

Mark Scheme (Results)

January 2017

Pearson Edexcel
International A-Level Mathematics

Statistics 2 (WST02)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code WST02_01_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

www.yesterdaysmathsexam.com

WST02/01 Statistics 2 Mark Scheme

Question Number	Scheme	Marks
1.	$W \sim N(32, 16)$, $X \sim Bin(20, 0.45)$	
(a)	$\{P(W=36)\} = \underline{0}$	B1
		[1]
(b)	$\left\{ P(X=8) \right\} = P(X \leqslant 8) - P(X \leqslant 7) \underline{\text{or}}$	2.61
	$^{20}C_8(0.45)^8(1-0.45)^{12}$	M1
	= 0.1623003713 awrt <u>0.162</u>	A1
		[2]
(c)	$\{m = E(X) = 20(0.45) \triangleright\} E(X) = 9$	B1
	$\sigma = \sqrt{20(0.45)(1 - 0.45)} \ \left\{ = 2.2248595 \right\}$	M1
	$\left\{ \text{prob} = \right\} P \left(9 - \sqrt{4.95} < X < 9 + \sqrt{4.95} \right) = P(X \le 11) - P(X \le 6)$	dM1
	$\{0.8692 - 0.1299\} = 0.7393$ awrt 0.739	A1
		[4]
		7
(b)	Notes M1 for writing or using $P(X \le 8) - P(X \le 7)$ (may be implied by 0.4143 – 0.2520)	
(b)		
	<u>or</u> for a correct expression ${}^{20}C_{8}(0.45)^{8}(1-0.45)^{12}$	
(c)	B1 $E(X) = 9$ seen or implied	
	1 st M1 writing or using $\sigma = \sqrt{20(0.45)(1-0.45)}$	
	2nd M1 dependent upon 1 st M1 for correct use of $P(\mu - \sigma < X < \mu + \sigma) = P(X \le A) - P(X \le B)$ with A and B correct for their μ and σ	
	Special Case: $P(9-4.95 < X < 9 + 4.95) = P(X \le 13) - P(X \le 4)$ [=awrt 0.960] scores B1M0M1A	A 0

Question Number	Scheme	Marks	
2. (a)	$\left\{ \mathbf{E}(X) = 8 \Rightarrow \right\} \frac{\beta + \alpha}{2} = 8$	B1	
		[1]	
(b)	$\left\{ P(X \leqslant 13) = 0.7 \Rightarrow \right\} \left\{ \text{or } \Rightarrow P(8 \leqslant X \leqslant 13) = 0.2 \right\}$		
	$\frac{13-a}{b-a} = \frac{7}{10} \underline{\text{or}} \frac{\beta-13}{\beta-\alpha} = \frac{3}{10} \underline{\text{or}} \frac{13-8}{\beta-\alpha} = \frac{1}{5} \underline{\text{or}} \frac{13-8}{\beta-13} = \frac{0.2}{0.3} \implies \alpha = \text{ or } \beta = \frac{1}{5} $	M1	
		A1	
	$ \beta + \alpha = 16 $ Either $\beta = -4.5$ or $\beta = 20.5$ and $\beta = 20.5$ Both $\alpha = -4.5$ and $\beta = 20.5$	A1	
		[3]	
(c)	$\left\{ \text{Var}(X) = \frac{(20.54.5)^2}{12} \right\} \qquad \frac{625}{12} \text{ or awrt } \underline{52.1}$	B1 ft	
		[1]	
(d)	$\left\{ P(5 \leqslant X \leqslant 35) \right\} = \frac{20.5 - 5}{20.5 - 4.5} \left\{ = \frac{15.5}{25} \right\} = \frac{31}{50} $ $\frac{31}{50}$ or $\underline{0.62}$	M1 A1	
		[2]	
	Notes	7	
(a)	B1 for $\frac{\beta + \alpha}{2} = 8$ o.e.		
(b)	M1 for writing down a second equation in ∂ and/or ∂ and attempting to solve leading to a value of ∂ or ∂ 1st A1 one correct value 2 nd A1 both correct values (Correct answer only scores M1A1A1).		
(c)	B1ft allow follow through on their $\frac{(b-a)^2}{12}$		
(d)	M1 for finding a probability in the form $\frac{a}{b}$ with $a = (\text{their } b) - 5$ and $b = (\text{their } b) - (\text{their } a)$ or for $1 - \frac{5 - \text{their } \alpha}{\text{their } \beta - \text{their } \alpha}$		

Question Number	Scheme	Marks
3.	Let $Y =$ the number of reported first aid incidents	
(a)	λ /mean is large (greater than 10) λ is large	B1
(1)	(For a 1 week period) V Do(2.5)	[1]
(b)	{For a 1 week period} $Y \sim Po(3.5)$	D.1
	$P(Y = 3) = 0.2158$ and $P(Y = 4) = 0.1888$ or states that 3 is the largest integer less than λ	B1
	$\{As P(Y=3) > P(Y=4),\} \text{ mode} = 3$	B1
	D (5)	[2]
(c)	{For a 2 week period} $X \sim Po(7)$ Po(7)	B1
	$\{P(X>5)\}=1-P(X\leqslant 5) \text{ or } 1-0.3007$	M1
	= 0.6993 awrt <u>0.699</u>	A1
		[3]
(d)	{For a 1 week period} $Y \sim Po(3.5)$	
	$\frac{P(Y=4) \hat{P}(Y=2)}{P(X=6)} = \frac{\left(\frac{e^{-3.5}(3.5)^4}{4!}\right) \left(\frac{e^{-3.5}(3.5)^2}{2!}\right)}{\left(\frac{e^{-7}(7)^6}{6!}\right)} \text{ or } \frac{(0.7254 - 0.5366)(0.3208 - 0.1359)}{0.4497 - 0.3007}$	M1(numerator) M1 A1
	$= \frac{15}{64} \text{ or } 0.234375 \qquad \qquad \frac{15}{64} \text{ or awrt } \underline{0.234}$	A1 [4]
(e)	{For a 40 week period} $Y \sim Po(140)$	L-J
(C)	{Approximation} $Y \sim N(140, 140)$ $N(140, 140)$	M1 A1
	$= P \left(Z > \frac{119.5 - 140}{\sqrt{140}} \right)$	M1 M1
	= P(Z > -1.732566)	A1
	= 0.9582 awrt 0.958	A1
		[6]
		16
(1)	Notes	1
(b) (c)	1st B1 $P(Y = 3) = \text{awrt } 0.216$ and $P(Y = 4) = \text{awrt } 0.189$ or states that 3 is the largest integer less than $I = 3.5$ 2nd B1 mode = 3 [Not dependent on 1st B1] B1 $Po(7)$ seen or implied M1 writing or using $1 - P(X \le 5)$ (may be implied by $1 - 0.3007$)	
(d)	1st M1 for $P(Y = 4) \times P(Y = 2)$ using Po(3.5) (may be implied by awrt 0.189 × awrt 0.185 or 2nd M1 correct use of conditional probability with denominator $P(X = 6)$ from Po(7) and numerator $P(W = 4) \times P(W = 2)$ from $W \sim Po(\text{any } \lambda)$	awrt 0.0349)
	1 st A1 fully correct numerical expression 2 nd A1 awrt 0.234	
(e)	1st M1 for writing or using a normal approximation 1st A1 (140,140) (correct mean and variance which may be seen in standardisation) 2nd M1 for attempting to use the continuity correction (120 ± 0.5)	
	3^{rd} M1 standardising using their mean and their sd on either [119.5 or 120 or 120.5]	
	2nd A1 for $\frac{\pm (119.5 - 140)}{\sqrt{140}}$ (may be implied by $z = \text{awrt} \pm 1.73$)	
	3 rd A1 awrt 0.958	

Question Number	Scheme	Marks
4. (a)	$\left\{ E(X) = \right\} \int_0^2 x \frac{3}{64} x^2 (4 - x) dx$	M1
	$=\frac{3}{64}\left[x^4 - \frac{x^5}{5}\right]_0^4$	A1
	= 2.4	A1
	So, mean number of hours is 2400	A1ft
(b)	$\left\{ E(X^2) = \right\} \int_0^2 x^2 \frac{3}{64} x^2 (4 - x) dx$	[4] M1
	$= \frac{3}{64} \left[\frac{4x^5}{5} - \frac{x^6}{6} \right]_0^4 \ \{= 6.4\}$	A1
	$\sigma_x = \sqrt{6.4 - (2.4)^2} = 0.8$	dM1 A1 [4]
(c)	Some components may last longer than 4000 hours/ X could be greater than 4	B1
	Eg.	[1]
(d)	Sketch of a pdf with $x \ge 0$ and right end going beyond 4. Must be asymptotic or touch the x-axis beyond 4. Ignore labels of $f(x)$, O and x .	B1
		[1]
	Notes	10
(a)	M1 using $\int x f(x) dx$ and attempting to integrate (At least one $x^n \to x^{n+1}$) Ignore limits.	
(11)	1st A1 correct integration. Ignore limits. 2nd A1 2.4 o.e. (may be implied by a correct answer) 3rd A1ft dependent on the M mark for multiplying their E(X) by 1000 (allow 2.4 thousand)	
(b)	1 st M1 using $\hat{\mathbf{j}} x^2 f(x) dx$ and attempting to integrate (At least one $x^n \to x^{n+1}$) Ignore limits. 1 st A1 correct integration. Ignore limits. 2 nd M1 dependent on 1 st M1 for use of $\sqrt{ E(X^2) - E(X) ^2}$ 2 nd A1 0.8 [Allow this mark to be scored for a standard deviation of 800 hours]	
(c)	B1 for an appropriate comment that refers to 4000 hours/ $X > 4$	

Question Number	Scheme	Marks	
5.	$X =$ Number of defects, $Y =$ Number of pieces of $15 \mathrm{m}^2$ containing at most 7 defects		
(a)	$X \sim Po(6) \text{ per } 15 \text{ m}^2$	M1	
	$\{p=\}\ P(X\leqslant 7) = 0.7440$	A1	
	$Y \sim B(12, 0.7440) \text{ per } 15 \text{ m}^2$	M1	
	$\left\{ P(Y=6) = \right\}^{12} C_{6}(0.7440)^{6}(0.2560)^{6}$	M1	
	= 0.04411125 awrt 0.044	A1	
		.]	[5]
(b)(i)	$H_0: \lambda = 0.4, H_1: \lambda \neq 0.4$ or $H_0: \lambda = 2, H_1: \lambda \neq 2$ or $H_0: \lambda = 10, H_1: \lambda \neq 10$	B1	
(ii)	${X = }$ the <u>number/amount</u> of <u>defects</u> in a <u>25 m²</u> piece of cloth The <u>set of/range of values for</u> the number of <u>defects</u> observed in a 25 m ² piece of cloth that	B1	
(iii)	would lead you to reject H_0 .	B1	
		.]	[3]
(c)	$X \sim \text{Po}(10) \text{ per } 25 \text{m}^2$	B1	
	$P(X \le 3) = 0.0103$		
	$P(X \le 4) = 0.0293$ $P(X \le 16) = 0.9730$ or $P(X \ge 17) = 0.0270$	M1	
	$P(X \le 17) = 0.9857$ or $P(X \ge 18) = 0.0143$		
	CR: $X \leqslant 3$ or $X \geqslant 18$ o.e.	A1A1	
		Γ	[4]
(d)	${\text{Actual sig. level} =} 0.0103 + 0.0143$	M1	1
	= 0.0246 or 2.46% awrt <u>0.0246</u> or <u>2.46%</u>	A1	
]	[2]
	Notes]	14
(a)	1st M1 writing or using Po(6) 1st A1 awrt 0.744 seen or implied 2nd M1 writing or using $Y \sim B(12, their p)$ 3rd M1 use of P(Y=6) from B(12, their p) i.e. ${}^{12}C_6("p")^6(1-"p")^6$		
(b)(i)	B1 Both hypotheses correct. May use λ or μ		
(ii)	B1 Must include underlined words o.e. Allow Po(10) to imply 25m ² .		
(iii)	Note: 'Rate' does not imply number/amount B1 Must include underlined words o.e. Must be clear that the response refers to a set of values rather than a single value. Note: Do not allow 'region' for set/range		n
(c)	B1 Po(10) seen or implied M1 for one correct probability from Po(10): $P(X \le 3) = 0.0103$ or $P(X \le 4) = 0.0293$ or $P(X \le 16) = 0.9730$ or $P(X \ge 17) = 0.0270$ or $P(X \le 17) = 0.9857$ or $P(X \ge 18) = 0.0143$ 1 A1 either correct tail of the CR 2 A1 fully correct CR (allow any letter(s) used instead of X) SC : an answer of $P(X \le 3)$ and $P(X \ge 18)$ scores B1M1A1A0		
(d)	M1 for adding two relevant probabilities each less than 0.05		

Question Number	Scheme	Marks
6.	Let $X =$ the number of seeds that germinate	
	Let $Y =$ the number of seeds that don't germinate. $x_{obs} = 66$, $y_{obs} = 9$	
	$H_0: p = 0.96$, $H_1: p < 0.96$ or $H_0: p = 0.04$, $H_1: p > 0.04$ or $H_0: \lambda = 3$, $H_1: \lambda > 3$	B1 B1
	$\{ Y \sim \text{Bin}(75, 0.04) \text{ approximates to } \} Y \sim \text{Po}(3)$	B1
	$P(Y \ge 9) = 1 - P(Y \le 8)$ or $P(Y \le 7) = 0.9881 \Rightarrow P(Y \ge 8) = 0.0119$ $P(Y \le 8) = 0.9962$	M1
	=1-0.9962	
	$= 0.0038$ CR: $Y \geqslant 9$	A1
	$\{0.0038 < 0.01\}$	
	Reject H ₀ or significant or 9 lies in the CR	dM1
	 There is evidence that the <u>producer</u> has <u>overstated</u> the <u>probability/percentage/proportion/number</u> of bean <u>seeds</u> that <u>germinate</u>. <u>Producer's claim is not true</u>. 	
	• There is evidence that the <u>producer</u> has <u>understated</u> the <u>probability/percentage/proportion/number/</u> of bean <u>seeds</u> that <u>don't germinate</u> .	A1 cso
		[7]
		7
	Notes Notes	
	1st B1 for $H_0: p = 0.96$ or $H_0: p = 0.04$ or $H_0: / = 3$	
	2nd B1 for $H_0: p = 0.96$ and $H_1: p < 0.96$	
	or $H_0: p = 0.04$ and $H_1: p > 0.04$	
	or H_0 : $/ = 3$ and H_1 : $/ > 3$	
	3 rd B1 Po(3) seen or implied 1 st M1 for writing or using $1 - P(Y \le 8)$ or giving $P(Y \le 7) = 0.9881$ or $P(Y \ge 8) = 0.0119$ for	or a CR method
	(may be implied by probability = 0.0038 or correct CR)	or a civilication
	1 st A1 for 0.0038 or CR: $Y \ge 9$	
	2nd M1 Dependent on the 1 st M1. For a correct statement i.e. significant/reject H ₀ /9 is in C	R
	Follow through their probability/CR and their H ₁ May be implied by a correct contextual statement.	
	Ignore comparison of probability with the significance level.	
	Do not allow non-contextual conflicting statements.	
	2 nd A1cso fully correct solution and correct contextual statement	
	B1 B1 Correct hypotheses (same mark scheme as above) B0 N(72, 2.88) M1 $\frac{\pm (66.5 - 72)}{\sqrt{2.88}} (= \pm 3.24)$ A0 awrt 0.0006	
	dM1A0cso (same mark scheme as above)	

Question Number	www.yesterdaysmathsexam.com Scheme	Marks
7.		
(a)	Correct shape with correct curvature and straight line with negative gradient. Must start and end on the x -axis.	B1
	2, 6 and 0.4 labelled in the correct place $\{x\}$	B1
(b)	$\{Mode = \} 2$	[2] B1
(b)		[1]
(c)	$\left\{ P(X > 2) = \right\} \int_{2}^{6} \frac{1}{10} (6 - x) dx \text{or} \frac{1}{2} (6 - 2)(0.4) \text{or} 1 - \int_{0}^{2} \frac{1}{20} x^{3} dx$	M1
	= 0.8 <u>0.8</u>	A1* cso
		[2]
(d)	$\frac{1}{80}x^4$, $0 \le x \le 2$	B1
	$\int_{0}^{2} \frac{1}{20} t^{3} dt + \int_{2}^{x} \frac{1}{10} (6 - t) dt = 0.2 + \frac{1}{10} \left[6t - \frac{1}{2} t^{2} \right]_{2}^{x} \text{ or}$ $\int_{0}^{1} \frac{1}{10} (6 - x) dx = \frac{1}{10} (6x - \frac{1}{2} x^{2}) + c \text{ or } -\frac{1}{20} (6 - x)^{2} + d \text{ with } F(2) = 0.2 \text{ or } F(6) = 1$	M1
	$F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{80}x^4 & 0 \le x \le 2 \\ \frac{1}{10}(6x - \frac{1}{2}x^2 - 8)\text{ o.e. } 2 < x < 6 \\ 1 & x > 6 \end{cases}$ Condone \le for < (etc.) throughout part (d) and vice versa	A1 B1
		[4]
(e)	$\left\{ P(X < a \mid X > 2) = \frac{5}{8} \Rightarrow F(a) = \right\} \frac{5}{8} (0.8) + 0.2; = 0.7$	M1A1
		[2]
(f)	$\frac{1}{10} \left(6a - \frac{1}{2}a^2 - 8 \right) = \frac{7}{10} \qquad \text{or} \qquad \frac{1}{2} (6 - a) \cdot \frac{1}{10} (6 - a) = 0.3$	M1
	$\frac{1}{10} \left(6a - \frac{1}{2}a^2 - 8 \right) = \frac{7}{10} \qquad \text{or} \qquad \frac{1}{2} (6 - a) \cdot \frac{1}{10} (6 - a) = 0.3$ $\left\{ a^2 - 12a + 30 = 0 \ $	dM1
	${a = 3.5505102 \ \ } a = 3.55(3 \text{ sf})$ awrt 3.55 only	A1
		[3]
		14
(a)	Notes M1 correct expression for $P(X > 2)$	
(c)	A1cso correct solution with no incorrect working seen	
(d)	1st B1 second line of $F(x)$ with correct limits M1 for a complete method to find $F(x)$ for $2 < x < 6$	
	either attempt to integrate (at least one $t^n o t^{n+1}$) both parts of $f(t)$ with correct limits or with $+ c$ and uses $F(2) = 0.2$ or $F(6) = 1$ A1 third line of $F(x)$ with correct limits 2 nd B1 first and last line of $F(x)$ with correct limits	
(e)	M1 for $\frac{1}{2}$ + their F(2) allow $\frac{5}{8}$ (their (c)) + their F(2)	
(f)	setting the 3^{rd} line of their $F(x)$ equal to their answer to part (e) or area of a triangle dependent on 1^{st} M1 for solving a 3 term quadratic [See notes in the marking guidance]	

www.yesterdaysmathsexam.com