

Mark Scheme (Results)

October 2016

Pearson Edexcel International A Level Mathematics

Statistics 1 (WST01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2016
Publications Code WST01_01_1610_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method
 (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

IAL Statistics 1 (WST01) - October 2016

Question Number	Scheme	Marks
1. (a)	$[P(X > \mu - a)] = 0.65$	B1 (1)
(b)	$[P(\mu - a < X < \mu + a)] = 1 - 2 \times 0.35 \text{ or } "0.65" - 0.35 \text{ or } 0.15 + 0.15$ $= \underline{\textbf{0.3}}$	M1 A1 (2)
(c)	$[P(X < \mu + a \mid X > \mu - a)] = \frac{"(b)"}{"(a)"} = \frac{0.3}{0.65}$	M1
	$= \frac{6}{13} \qquad \text{(Allow awrt 0.462)}$	(2) [Total 5]
	Notes	
(a)	B1 for 0.65 NB you may see $P(Z < 0.35) = 0.6368$ which is of course B0	
(b)	M1 for a correct numerical expression, ft their answer to part (a) [M0 for a pr for 0.3 (Answer only scores both marks)	obability < 0]
(c)	M1 for a correct ratio of probabilities or follow through their answers provide A1 for $\frac{6}{13}$ or an exact equivalent and allow awrt 0.462	ed (b) < (a)

Question Number	Scheme	Marks
2. (a)	2a + 2b + 0.2 = 1 (o.e.)	B1
(b)	$[E(X) =] -2b-a+a+2b+3\times0.2$ = <u>0.6</u>	(1) M1 A1 (2)
(c)(i)	$\begin{bmatrix} E(X^2) = 3.5 \Rightarrow \end{bmatrix} 3.5 = (-2)^2 \times b + (-1)^2 \times a + a + 2^2 \times b + 3^2 \times \frac{1}{5}$ or $3.5 = 8b + 2a + 1.8$ or $8b + 2a = 1.7$ (o.e.)	M1
(ii)	Solving: $2a + 2b = 0.8$ and $2a + 8b = 1.7$ gives $6b = 0.9$ So $\underline{a} = 0.25$ and $\underline{b} = 0.15$	M1 A1A1
(d)	[Var(X) =] $3.5 - 0.6^{2}$ = $3.5 - 0.36 = 3.14$	(4) M1 A1
(e)	P(5-3X>0) = P(5>3X) = P(X<1.66) i.e. $P(X=1 \text{ or } -1 \text{ or } -2)$ $= \underline{\textbf{0.65}}$	(2) M1 A1 A1ft (3)
(f)(i)	$[E(Y) = 5 - 3E(X) = 5 - 1.8] = 3.2$ (Allow any exact equivalent e.g. $\frac{16}{5}$)	B1 (3)
(ii)		M1
	$= [9 \times 3.14] = 28.26 \text{ or } 28.3 \text{ or } \frac{1413}{50}$	A1
		(3) [Total 15]
	Notes Notes	
(a)	B1 for a correct equation based upon sum of probs. = 1	
(b)	M1 for an attempt at $E(X)$ i.e. an expression with at least 4 correct terms for 0.6 or any exact equivalent. Allow $2/2$ for 0.6 only or 0.6 following no incor	rect working
(c)	1^{st} M1 for an attempt to form a second linear equ'n in a and b using $E(X^2)$, $\geqslant 3$ correct terms 2^{nd} M1 for an attempt to solve their linear equ'nsreducing to an equation in one variable. 1^{st} A1 for either a or b correct 2^{nd} A1 for both correct	
(d)	M1 for a correct expression for $Var(X)$ ft their 0.6 A1 for 3.14 or any exact equivalent e.g. $\frac{157}{50}$	
(e)	M1 for attempt to solve the inequality leading to $X < 1.66$ Allow $5 > 3X$ leads A1 for identifying the 3 correct values of X required A1ft for 0.65 or ft their $2a + b$ $(a \ne b)$	ing to X < 0.6
(f)(ii)	M1 for seeing $(-3)^2 \operatorname{Var}(X)$ or better [ft their value of $\operatorname{Var}(X)$] A1 for 28.26 or 28.3	
ALT(e,f)		4 .2 ft probs)
(f)(ii)	M1 for correct expression for $E(Y^2)$ [= 38.5] and for $Var(Y)$ = "38.5" - 3.2 ²	,

Question Number	Scheme	Marl	KS
3. (a)	C 8 (12 23 S OF (8 (12 23 13 10) G	B1 B1 B1 B1	
(b)(i)	$P(S) = \left[\frac{12 + 23 + 13}{80}\right] = \frac{48}{80} \text{ or } \frac{3}{5} \text{ or } 0.6$	B1ft	(4)
(ii)	$P(S \mid C) = \frac{P(S \cap C)}{P(C)} = \frac{\frac{12}{80}}{\frac{20}{80}}$ $= \frac{12}{20} \text{ or } 0.6$	M1 A1cso	(1)
(iii)	$\frac{20}{P(S) = P(S C)} \text{ or } P(C) = 0.25, P(C \cap S) = 0.15 \text{ and } P(C) \times P(S) = 0.6 \times 0.25$ so <i>S</i> and <i>C</i> are independent	B1ft dB1ft	(2)
(c)	Need P(S G) = $\frac{13}{23}$ P(S C) = 0.6 > 0.565 so assistant selling <u>coats</u> has the better performance	M1A1 A1	(3)
	Notes	[Total	12]
(a)		RH diagra	am)
(b)(i)	B1ft for 0.6 or any exact equivalent (single fraction) or ft their values (ft blank	x as 0)	
(ii)			
(iii)	1 st B1ft for a full reason. If not $P(S) = P(S C)$ then <u>all</u> values must be stated, labelled and correct or correct ft from diagram. Correct not'n required so $P(S \cup C) = 0.15$ is B0B0 2 nd dB1ft dep. on a correct reason for correct conclusion for their values		
(c)	M1 for attempt at $P(S \mid G)$ correct ratio of probabilities or numbers using their figs 1^{st} A1 for $\frac{13}{23}$ (accept awrt 0.565) [Sight of $P(S \mid G) = \frac{13}{23}$ is M1A1] 2^{nd} A1 for a correct conclusion that chooses "coats" based on a correct comparison Allow incorrect $P(S C)$ provided > 0.565 to score 2^{nd} A1 and so all 3 marks Condone poor use of notation eg $S G$ with no $P()$. Probabilities may be described in words. Condone comparison of $\frac{13}{23}$ with 0.6 even if $\frac{13}{23}$ is not labelled as $P(S G)$		

Question Number	Scheme	Marks
4. (a)	$\sum f = 456$ or $\bar{f} = 57$ and $\sum f^2 = 26072$	M1, A1
	$\left[S_{ff}\right] = 26072 - \frac{456^2}{8}$ or $26072 - \frac{207936}{8}$ or $26072 - 25992 = 80$ (*)	A1 cso (3)
(b)	$[S_{hh}] = 610 \ 463 - \frac{2209^2}{8} = 502.875$ awrt <u>503</u>	M1, A1
(c)	$r = \frac{182}{\sqrt{80 \times "502.875"}} = 0.90739$ = awrt 0.907	(2) M1, A1
(d)	r is close to 1 or "strong" (positive) correlation (idea of "strong" required) so does support the belief	(2) B1ft
(e)	$b = \frac{182}{80} = [2.275],$ $a = \frac{2209}{8} - b \times \frac{"456"}{8} = [276.125 - 129.675 = 146.45]$	(1) M1, M1
	So $\underline{h = 146 + 2.28f}$ [Accept $h = 146 + 2.27f$]	A1A1 (4)
(f)	P($-3 < E < 3$) or $2P(0 < E < 3)$ = $\{2\}$ P $\left(0 < Z < \frac{3}{4}\right)$	M1 M1
	$= 2(0.7734 - 0.5) = 0.5468 = \text{awrt } \underline{0.547}$	A1 (3)
	NT . 4	[Total 15]
(a)	Notes M1 for an attempt at Σf and Σf^2 where $400 < \Sigma f < 500$ and $\Sigma f^2 = \text{awrt } 30^{-1}$ st A1 for $\Sigma f = 456$ and $\Sigma f^2 = 26$ 072 (456 may be implied by 207936 or $\Sigma f^2 = 26$ A1cso for a correct expression leading to 80 with no incorrect working seen Allow 3/3 for $\Sigma f^2 = 57^2 \times 8$ or $\Sigma (f - 57)^2$ if all 8 terms seen or $\Sigma f^2 = 57^2 \times 8$ or $\Sigma f^2 = 57$	
(b)	M1 for a correct expression for S_{hh} A1 for awrt 503 (Answer only scores 2/2 and condone $\frac{4023}{8}$)	
(c)	M1 for a correct expression using their value for S_{hh} but 182 and 80 must be correct. A1 for awrt 0.907 (Answer only M1A1 awrt 0.91 with no expression M1A0)	
(d)	B1ft for a correct comment that uses their value of r as support e.g. "yes since strong correlation" For $ r < 0.5$ allow comment that does <u>not</u> support.	
(e)	1 st M1 for a correct expression for b or awrt 2.28 (Allow 2.27 here as well) 2^{nd} M1 for a correct expression for a ft their value for b and their 456 (using $b = r$ is M0) 1^{st} A1 for either awrt 146 or awrt 2.28 correctly placed (so M1M0A1A0 is possible) 2^{nd} A1 for a fully correct regression equation. Accept $b = 2.28(b - 57)$ [awrt 3 sf] (Allow 2.27 instead of 2.28 for the value of b , since $b = 2.275$)[Use of b and b are b and b are b are b and b are b and b are b are b and b are b are b and b are b and b are b are b and b are b are b are b and b are b and b are b are b and b are b are b and b are b are b are b and b are b are b and b are b are b and b are b are b are b and b are b are b and b are b and b are b are b are b are b are b are b and b are b are b are b and b are b and b are b are b are b are b and b are b and b are b are b and b are b are b are b are b are b and b are b are b and b are b are b are b are b and b are b are b are b and b are b are b and b are b are b and b are b and b are b are b are b are b and b are b are b and b are b and b are b and b are b and b are b are b are b are b are b and b are b and b are b are b and b	
(f)	1^{st} M1 for a correct probability statement (either of these two expressions) 2^{nd} M1 for standardising with 3, 0 and 4 (allow \pm 0.75 as answer). Ignore $\times 2$ and $\times 2$ for awrt 0.547 [NB M0M1A0 is common]	and 0 <

Question Number	Scheme	Marks
5. (a)	$[P(A < 388) = 0.001 \Rightarrow] \frac{388 - \mu}{\sigma} = \pm z$ (where $ z > 2.25$)	M1
	So $388 - \mu = -3.0902\sigma$ (o.e.)	A1
	$[P(A > 410) = 0.0197 \Rightarrow] \frac{410 - \mu}{\sigma} = \pm z$ (where $1 < z < 2.5$)	M1
	So $410 - \mu = 2.06\sigma$ (o.e.)	A1
	So $22 = 5.1502 \sigma$ (calc gives 5.1502323) $\underline{\sigma} = 4.2716$ (awrt $\underline{4.27}$) and $\underline{\mu} = 401.20$ (awrt $\underline{401}$)	M1 A1, A1
(b)	· · · · · · · · · · · · · · · · · · ·	(7)
(b)	[Let $X = \text{profit in } \pounds$] x - 100 - 0.30 0.25 P(X = x) 0.001 0.0197 1 - (0.001 + 0.0197) = 0.9793	M1 M1
	$E(X) = -100 \times 0.001 - 0.30 \times 0.0197 + 0.25 \times 0.9793$	M1
	= 0.138915 (£) 0.14 (allow any answer in the range 0.138~0.141)	A1
		(4)
		[Total 11]
	Notes 1.55 M.1. Company of the compa	1. 2.25
(a)	1 st M1 for attempt to standardise with 388 and set equal to \pm a z value where $ z > 2.25$ 1 st A1 for a fully correct equation with $z = -3.0902$ or better (calc gives 3.0902320)	
	2^{nd} M1 for attempt to standardise with 410 and set equal to \pm a z value where 1	
	2^{nd} A1 for a fully correct equation with $z = \text{awrt } 2.06$ (calc gives 2.059984)	
	3^{rd} M1 for solving their 2 linear equations in μ and σ (i.e. reduce to an equation	
	Corect processes used but allow 1 sign or numerical slip. Must see the ed	
	one variable unless the correct answers are obtained in which case this ca 3^{rd} A1 for σ = awrt 4.27 (Allow 4.26 if 1^{st} A0 for awrt -3.1)	in be implied.
	3^{rd} A1 for σ = awrt 4.27 (Allow 4.26 if 1^{st} A0 for awrt -3.1) 4^{th} A1 for μ = awrt 401	
	Use of σ^2 instead of σ in (a) will score $0/7$	
NB	For 3 rd and 4 th A marks, apply a 1 mark penalty (A0) the first occa	sion that an
IND	answer in fraction form occurs. So, allow A1 for 2^{nd} answer if both give the correct awrt answers.	fractions
(b)	1 st M1 for the 3 correct values of x (i.e. -100 , -0.30 , $+0.25$) 2 nd M1 for attempt at all 3 probabilities (correct expression for 0.9793)	
	3 rd M1 dep on 3 values of X and 3 probs. For an expression for $E(X)$ using their values for an answer of 0.14 or in the range $(0.138 \sim 0.141)$	
	Not awrt 0.14 Accept 0.13 if correct expression is seen beforehand	
	1	

Question Number	Scheme	Marks
6. (a)	$Q_1 = 117$ $Q_2 = 122$ $Q_3 = 125$	B1B1B1
(b)	IQR = 125 - 117 = 8	B1ft (1)
(c)	Upper limit: $125 + 1.5 \times 8 = 125 + 12 = \underline{137}$ Lower limit: $117 - 12 = \underline{105}$ Outliers are: $\underline{101}$ and $\underline{102}$ and $\underline{139}$	M1A1 A1ft (3)
(d)	90 to 110 120 130 140 150	M1 A1ft B1 B1
(e)	$[\overline{x} =] \underline{121}$	B1 (4)
	$[\sigma_x =]\sqrt{\frac{279709}{19} - \bar{x}^2} = \sqrt{14721.526 14641} = \sqrt{80.526}$, = awrt 8.97	M1,A1 (3)
(f)	$\overline{x} + 2.7 \times \sigma_x = \text{awrt } \underline{145} \qquad \overline{x} - 2.7 \times \sigma_x = \text{awrt } \underline{96.8} \text{ (allow 97)}$	M1A1
(g)	Probably not suitablesince: data is skewed <u>or</u> (f) says no outliers, (c) says 3 <u>or</u> (a) says median = 122, (e) says mean = 121	(2) B1 (1) [Total 17]
	Notes	[1000117]
(a)	B1B1B1 for all 3 correct, B1B1B0 for any 2 correct and B1B0B0 for only of	ne correct
(b)	B1ft for their greatest value from (a) – their smallest value from (a)	
(c)	M1 for a correct expression for either limit, ft their values 1 st A1 for both 137 and 105 identified 2 nd A1ft for correctly identifying <u>all</u> the outliers using <u>their</u> limits. Must have a This 2 nd A1ft can be awarded if all the outliers are seen on the box plo	scored M1 ot in (d)
(d)	M1 for a box and two whiskers (Must be on the grid, otherwise $0/4$) A1ft for Q_1, Q_2 and Q_3 all plotted correctly, ft their values from (a) 1st B1 for lower whisker plotted at 105 or 112 and outliers at 101 and 102 2nd B1 for upper whisker plotted at 137 or 132 and an outlier at 139. (Whiskers must be compatible e.g. if lower whisker is at 105 upper m	ust be at 137)
(e)	M1 for a correct expression including square root, ft their mean for awrt 8.97 (Allow $s = 9.2195$ or awrt 9.22)	
(f)	M1 for an attempt to calculate one limit, ft their mean and s.d. A1 for both limits correct allow awrt 145 and awrt 96.8 or 97	

(g) B1 for stating, or implying, normal <u>not</u> suitable **and** giving at least one supporting reason.

A calculation or description of <u>skewness</u> is not required but if present must be correct for their values or their box plot. "Not normal since data is not continuous" is B0

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R $\tt ORL$