Qu	Scheme	Marks	AO
2. (a)	From $[5,20) \mathrm{fd}=3$ or 1 large square $=2.5$ passengers o.e.	M1	2.2a
	Correct bar above [0, 5)	A1	1.1 b
	Correct bar above [20, 40)	A1	1.1 b
(b)		(3)	
	For $[40,65) \underline{\mathbf{1 3 0}}$ passengers $\underline{\text { or }}$ for $[65,80) \underline{\mathbf{6 0}}$ passengers	M1	2.1
	For attempt to find total number of passengers $=\underline{\mathbf{3 3 1}}$	A1ft	1.1b
	$[\text { Median }=] 40+\frac{\frac{1}{2}(" 331 ")-140}{" 130 "} \times 25 \text { or } 65-\frac{270-\frac{1}{2}(" 331 ")}{" 130 "} \times 25 \text { (o.e.) }$	M1	1.1b
	$=44.9038 \ldots=$ awrt $\underline{44.9}$		1.1 b
		(4)	
(c)	Upper outlier limit $=58.9+1.5 \times(58.9-27.3)=106(.3)>90$ So oldest passenger is not an outlier	M1	2.4
	So oldest passenger is not an outier		
		(9 marks)	
	Notes		
(a)	M1 for attempt at fd or a suitable method to deduce the scale for the	gram	
	May be implied by one correct bar.		
	$1^{\text {st }}$ A1 for first bar $[0,5)$ with $\mathrm{fd}=1$ or 2 large squares high		
	$2^{\text {nd }} \mathrm{A} 1$ for third bar with $\mathrm{fd}=4.5$ or 9 large squares high		
(b)	$1^{\text {st }}$ M1 for an attempt using their fd to find the missing frequencies.	ay be in table	
	$1^{\text {st }}$ A1ft for a clear attempt to find the total number of passengers (ft the	r 130 and 60)	
	$2^{\text {nd }} \mathrm{M} 1$ for any expression/equation leading to correct Q_{2} Must be usin	40-65 class	
	$2^{\text {nd }} \mathrm{A} 1 \quad$ for awrt 44.9 (allow ($n+1$) leading to 45)		
(c)	M1 for finding the upper outlier limit (expression or awrt 106) and sta A1 dep on M1 seen for deducing NOT an outlier	g or implying	

Qu	Scheme	Marks	AO
4 (a)	$\bar{x}=10.2(2222 \ldots) \quad$ awrt 10.2	B1	1.1b
(b)	$\sigma_{x}=3.17(20227 \ldots)$ awrt	B1ft ${ }^{(1)}$	1.1b
	$\begin{aligned} & \frac{\mathbf{3 . 1 7}}{\text { Sight of }} \\ & \text { etc) } \end{aligned} \quad \text { "knots" or "kn" (condone knots/s }$	B1	2
(c)	October since it is windier in the autumn or month of the hurricane or latest month in the year	B1 ${ }^{(2)}$	2.2b
		B1	2.4
(d)(i)	They represent outliers	B1 ${ }^{(2)}$	1.2
(ii)	Y has low median so expect lowish mean (but outlier so >7) and Y has big range/IQR or spread so expect larger st.dev Suggests B	M1	2.4
		A1 (3)	2.2 b
		(8 m	
	Notes		
NB	$\bar{x}=\frac{184}{18} \quad \text { and } \quad \sigma_{x}=\sqrt{\frac{2062}{18}-\bar{x}^{2}}$		
(a)	B1 for $\bar{x}=10.2$ (allow exact fraction)		
(b)	$1^{\text {st }}$ B1ft allow 3.2 from a correct expr' accept $s=3.26(3984 \ldots) \quad$ [ft use of n / a] Treating n / a as 0 May see $n=31$ or $\bar{x}=5.9354 \ldots$ which is B0 in (a) but here in (b) it gives $\sigma_{x}=5.59(34 \ldots)$ or $s=5.6858 \ldots($ awrt 5.69$)$ and scores $1^{\text {st }}$ B1 $2^{\text {nd }}$ B1 accept kn accept in (a) or (b) (allow nautical miles/hour)		
(c)	$1^{\text {st }}$ B1 choosing October but accept September. $2^{\text {nd }} \mathrm{B} 1$ for stating that (Camborne) is windier in autumn/winter months "because it is winter/autumn/windier/colder in "month"" Sep \leqslant "month" \leqslant Mar scores B1B1 for "month" = Sep or Oct and B0B1 for other months in range		
(d)(i)	B1 for outlier or the idea of an extreme value allow "anomaly"		
(ii)	M1 for a comment relating to location that mentions both median and mean and a comment relating to spread that mentions both range/IQR and standard deviation and leads to choosing B, C or D		

Question	Scheme	Marks	AOs
4 (a)	$\operatorname{Tr}($ ace) (data needs to be converted to numbers before the calculation can be carried out)	B1	2.4
		(1)	
(b)	$[1+]^{\frac{138-131}{24}} \times 4$	M1	2.1
	$=2.1666 \ldots . \quad$ awrt $\underline{2.17}$	A1	1.1b
		(2)	
(c)	$\sigma=\sqrt{\frac{7704.1875}{184}-\left(\frac{539.75}{184}\right)^{2}}=5.7676 \ldots \quad \sigma=$ awrt 5.77	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(2)	
(d)(i)	Using class midpoints to estimate the mean assumes that the values are uniformly distributed within the class(es).	B1	2.4
 (iii)	This is not the case here as the majority of the data (in the first class) are 0 .	B1	2.3
	The actual mean is likely to be smaller than the estimate (since the first group has more values at 0 and close to 0)	dB1	2.2b
		(3)	
(8 marks)			
Notes			
(a)	B1: Identifying $\operatorname{tr}($ ace $)$ data Ignore comments about n / a, missing data, anomalies, etc.		
(b)	M1: Correct fraction $\frac{7}{24} \times 4$ allow working down [5] $-\frac{155-138}{24} \times 4$ allow a correct equation leading to a correct fraction e.g. $\frac{x-1}{5-1}=\frac{138-131}{155-131}$ for M1 Use of $(n+1)$ with 138.75 allow $\frac{7.75}{24} \times 4$ A1: awrt 2.17 (condone $\frac{13}{6}$) awrt 2.29 from $(n+1)$ (condone $\frac{55}{24}$)		
(c)	M1: Correct expression for standard deviation (allow mean $=$ awrt 2.93) A1: awrt 5.77 correct answer only scores M1A1 (allow $s=5.78$) SC: 5.76 with no working scores M1A0		
(d)(i)	B1: Explaining that data assumed to be spread evenly across each class (o.e.) e.g. The midpoint of each class is the mean of each class or all the values in the class are located at the midpoint condone normally distributed within each class		
Mark together (ii)\&(iii)	B1: Demonstrating an understanding of the LDS that the majority of data values (in the first class) are at 0 or close to 0 (trace). dB1: (dependent upon $2^{\text {nd }} \mathrm{B} 1$) Correct inference based on knowledge of the LDS SC: If B1 is scored in (i) for 'The data are spread evenly across each class,' then in (ii) 'The data are not evenly distributed in the classes' scores B1 but in (iii) 'the actual mean is smaller' with no further justification scores B0		

Question	Scheme	Marks	AOs
1	1 square is $\frac{78}{12 \times 3+3 \times 4+2 \times 2}=\left[\frac{78}{52}=1.5\right]$ and $(8 \times 1+1 \times 8) \times 1.5$ "	M1	3.1a
	24 students took less than 11 minutes	A1	1.1b
	Percentage of students $=\frac{" 24 "}{78+24 "+1 \times 8 \times 1.5 "+3 \times 4 \times 11.5 "} \times 100$	M1	3.1 b
	$=18.18 \ldots$ awrt 18%	A1	1.1b
		(4)	

Total 4

Notes

1	M1:	For clear use of frequency density to establish the fd scale and then use the area to find frequency of <11 minutes. Allow maximum of 3 errors in either the heights or widths in total if working shown. They may calculate the area using other size squares. Allow for realising they need to find the total number of squares (88) maximum of 4 errors in either the heights or widths and number <11 minutes(16) - must have a maximum of 1 error in either the heights or widths (and not use the 78 as part of calulation)
	A1:	For correct values seen. Allow for 88 and 16
	M1:	For realising the need to find the total and calculating a percentage. (with "their 24 " as the numerator). Allow $(8 \times 1+2 \times 8) \times$ " 1.5 " instead of " $24 "+1 \times 8 \times 1.5$ " If working shown can allow maximum of 2 errors in either the heights or widths in the calculation of the total. Allow "their 24" / 132 oe
	A1:	awrt 18

Question		Scheme	Marks	AOs
4(a)		It is not possible to have a sampling frame	B1	2.3
			(1)	
(b)		Quota sampling and (catch 85 common carp, 45 mirror carp and 30 leather carp) or (ignore any fish caught of a type where the quota is full)	M1	1.1a
		Quota sampling and catch 85 common carp, 45 mirror carp and 30 leather carp and ignore any fish caught of a type where the quota is full	A1	1.1b
			(2)	
(c)		$\sigma=\sqrt{\frac{3053}{160}-\left(\frac{692}{160}\right)^{2}}$	M1	1.1b
		$=0.6129 \ldots$ awrt 0.613	A1	1.1b
			(2)	
(d)(i)		This would have no effect as the piece of data would remain in the same class	B1	2.2a
(ii)		This would increase the standard deviation as change in mean is small and $6.4-4.6 \approx 3 \sigma$ therefore estimate of standard deviation will increase	B1	2.2a
			(2)	
(7 marks)				
Notes				
(a)	B1:	For the idea there cannot be a sampling frame/list		
(b)	M1:	Quota sampling and either for the correct numbers of each type or for the idea that if quota full ignore the fish.		
	A1:	Quota sampling and both the correct numbers of each type and for the idea that if quota full ignore the fish or sample until all quotas are full		
(c)	M1:	A correct expression for σ		
	A1:	Awrt 0.613 allow $s=$ awrt 0.615		
(d)	B1:	Correct deduction with suitable explanation Allow range for class. Do not allow there is no differences		
	B1:	Correct deduction with suitable explanation. so would increase the standard deviation and a suitable reason. Allow the value is bigger than any others in the table oe		

Paper 2: Statistics and Mechanics Mark Scheme

Question	Scheme	Marks	AOs
1(a)	Systematic (sample) cao	B1	1.2
(b)	In LDS some days have gaps because the data was not recorded	B1	2.4
(c)	$\begin{aligned} {\left[\bar{t}=\frac{374}{20}\right.} & =18.7] \\ \sigma_{t} & =\sqrt{\frac{7600}{20}-\bar{t}^{2}} \quad[=\sqrt{30.31}] \end{aligned}$	M1	1.1a
	$=5.5054 \ldots \text { awrt } \underline{\mathbf{5 . 5 1}}$ $\text { (Accept use of } \left.s_{t}=\sqrt{\frac{7600-20 \bar{t}^{2}}{19}}=5.6484 \ldots\right)$	A1	1.1b
(4 marks)			
Notes:			
(b) B1: A correct explanation			
(c) M1: For A1: For	a correct expression for \bar{t} and σ_{t} or s_{t} incorrect evaluation of \bar{t} $\sigma_{t}=\operatorname{awrt} 5.51 \text { or } s_{t}=\operatorname{awrt} 5.65$		

Question	Scheme	Marks	AOs
2	$17+45+\frac{1}{3} \times 9 \quad[=65]$	M1	2.2a
	$(7-8) \underline{\mathbf{1 4}}$ or $(16-20) \underline{\mathbf{5}}$ [Values may be seen in the table]	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Percentage of motorists is $\frac{\text { "65" }}{6+" 14 "+17+45+9+\text { " } 5 "} \times 100$	M1	3.1b
	$=\underline{67.7 \%}$	A1	1.1b
(5 marks)			
Notes:			
M1: For a fully correct expression for the number of motorists in the interval M1: For clear use of frequency density in (4-6) or (13-15) cases to establish the fd scale. Then use of area to find frequency in one of the missing cases A1: For both correct values seen M1: For realising that total is required and attempting a correct expression for $\%$ A1: For awrt 67.7\%			

Paper 2: Statistics and Mechanics Mark Scheme

Question	Scheme	Marks	AOs
1(a)	Systematic (sample) cao	B1	1.2
(b)	In LDS some days have gaps because the data was not recorded	B1	2.4
(c)	$\begin{aligned} {\left[\bar{t}=\frac{374}{20}\right.} & =18.7] \\ \sigma_{t} & =\sqrt{\frac{7600}{20}-\bar{t}^{2}} \quad[=\sqrt{30.31}] \end{aligned}$	M1	1.1a
	$=5.5054 \ldots \text { awrt } \underline{\mathbf{5 . 5 1}}$ $\text { (Accept use of } \left.s_{t}=\sqrt{\frac{7600-20 \bar{t}^{2}}{19}}=5.6484 \ldots\right)$	A1	1.1b
(4 marks)			
Notes:			
(b) B1: A correct explanation			
(c) M1: For A1: For	a correct expression for \bar{t} and σ_{t} or s_{t} incorrect evaluation of \bar{t} $\sigma_{t}=\operatorname{awrt} 5.51 \text { or } s_{t}=\operatorname{awrt} 5.65$		

Question	Scheme	Marks	AOs
2	$17+45+\frac{1}{3} \times 9 \quad[=65]$	M1	2.2a
	$(7-8) \underline{\mathbf{1 4}}$ or $(16-20) \underline{\mathbf{5}}$ [Values may be seen in the table]	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Percentage of motorists is $\frac{\text { "65" }}{6+" 14 "+17+45+9+\text { " } 5 "} \times 100$	M1	3.1b
	$=\underline{67.7 \%}$	A1	1.1b
(5 marks)			
Notes:			
M1: For a fully correct expression for the number of motorists in the interval M1: For clear use of frequency density in (4-6) or (13-15) cases to establish the fd scale. Then use of area to find frequency in one of the missing cases A1: For both correct values seen M1: For realising that total is required and attempting a correct expression for $\%$ A1: For awrt 67.7\%			

Question	Scheme	Marks
8.(a)	(Time is) continuous	B1 (1)
(b)	40 people $=8$ large squares $/ 200$ small squares 200 people $=40$ large squares $/ 1000$ small squares	B1
	$\frac{x}{40}=\frac{180}{200} \quad \text { or } \quad \frac{x}{40}=\frac{7.2}{8} \quad \text { or } \quad(21-18) \times 4+(25-21) \times 6$	M1
	36 people (spent between 18 and 25 minutes shopping in the supermarket)	A1
(c)	$\text { Median }=26+\frac{[30]}{36} \times 5=\text { awrt } \underline{\mathbf{3 0 . 2}}$	M1A1 ${ }^{(3)}$
(d)	\sum	M1 ${ }^{(2)}$
	$\sum=6390{ }^{* *}$	A1cso
		(2)
(e)	$\text { i } \bar{x}=\frac{6390}{200}=31.95$	B1
	ii $\sigma=\sqrt{\frac{238430}{200}-31.95^{2}}=\sqrt{171.3475}=13.09($ or $s=13.122) \quad$ awrt $\underline{\mathbf{1 3 . 1}}$	M1A1
(f)		(3) B1
		(1)
(g)	Method 1 ${ }^{\text {l }}$ Method 2 (see note)	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { dB1 } \end{array}$
	(positive) skew or median \neq mean oe (almost) symmetric oe	
	not a good decision \quad a good decision	
		Total 14
	Notes	
(b)	Allow not discrete. Condone misspellings if intention of 'continuous' is clear. B1 for establishing a ratio (usually 5 or $1 / 5$) between people and area or calculating f.d. (may be implied by M1) M1 for a correct ratio or expression using areas for the people from 18 to 25 A1 36 cao (Answer of 36 scores 3 out of 3).	
(c)	M1 for an attempt at the medians (should have 26, 36 and 5). If working down $31-\frac{[6]}{36} \times 5$	
(d)	A1 awrt 30.2 (can come from using ($n+1$)) M1 for a correct expression for $\sum \mathrm{fx}$ condone one incorrect product A1 cso for 6390 and all correct	
	B1 31.95 or equivalent fraction	
(ii)	M1 for correct expression for standard deviation including root A1 awrt 13.1 (answer of awrt 13.1 scores 2 out of 2) $[\mathrm{NB}(s=13.122)]$	
(g)	$1^{\text {st }} \mathrm{B} 1$ for comment on skew (may be seen in part (f)). Method 1 : skew or median \neq mean Only allow method 2 if \mid their(f) $\mid<0.45$. Method $2: \sim$ symmetric (any mention of correlation is B0)	

Question	Scheme	Marks
2. (a)	$\begin{aligned} & \text { Width }=\frac{5}{3} \times 1.5=\underline{\mathbf{2} .5}(\mathbf{c m}) \\ & \text { Area }=6 \times 1.5=9 \mathrm{~cm}^{2} \text { has frequency }=12 \text { so } 1.5 \mathrm{~cm}^{2}=2 \text { people } \quad \text { (o.e.) } \\ & \text { Frequency of } 10 \text { corresponds to area of } 7.5 \text { so height }=\underline{\mathbf{3}(\mathbf{c m})} \end{aligned}$	B1 M1 A1 (3)
(b)	$\mathrm{Q}_{2}=[2.5+] \frac{(25 / 25.5-16)}{12} \times 3=4.75 \quad(\text { or } 4.875 \text { if use } n+1) \quad \text { awrt } \underline{\mathbf{4 . 7 5}}$	M1 A1
(c)(i) (ii)	$\begin{aligned} & {[\bar{x}=] \frac{394}{50}=7.88 \quad(*)} \\ & {\left[\sigma_{x}=\right] \sqrt{\frac{6500}{50}-\bar{x}^{2}}=\sqrt{67.9056}} \end{aligned}$	B1cso
		M1A1 A1 (4)
(d)	$\bar{x}>Q_{2}$	B1ft $\mathrm{dB} 1$ (2)
$\begin{array}{r} \text { (e) (i) } \\ \text { (ii) } \\ \text { (iii) } \end{array}$	There is no effect on the mean The median will increase The standard deviation will decrease	B1
		B1
		${ }^{\text {B1 }}{ }_{[14]^{(3)}}$
	Notes	
(a)	M1 for forming a relationship between area and no. of people or "their width" \times "their height" 7.5 or for $\frac{3 h}{10}=\frac{9}{12}$ oe	
	A1 for height of $3(\mathrm{~cm})$ NOTE: the common incorrect answer width $=3$ and height $=2.5$ scores B0M1A0	
(b)	M1 for a correct fraction $\left[\frac{9}{12}\right.$ or $\left.\frac{9.5}{12}\right] \times 3$. Ignore end point but must be + . May be seen in an equivalent expression e.g. $\frac{(x-2.5)}{5.5-2.5}=\frac{25-16}{28-16}$ Allow use of $(n+1)$ giving 4.875 NB May work down so look out for $[5.5]-\frac{28-25}{12} \times 3$, etc.	
(c)(i)	B1 for $\frac{394}{50}$ or for fully correct expression seen $\frac{16 \times 1.25+12 \times 4+10 \times 8+8 \times 15.5+4 \times 30.5}{50}$	
(ii)	$\begin{aligned} & \text { M1 for a correct expression must have } 6500,50 \text { and } 7.88 \text {. (square root not neces } \\ & 1^{\text {st }} \mathrm{A} 1 \text { for a correct expression which must have square root } \\ & 2^{\text {nd }} \mathrm{A} 1 \text { for awrt } 8.24 \text { (use of } s=\text { awrt 8.32). Condone incorrect labelling if awrt } 8.24 \text { is fou } \end{aligned}$	ary for M1) d.
(d)	$1^{\text {st }} \mathrm{B} 1 \mathrm{ft}$ for a correct comparison of $\bar{x}=7.88$ and their Q_{2} (this may be seen embedded in another formula i.e. 3(mean-median)/s.d.) $Q_{3}-Q_{2}>Q_{2}-Q_{1}$ is B0 unless Q_{1} and Q_{3} have been found. ($Q_{1}=1.95 / 1.99, Q_{3}=10.25 / 10.81$) $2^{\text {nd }} \mathrm{dB} 1$ Dependent on the $1^{\text {st }} \mathrm{B} 1$ and for concluding "positive" skew. Note: if their $Q_{2}>7.88$, then B0. Positive correlation is B0.	

Question Number	Scheme	Marks
1. (a)	$[61 \times 15=] \underline{915}$	B1
(b)	$\left[\operatorname{Var}_{A}\right]=\frac{59610}{10}-77^{2} \quad\left[\operatorname{Var}_{B}\right]=\frac{58035}{15}-61^{2}$	M1 (1)
	$\underline{32}=\underline{148}$	A1 A1
		(3)
(c)	Class B since its variance is larger	B1ft
(d)(i)	$\text { Mean }_{A B}=\frac{770+" 915 "}{25}=67.4 \quad \text { or } \frac{10}{25} \times 77+\frac{15}{25} \times 61=\quad \underline{\mathbf{6 7 . 4}}$	M1 A1
(ii)	$\operatorname{Var}_{A B}=\frac{59610+58035}{25}-" 67.4{ }^{\prime 2}=163.04 \quad$ awrt $\underline{\mathbf{1 6 3}}$	M1 A1
		(4)
(e)(i)	No effect on the variance of class A since addition does not change variance $(\operatorname{Var}(X+b)=\operatorname{Var}(X))$	B1
(ii)	The mean will increase since the total score has increased or mean of A increased but mean of B stayed the same	B1
(iii)	The variance of the entire group will increase since the mean of class A is now further away from the mean of class B	B1 (3) [12 marks]
	Notes	
(b)	M1 for a correct method for variance for either class. Accept s^{2} and allow inside $\sqrt{\ldots}$ $1^{\text {st }} \mathrm{A} 1$ for 1 correct answer. NB $s_{A}{ }^{2}=35.5$ or awrt 35.6 and $s_{B}{ }^{2}=158.57 \ldots$ or awrt 159 $2^{\text {nd }} \mathrm{A} 1$ for both correct. [ISW standard deviations following correct variances.]	
(c)	B1 ft for Class B and it has a larger variance/standard deviation (do not allow spread) If $\operatorname{Var}_{A}>\operatorname{Var}_{B}$ then allow choice of A since variance is larger. Ft their values if >0	
(d)(i)	M1 for a correct calculation for the mean (or weighted mean), ft their 915 from (a) A1 for 67.4 o.e.	
(ii)	M1 for use of correct formula (no $\sqrt{\ldots}$) with total $\sum x^{2}=117645$ and their mean.NB $\frac{\mathrm{s}_{x x}}{25}=\frac{4076}{25}$ A1 for awrt 163 [Don't ISW standard deviation]	
(e)(i)	B1 for no effect/does not change and correct supporting reason that mentions addition or subtraction doesn't affect or only affected by multiplication/division. Comment that $(x-\bar{x})$ doesn't change is fine. Just "coding" is not sufficient.	
(ii)	B1 for stating the mean will increase and correct supporting reason that states or implies that total (of scores) has increased. Allow new mean $=\frac{1715}{25}=68.6$	
(iii)	B 1 for increase and correct supporting reason that mentions A marks and $\underline{B \text { marks }}$ and that they are more spread out. Just saying: "marks are more varied" or "only added 3 to one class" is not sufficient	
NB	Calc for (iii) gives new $\Sigma x^{2}=64320$ and $\operatorname{Var}_{A B}=188.24$ but no mark	

January 2017 WST01 Mark Scheme

