitutes in their value of p leading to q =

A1
$$q = 63$$

Question Number	Scheme	Marks	
7(a)	$(1+kx)^8 = 1 + {8 \choose 1}(kx) + {8 \choose 2}(kx)^2 + {8 \choose 3}(kx)^3 \dots $	M1	
	$= 1 + 8kx, +28k^2x^2, +56k^3x^3 + \dots!$	B1, A1, A1	
		[4]	
(b)	Sets "56 k^3 " = 1512 and obtains! $k^3 = \frac{1512}{56}$	M1 A1	
	So $k = 3$	A1	
		[3]	
	Notor	7 marks	
	Notes		
(a)	term. The correct binomial coefficient needs to be combined with the correct power of x. Ignore brack (8)		
	errors and omission of or incorrect powers of k. Accept any notation for ${}^{8}C_{2}$ or ${}^{8}C_{3}$, e.g. $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$	or $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$ or	
	28 or 56 from Pascal's triangle.		
	This mark may be given if no working is shown, but either or both of $28k^2x^2$ and $56k^3x^3$ is found.		
	B1: This is for $1 + 8kx$ and not for just $1 + \binom{8}{1}(kx)$		
	A1: is cao and is for $28k^2x^2$ or for $28(kx)^2$		
	A1: is cao and is for $56k^3x^3$ or for $56(kx)^3$		
	Any extra terms in higher powers of x should be ignored.		
	Allow terms separated by commas or given as a list for all the marks.		
(b)	M1: Sets their coefficient of $x^3 = 1512$ and obtains $k^n =$ where <i>n</i> is 1 or 3		
	A1: $k^3 = \frac{1512}{56}$ or equivalent e.g. 27 (May be implied by their final answer)		
	A1: $k = 3 \operatorname{cao}(\pm 3 \operatorname{is} A0)$		
	Note (b) can be marked independently of part (a) so part (a) might be incorrect or not attempted but		
	they have $56k^3 = 1512$ etc. in (b)		

!

Question Number	Scheme	Marks
6.(a)	$(2+ax)^6 = 2^6 + {6 \choose 1} 2^5 \cdot (ax) + {6 \choose 2} 2^4 \cdot (ax)^2 + \dots$	M1
	$=64,+192ax+240a^{2}x^{2}+$	B1, A1, A1
		[4]
(b)	$192a = 240a^2$	M1
	$a = \frac{192}{240} = 0.8$ or equivalent	A1
	210	[2] 6 marks
Alt 6.(a)	$(2+ax)^{6} = 2^{6} \left(1+\frac{a}{2}x\right)^{6} = 2^{6} \left(1+6\times\frac{a}{2}x+\frac{6\times5}{2}\left(\frac{a}{2}x\right)^{2}+\dots\right)$	M1
	$=64,+192ax+240a^{2}x^{2}+$	B1, A1, A1
		[4]

M1 The method mark is awarded for an attempt at a Binomial expansion to get an unsimplified second or third term – Look for a correct binomial coefficient multiplied by a correct power of x. Eg ${}^{6}C_{1}...x$ or ${}^{6}C_{2}..x^{2}$ Condone bracket errors or errors (or omissions) in the powers of 2. Accept any notation for ${}^{6}C_{1}$, ${}^{6}C_{2}$, e.g. as on scheme or 6, and 15 from Pascal's triangle. This mark may be given if no working is shown, if either or both of the terms including x is correct. If the candidate attempts the expansion in descending powers allow ${}^{6}C_{5}...x^{5}$ or ${}^{6}C_{4}..x^{4}$ oe.

In the alternative it is for the correct form inside the bracket accepting either $1 + 6 \times \frac{a}{2}x + \frac{6 \times 5}{2} \left(\frac{a}{2}x\right)^2$

or
$$1 + 6 \times \frac{a}{2}x + \frac{6 \times 5}{2}\frac{a}{2}x^2$$

- B1 Must be simplified to 64 (writing just 2^6 is B0).
- A1 Score for either of 192a x or $240a^2x^2$ correct. Allow $240a^2x^2$ appearing as $240(ax)^2$ with the bracket
- A1 Score for both of 192a x and $240a^2x^2$ correct. Allow $240a^2x^2$ appearing as $240(ax)^2$ with the bracket Allow listing of terms 64, 192ax, $240a^2x^2$ for all 4 marks.

(b)

M1 Score for setting the coefficients of their x and x^2 terms equal. They must reach an equation not involving x's. A1 This is cso for any equivalent fraction or decimal to 0.8. Ignore any reference to a = 0.