

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE Mathematics

Core Mathematics 2 (6664/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code xxxxxxxx*

All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1.(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Marks		
Nullibei	$(3-\frac{1}{3}x)^5$			
1				
1.	$3^{5} + {}^{5}C_{1}3^{4}(-\frac{1}{3}x) + {}^{5}C_{2}3^{3}(-\frac{1}{3}x)^{2} + {}^{5}C_{3}3^{2}(-\frac{1}{3}x)^{3}$ First term of 243	B1		
	$ ({}^{5}C_{1} \times \times x) + ({}^{5}C_{2} \times \times x^{2}) + ({}^{5}C_{3} \times \times x^{3}) $	M1		
		IVII		
	$=(243) - \frac{405}{3}x + \frac{270}{9}x^2 - \frac{90}{27}x^3$	A1		
	$=(243)-135x+30x^2-\frac{10}{2}x^3$	A1		
	$=(243)=133x+30x=\frac{3}{3}x$	(4)		
Alternative		[4]		
method	$\left(3-\frac{1}{3}x\right)^5 = 3^5\left(1-\frac{x}{9}\right)^5$			
	$3^{5}(1+{}^{5}C_{1}(-\frac{1}{9}x)+{}^{5}C_{2}(-\frac{1}{9}x)^{2}+{}^{5}C_{3}(-\frac{1}{9}x)^{3}\ldots)$			
	Scheme is applied exactly as before			
	Notes B1: The constant term should be 243 in their expansion			
	M1: Two of the three binomial coefficients must be correct and must be with the correct power	r of x.		
	Accept 5C_1 or ${5 \choose 1}$ or 5 as a coefficient, and 5C_2 or ${5 \choose 2}$ or 10 as another and 5C_3 or ${5 \choose 3}$ or 10 another Pascal's triangle may be used to establish coefficients. NB: If they only include the two of these terms then the M1 may be awarded.			
	A1: Two of the final three terms correct – may be unsimplified i.e. two of $-135x + 30x^2 - \frac{10}{3}$	x^3		
	correct, or two of $-\frac{405}{3}x + \frac{270}{9}x^2 - \frac{90}{27}x^3$ (may be just two terms)			
	A1: All three final terms correct and simplified. (Can be listed with commas or appear on sepa			
	Accept in reverse order.) Accept correct alternatives to $-\frac{10}{3}$ e.g. $-3\frac{1}{3}$ or -3.3 the recurring n	nust be		
	clear. 3.3 is not acceptable. Allow e.g. $+-135x$			
	e.g. The common error $3^5 + {}^5C_13^4(-\frac{1}{3})x + {}^5C_23^3(-\frac{1}{3})x^2 + {}^5C_33^2(-\frac{1}{3})x^3 = (243) - 135x - 90x^2$	$-30x^{3}$		
	would earn B1, M1, A0, A0, so 2/4			
	If extra terms are given then isw			
	No negative signs in answer also earns B1, M1, A0, A0 If the series is divided through by 3 at the final stage after an error or omission resulting in all			
	of three coefficients then apply scheme to series before this division and ignore subsequent wo			
	Special Case : Only gives first three terms = $(243) - 135x + 30x^2$ or $243 - \frac{405}{3}x + \frac{270}{9}x$	¢~		
	Follow the scheme to give B1 M1 A1 A0 special case. (Do not treat as misread.)			
	Answers such as $243 + 405 - \frac{1}{3}x + 270 - \frac{1}{9}x^2 + 90 - \frac{1}{27}x^3$ gain no credit as the binomial coe	fficients		
	are not linked to the x terms.			

Question Number	Scheme	Marks
2.	$\frac{\sin x}{16} = \frac{\sin 50^{\circ}}{13}$	M1
	$(\sin x) = \frac{16 \times \sin 50}{13} \ (= 0.943 \text{ but accept } 0.94)$	A1
	x = awrt 70.5(3) and 109.5 or $70.6 and 109.4$	dM1 A1 (4) [4]
	Notes	
	M1: use sine formula correctly in any form. Allow awrt 0.77 for $\sin 50^{\circ}$ A1: give the correct value or correct expression for $\sin x$ (this implies the M1 mark).	
	If it is given as expression they do not need degrees symbol. $\frac{\sin 50 \times 16}{13}$ is fine,	
	If this is given as a decimal allow answers which round to 0.94. Allow awrt -0.323 (radians) here but no further marks are available.	
	If they give this as x (not sin x) and do not recover this is A0	
	dM1: Correct work leading to $x=$ (via inverse sin) expression or value for $\sin x$	
	If the previous A mark has been awarded for a correct expression then this is for	getting to awrt
	70.5 or 109.5 (allow for 70.6 or 109.4).	
	If the previous A mark was not gained, e.g. rounding errors were made in rearran sine formula then award dM1 for evidence of use of inverse sin in degrees on th	
	sinx (may need to check on calculator).	on varae for
	NB 70.5 following a correct sine formula will gain M1A1M1.	
	A1: deduce and state both of the answers $x = 70.5$ and 109.5 (do not need degrees) A	accept awrt
	these. Also accept 70.6 and 109.4. (Second ensurer is comptimes obtained by a long indirect route but still scores A1)	
	(Second answer is sometimes obtained by a long indirect route but still scores A1)	
	If working in radians throughout, answers are 1.23 and 1.91 and this can be awarded I (Working with 50 radians gives probable answers of -0.3288 and 3.47 giving M1A1M	
	Special case: Wrong labelling of triangle. This simplifies the problem as there is only for angle x. So it is not treated as a misread. If they find the missing side as awrt 12.6 find an angle or its sine or cosine then give M1A0M0A0	
	Alternative Method using cosine rule	
	Let $BC = a$.	
	M1: uses the cosine rule to form to form a three term quadratic equation in a (e.g.	
	$a^2 - 32a\cos 50^\circ + 87 = 0$ or $a^2 - \text{awrt} 20.6a + 87 = 0$ though allow slips in signs real. Solves and obtains a correct value for a of awrt 14.6 or awrt 5.95.	earranging)
	dM1: A correct full method to find (at least) one of the two angles. May use cosine re	
	find angle <i>BAC</i> and then use sine rule. As in the main scheme, if the previous A mark awarded then they should obtain one of the correct angles for this mark.	has been
	A1: deduces both correct answer as in main scheme.	
	NB obtaining only one correct angle will usually score M1A1M1A0 in any method.	
L	1.2 comming only one correct ungle will assumly score intritting in any method.	

Question Number				S	cheme				Marks
3.		х	0	0.5	1	1.5	2		
J.		у	1	2.821	6	12.502	26.585		
(a)	$\{At \ x = 1,\}$	y = 6 (allo	ow 6.000 o	r even 6.00)					B1 cao
(b)	1								(1)
(6)	$\frac{1}{2} \times 0.5$;								B1 oe
	{1-	+ 26.585 +	2(2.821+	their 6+12.	502)}	For s	structure of {	<u>{}</u> ;	M1 <u>A1ft</u>
	$\frac{1}{2} \times 0.5 \left\{ 1 + \right.$	- 26.585 + 2	2(2.821+	6+12.502)	$\left\{ = \frac{1}{4} (70.23) \right\}$	1) = 17.557	= awrt 17.	{}; .56	A1
(c)	10 + "17.56"								(4) B1ft
									(1)
					Notes				[6]
(a)	B1: 6				Notes				
(b)	B1: for usin	$g \stackrel{1}{\sim} \times 0.5 \text{ o}$	$r \frac{1}{4}$ or equ	ivalent.					
	M1: require	s the correc	et {} br	acket structu	re. It needs	the first bra	cket to conta	nin first y value j	olus last
	the table with bracket this	th no additi may be reg	onal value garded as a	s. If the onl	ly mistake is M mark can	a copying of be allowed	error or is to l (An extra re	ne remaining y volument one value from the control of the control	from 2nd
	M mark hov	vever). M0	if values u	ised in brack	ets are x val	ues instead	of y values		
			,	_	through can	didate's y v	alue found ir	n part (a).	
	A1: for answ NB: Separate correct) The	te trapezia	may be use		25, M1 for 1	/2 h(a + b)	used 3 or 4 t	imes (and A1ft	if it is all
	,			$0.25 \times (1 + 2)$	(26.585) + 2(26.585)	2.821 + their	6+12.502)	scores B1 M1 A	.0 A0
				at the calculated cates this error		en done com	rectly (then f	ull marks can be	e given).
(c)	B1ft: 10 + tl (May be obt				again with a	all values fo	r y increased	l by 5)	

Question Number	Scheme	Marks
4. (a)	Usually answered in radians: Uses $BCD = 3.5 \times (angle)$, $= 3.5 \times 1.77 = 6.195$ (m) (accept awrt 6.20)	M1 A1 (2)
(b)	Area = $\frac{1}{2}(3.5)^2 \times 1.77 = 10.84$ (m ²)	M1 A1
(c)	Area of triangle = $\frac{1}{2} \times 3.7 \times 3.5 \times \sin(\text{angle})$, = $\frac{1}{2} \times 3.7 \times 3.5 \times \sin(\frac{\pi}{2} - \frac{1.77}{2})$ (=awrt 4.1) Total area = "10.84"+2×"4.101"	(2) M1, A1 M1
	= 19.04	A1cao
		(4) [8]
	Notes	
(a)	M1: uses $s = 3.5 \times \theta$ with θ in radians or completely correct work in degrees	
(b)	A1: awrt 6.20 or just 6.2 (do not need to see units) Correct answer can imply the method. M1 for attempt to use $A = \frac{1}{2} \times 3.5^2 \times \theta$ (Accept θ in degrees.)	
	A1 for awrt 10.84 (do not need to see units) isw if correct answer is followed by 10.8. Correct an imply the method.	ct answer
(c)	M1: Uses area of triangle $\frac{1}{2} \times 3.7 \times 3.5 \times \sin(\text{angle})$ Must be correct method for area of triangle	le but may
	be less direct.	
	A1: Correct expression using correct angle i.e. $\frac{\pi}{2} - \frac{1.77}{2}$ or awrt 0.69 or awrt 39 degrees (need	d at least 2
	sf if no other work seen, but may be implied by correct final answer) If correct expression is isw (so e.g. isw an answer of 0.0775 implying angle set to degrees on calculator) M1: Adds twice their second calculated area (even if rectangle or segment) to their sector at have been slips or errors in one or both formulae – such as missing $\frac{1}{2}$ or mixture of degrees a or weak attempt at triangle area) so M0A0M1A0 is a possible mark distribution A1: 19.04 cao (common answer through insufficient accuracy is 19.08 which loses final mark Special Case . The mark profile M1A0M1A0M1A0M1A0 can be given if the angle is misund as 1.77π or as AFB for example	rea (may and radians ck) derstood
	If " 10.84 "+ $3.5 \times 3.7 \sin(\text{angle})$ is used then this can gain both M marks and the A marks if	correct.
	But use of $3.5 \times 3.7 \sin(\text{angle})$ and later doubled and added to "10.84" is 1st M0, 2nd M1.	

Question number	Scheme	Marks
5	$x^2 + y^2 - 10x + 6y + 30 = 0$	
(a)	Uses any appropriate method to find the coordinates of the centre, e.g achieves $(x \pm 5)^2 + (y \pm 3)^2 = \dots$ Accept $(\pm 5, \pm 3)$ as indication of this.	M1

	Centre is $(5, -3)$.		A1	(2)
(b) Way 1	Uses $(x \pm "5")^2 - "5^2" + (y \pm "3")^2 - r = \sqrt{"25" + "9" - 30}$ or $r^2 = "25" + r$	+30 = 0 to give -9"-30 (not $30 - 25 - 9$)	M1	
	r = 2		A1cao	
Or Way 2	Using $\sqrt{g^2 + f^2 - c}$ from $x^2 + y^2 + $ stated or correct working)	2gx + 2fy + c = 0 (Needs formula	M1	(2)
	r = 2		A1	
(c) Way 1	Use $x = 4$ in <i>an</i> equation of circle and	obtain equation in y only	M1	(2)
	e.g $(4-5)^2 + (y+3)^2 = 4$ or 4	$4^2 + y^2 - 10 \times 4 + 6y + 30 = 0$		
	Solve their quadratic in y and obtain tv	wo solutions for <i>y</i>	dM1	
	e.g. $(y+3)^2 = 3$ or $y^2 + 6y + 6 = 0$	so $y = -3 \pm \sqrt{3}$	A1	
Or Way 2	$Q \downarrow r$	Divide triangle <i>PTQ</i> and use Pythagoras with " $r''^2 - ("5" - 4)^2 = h^2$,	M1	(3)
	T	Find h and evaluate " -3 " $\pm h$. May recognise $(1,\sqrt{3},2)$ triangle.	dM1	
	$\begin{pmatrix} & & & \\ h & & & \\ & & & \end{pmatrix}$	So $y = -3 \pm \sqrt{3}$		
	+ V P		A1	(3)
				[7]

	Notes
(a)	Parts (a) and (b) can be marked together M1 as in scheme and can be <u>implied</u> by $(\pm 5, \pm 3)$ May be awarded for writing LHS as $\underline{(x \pm 5)^2} + \underline{(y \pm 3)^2} = \dots$
	or by comparing with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write down centre $(-g, -f)$ directly A1: $(5, -3)$. This correct answer implies M1A1
(b)	M1 for a full correct method leading to $r =$, or r^2 = with their 5, their -3, their 25 and their 9 and their "-30". Completion of square method errors result in M0 here. Usually $r = 4$ or $r = 16$ imply M0A0 A1 2 cao Do not accept $r = \pm 2$ unless it is followed by $(r =)$ 2 The correct answer with no wrong work seen implies M1A1
(c)	Special case : if centre is given as $(-5, -3)$ or $(5, 3)$ or $(-5, 3)$ allow M1A1 for $r = 2$ worked correctly. i.e. $r^2 = "25" + "9" - 30$ M1 : $Way 1$: Use $x = 4$ in a circle equation (may have wrong centre and/or radius) to obtain an equation in y only or $Way 2$. Uses geometry to find equation in h (ft on their radius and centre) dM1 : (needs first method mark) Solve their quadratic in y or $Way 2$. Uses their h and their y coordinate correctly A1 : cao

Question Number	Scheme	Marks
6. (a)	Attempt $f(3)$ or $f(-3)$ Use of long division is M0A0 as factor theorem was required.	M1
	f(-3) = 162 - 63 - 120 + 21 = 0 so $(x + 3)$ is a factor	A1
		(2)
(b)	Either (Way 1): $f(x) = (x + 3)(-6x^2 + 11x + 7)$	M1A1
	= (x+3)(-3x+7)(2x+1) or -(x+3)(3x-7)(2x+1)	M1A1
	Or (Way 2) Uses trial or factor theorem to obtain $x = -1/2$ or $x = 7/3$	M1 (4)
	Uses trial or factor theorem to obtain both $x = -1/2$ and $x = 7/3$	A1
	Puts three factors together (see notes below)	M1
	Correct factorisation: $(x+3)(7-3x)(2x+1)$ or $-(x+3)(3x-7)(2x+1)$ oe	A1
		(4) M1A1M1A1
	Or (Way 3) No working three factors $(x + 3)(-3x + 7)(2x + 1)$ otherwise need working	(4)
(c)	$\frac{1}{2^{y}}$ $\frac{7}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$	
	$2^{y} = \frac{7}{3}, \rightarrow \log(2^{y}) = \log(\frac{7}{3}) \text{ or } y = \log_{2}(\frac{7}{3}) \text{ or } \frac{\log(7/3)}{\log 2}$	B1, M1
	$\{y=1.222392421\} \Rightarrow y= \text{awrt } 1.22$	A1
	(y 1.2223)2121, → y unit 1.22	(3)
	Notes	[9]
(a)	M1 for attempting either $f(3)$ or $f(-3)$ – with numbers substituted into expression	
	A1 for calculating $f(-3)$ correctly to 0, and they must state $(x + 3)$ is a factor for A1 (or equ	iivalent ie.
	QED, \Box or a tick). A conclusion may be implied by a preamble, "if $f(-3) = 0$, $(x+3)$ is a fact	cor".
4.	$-6(-3)^3-7(-3)^2+40(-3)+21=0$ so $(x+3)$ is a factor of $f(x)$ is M1A1 providing bracketing	
(b)	1st M1: attempting to divide by $(x + 3)$ leading to a 3TQ beginning with the correct term, using the state of the state	•
	This may be done by a variety of methods including long division, comparison of coefficient inspection etc. Allow for work in part (a) if the result is used in (b).	S,
	1^{st} A1: usually for $(-6x^2 + 11x + 7)$ Credit when seen and use isw if miscopied	
	2 nd M1: for a <i>valid*</i> attempt to factorise their quadratic (* see notes on page 6 - General Prince	ciples for
	Core Mathematics Marking section 1)	1
	2^{nd} A1 is cao and needs all three factors together fully factorised. Accept e.g. $-3(x+3)(x-\frac{7}{3})$	(2x+1)
	but $(x + 3)(x - \frac{7}{3})(-6x - 3)$ and $(x + 3)(3x - 7)(-2x - 1)$ are A0 as not fully factorised.	
	Ignore subsequent work (such as a solution to a quadratic equation.)	
	Way 2: The second M mark needs three roots together so $\pm 6(x-\alpha)(x-\beta)(x+3)$ or equival	
	they obtained α and β by trial, so if correct roots identified, then $(x+3)(3x-7)(2x+1)$ can	ın gain
	M1A1M1A0.	
	N.B. Replacing $(-6x^2 + 11x + 7)$ (already awarded M1A1) by $(6x^2 - 11x - 7)$ giving	
(0)	(x+3)(3x-7)(2x+1) can have M1A0 for factorization so M1A1M1A0	
(c)	B1: $2^y = \frac{7}{3}$	
	M1: Attempt to take logs to solve $2^y = \alpha$ or $2^y = 1/\alpha$, where $\alpha > 0$ and α was a root of their factor.	
	A1: for an answer that rounds to 1.22. If other answers are included (and not "rejected") such or -1 lose final A mark	as In(-3)
	Special case: Those who deal throughout with $f(x) = 6x^3 + 7x^2 - 40x - 21$	
	They may have full credit in part (a). In part (b) they can achieve a maximum of M1A0M1A0M1A0M1A0M1A0M1A0M1A0M1A0M1A0M1A0	0 unless
	they return the negative sign to give the correct answer. This is then full marks. Part (c) is fin	
	could lose 2 marks on the factorisation. (Like a misread)	

Question Number	Scheme	Marks
7. (i)	Use of power rule so $\log(x+a)^2 = \log 16a^6$ or $2\log(x+a) = 2\log 4a^3$ or $\log(x+a) = \log(16a^6)^{\frac{1}{2}}$	M1
	Removes logs and square roots, or halves then removes logs to give $(x+a) = 4a^3$ Or $x^2 + 2ax + a^2 - 16a^6 = 0$ followed by factorisation or formula to give $x = \sqrt{16a^6} - a$	M1
	$(x =) 4a^3 - a$ (depends on previous M's and must be this expression or equivalent)	A1cao (3)
(ii) Way 1	$\log_3 \frac{(9y+b)}{(2y-b)} = 2$ Applies quotient law of logarithms	M1
	$\frac{(9y+b)}{(2y-b)} = 3^2$ Uses $\log_3 3^2 = 2$	M1
	$(9y+b) = 9(2y-b) \Rightarrow y =$ Multiplies across and makes y the subject	M1
Way 2	$y = \frac{10}{9}b$ Or: $\log_3(9y+b) = \log_3 9 + \log_3(2y-b)$ 2 nd M mark	A1cso (4) M1
	$\log_3(9y+b) = \log_3 9(2y-b)$ $1^{\text{st}} \text{ M mark}$	M1 M1
	$(9y+b) = 9(2y-b) \Rightarrow y = \frac{10}{9}b$ Multiplies across and makes y the subject	M1 A1cso (4)
	Notes	[7]
(i)	1 st M1: Applies power law of logarithms correctly to one side of the equation M1: Correct log work in correct order. If they square and obtain a quadratic the algebra should correct. The marks is for $x + a = \sqrt{16a^6}$ is wo allow $x + a = \pm 4a^3$ for Method mark. Also	
	$x + a = 4a^4$ or $x + a = \pm 4a^{5.5}$ or even $x + a = 16a^3$ as there is evidence of attempted square	e root.
(ii)	May see the correct $x + a = 10^{(\log 4 + 3\log a)}$ so $x = -a + 10^{(\log 4 + 3\log a)}$ which gains M1A0 unless to by the answer in the scheme. A1: Do not allow $x = \pm 4a^3 - a$ for accuracy mark. You may see the factorised $a(2a + 1)(2a + 3a)$ M1: Applying the subtraction or addition law of logarithms correctly to make two log terms	
	into one log term in y M1: Uses $\log_3 3^2 = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the scheme and attempts $y = 0$	
	A1cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work.	
	Special case: $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2 \text{ is M0 unless clearly crossed out and replaced by the correct } \log_3\frac{(9y+b)}{(2y-b)}$	= 2
	Candidates may then write $\frac{(9y+b)}{(2y-b)} = 3^2$ and proceed to the <i>correct</i> answer – allow M0M1M	1A0 as
	the answer requires a completely correct solution.	

Question		Scheme	Marks	
Number 8. (a)	Way 1	Way 2		
21 (11)	$1 - \sin^2 x = 8\sin^2 x - 6\sin x$	$2 = (3\sin x - 1)^{2} \text{ gives } 9\sin^{2} x - 6\sin x + 1 = 2$ so $\sin^{2} x + 8\sin^{2} x - 6\sin x + 1 = 2$	B1	
	E.g. $9\sin^2 x - 6\sin x = 1$ or $9\sin^2 x - 6\sin x - 1 = 0$ or $9\sin^2 x - 6\sin x - 1 = 0$	so $8\sin^2 x - 6\sin x = 1 - \sin^2 x$	M1	
	$9\sin^{2} x - 6\sin x + 1 = 2$ So $9\sin^{2} x - 6\sin x + 1 = 2 \text{ or}$ $(3\sin x - 1)^{2} - 2 = 0$			
	so $(3\sin x - 1)^2 = 2$ or $2 = (3\sin x - 1)^2 *$	$8\sin^2 x - 6\sin x = \cos^2 x *$	A1cso*	
(b)	Way 1: $(3\sin x - 1) = (\pm)\sqrt{2}$	Way 2: Expands $(3\sin x - 1)^2 = 2$ and uses quadratic formula on 3TQ	(3) M1	
	$\sin x = \frac{1 \pm \sqrt{2}}{2}$ or awrt 0.8047 and awrt - 0.1381		A1	
	x = 53.58, 126.42 (or 126.41), 352.06, 187.94		dM1A1 A1	
			(5) [8]	
(a)	Notes Way 1 B1: Uses $\cos^2 x = 1 - \sin^2 x$			
	M1: Collects $\sin^2 x$ terms to form a three term quadratic or into a suitable completed square format. May be sign slips in the collection of terms. A1*: cso This needs an intermediate step from 3 term quadratic and no errors in answer and printed			
	answer stated but allow $2 = (3\sin x - 1)^2$. If sin is used throughout instead of $\sin x$ it is A0. Way 2 B1: Needs correct expansion and split			
	M1: Collects $1-\sin^2 x$ together A1*: Conclusion and no errors seen			
(b)	M1: Square roots both sides(Way 1), or expands and uses quadratic formula (Way 2) Attempts at factorization after expanding are M0. A1: Both correct answers for sin <i>x</i> (need plus and minus). Need not be simplified. dM1: Uses inverse sin to give one of the given correct answers			
	1st A1: Need two correct angles (allow awrt) Note that the scheme allows 126.41 in place of 126.42 though 126.42 is preferred A1: All four solutions correct (Extra solutions in range lose this A mark, but outside range - ignore) (Premature approximation: – in the final three marks lose first A1 then ft other angles for second A			
	mark) Do not require degrees symbol for the Special case: Working in radians M1A1A0 for the <i>correct</i> 0.94, 2.21, 6.1			

Question Number	Scheme	Marks
9.(a)	$a = 7k - 5$, $ar = 5k - 7$ and $ar^2 = 2k + 10$	B1
	(So $r = $) $\frac{5k-7}{7k-5} = \frac{2k+10}{5k-7}$ or $(7k-5)(2k+10) = (5k-7)^2$ or equivalent	M1
	See $(5k-7)^2 = 25k^2 - 70k + 49$	M1
	$14k^2 + 60k - 50 = 25k^2 - 70k + 49 \rightarrow 11k^2 - 130k + 99 = 0*$	A1cso * (4)
(b)	(k-11)(11k-9) so $k =$	M1
	k = 9/11 only* (after rejecting 11) N.B. Special case $k = 9/11$ can be verified in (b) (1 mark only)	A1*
	$11 \times \left(\frac{9}{11}\right)^2 - 130 \times \left(\frac{9}{11}\right) + 99 = \frac{81}{11} - \frac{1170}{11} + \frac{1089}{11} = 0 \text{M1A0}$	(2)
(c)	$a = \frac{8}{11}$	B1
	$\frac{5 \times \frac{9}{11} - 7}{7 \times \frac{9}{11} - 5} or \frac{2 \times \frac{9}{11} + 10}{5 \times \frac{9}{11} - 7} \text{so} r = -4$	B1
	(i) Fourth term = $ar^3 = -\frac{512}{11}$	M1A1
	(ii) $S_{10} = \frac{a(1-r^{10})}{(1-r)} = \frac{\frac{8}{11}(1-(-4)^{10})}{(1-(-4))} = -152520$	M1A1
		(6) [12]

Notes

(a) Mark parts (a) and (b) together

B1: Correct statement (needs all three terms)— **this may be omitted and implied** by correct statement in *k* only, as candidates may use geometric mean, or may use ratio of terms being equal and give a correct line 2 without line 1. (This would earn the B1M1 immediately)

M1: Valid Attempt to eliminate a and r and to obtain equation in k only

M1: Correct expansion of $(5k-7)^2 = 25k^2 - 70k + 49$ may have four terms $(5k-7)^2 = 25k^2 - 35k - 35k + 49$ A1cso: No incorrect work seen. The printed answer is obtained including "=0".

(b) M1: Attempt to solve quadratic by usual methods (factorisation, completion of square or formula – see notes at start of mark scheme) or see 9/11 substituted and given as "=0" for M1A0

A1*: 9/11 **only and** 11 should be seen and rejected. Accept 9/11 underlined or k=9/11 written on following line. Alternatively (k-11) may be seen in the factorisation and a statement 'k not integer' given with k=9/11 stated.

(c) Mark parts (i) and (ii) together

B1: $a = \frac{8}{11}$ or any equivalent (If not stated explicitly or used in formula may be implied by correct answer to (ii))

B1:Substitutes k = 9/11 completely and obtain r = -4 (If not stated explicitly, may be implied by correct answer to (i) or (ii))

- (i) M1: Use of correct formula with n = 4 a and/or r may still be in terms of k or uses $(2k+10)\times r$. May assume r = k. A1: Correct exact answer
- (ii) M1: Use of correct formula with n = 10 a and/or r may still be in terms of k May assume r = k A1: -152520 cao

NB Correct formula **with negative sign** in numerator followed by the incorrect $(8/11)(1+4^{10})/(1-(-4))$ usually found equal to 152520.2909 with no negative sign can be allowed M1A0 but if the incorrect numerical expression appears on its own with no formula then M0A0

Listing terms can get: B1 (first term) B1 M1A1 (implied by correct 4th term) M1A1 (implied by -152520)

Question Number	Scheme		
10. (a)	$\frac{dy}{dx} = 12x^2 + 18x - 30$	M1	
	Either Or		
	Substitute $x = 1$ to give $\frac{dy}{dx} = 12 + 18 - 30 = 0$ Solve $\frac{dy}{dx} = 12x^2 + 18x - 30 = 0$ to give $x = 12x^2 + 18x - 30 = 0$	A1	
	So turning point (all correct work so far) Deduce $x = 1$ from correct work	A1cso (3)	
(b) Way 1	When $x = 1$, $y = 4 + 9 - 30 - 8 = -25$	B1	
way 1	Area of triangle $ABP = \frac{1}{2} \times 1 \times 25 = 12.5$ (Where <i>P</i> is at (1, 0))	B1	
	Way 1: $\int (4x^3 + 9x^2 - 30x - 8) dx = x^4 + \frac{9}{3}x^3 - \frac{30x^2}{2} - 8x \{ + c \} \text{ or } x^4 + 3x^3 - 15x^2 - 8x \{ + c \}$	M1A1	
	$\left[x^4 + 3x^3 - 15x^2 - 8x\right]_{-\frac{1}{4}}^{1} = (1 + 3 - 15 - 8) - \left(\left(-\frac{1}{4}\right)^4 + 3\left(-\frac{1}{4}\right)^3 - 15\left(-\frac{1}{4}\right)^2 - 8\left(-\frac{1}{4}\right)\right)$	dM1	
	$=(-19)-\frac{261}{256}$ or $-19-1.02$		
	So Area = "their 12.5" + "their 20 $\frac{5}{256}$ " or "12.5" + " 20.02" or "12.5" + "their $\frac{5125}{256}$ "	ddM1	
	= 32.52 (NOT – 32.52)	A1 (7)	
		(7) [10]	
	Less efficient alternative methods for first two marks in part (b) with Way 1 or 2	D.1	
	For first mark: Finding equation of the line AB as $y = 25x - 50$ as this implies the -25 For second mark: Integrating to find triangle area	B1	
	$\int_{1}^{2} (25x - 50) dx = \left[\frac{25}{2} x^{2} - 50x \right]_{1}^{2} = -50 + 37.5 = -12.5$ so area is 12.5	B1	
a >	Then mark as before if they use Method in original scheme		
(b) Way 2	Way 2: Those who use area for original curve between -1/4 and 2 and subtract area between line and curve between 1 and 2 have a correct (long) method.		
1, 4, 2	The first B1 (if y=-25 is not seen) is for equation of straight line $y = 25x - 50$	B1	
	The second B1 may be implied by final answer correct, or 4.5 seen for area of "segment shaped" region between line and curve, or by area between line and axis/triangle found as 12.5	B1	
	$\int (4x^3 + 9x^2 - 55x + 42) dx = x^4 + \frac{9}{3}x^3 - \frac{55x^2}{2} + 42x \{+c\} $ (or integration as in Way 1)		
	• 2	M1A1	
	The dM1 is for correct use of the different correct limits for each of the two areas: i.e. $\left[x^4 + 3x^3 - 15x^2 - 8x\right]_{-\frac{1}{4}}^2 = (16 + 24 - 60 - 16) - \left(\left(-\frac{1}{4}\right)^4 + 3\left(-\frac{1}{4}\right)^3 - 15\left(-\frac{1}{4}\right)^2 - 8\left(-\frac{1}{4}\right)\right)$		
	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	JM 1	
	And $\left[x^4 + \frac{9}{3}x^3 - \frac{55x^2}{2} + 42x \right]_1^2 = 16 + 24 - 110 + 84 - (1 + 3 - 27.5 + 42)$	dM1	
	So Area = their $\left[x^4 + 3x^3 - 15x^2 - 8x\right]_{-\frac{1}{4}}^2$ minus their $\left[x^4 + \frac{9}{3}x^3 - \frac{55x^2}{2} + 42x\right]_{1}^2$	ddM1	
	i.e. "their 37.0195" – "their 4.5" (with both sets of limits correct for the integral)		
	Reaching = 32.52 (NOT -32.52)	A1	
	See over for special case with wrong limits		

NB: Those who attempt curve – line wrongly with limits -1/4 to 2 may earn M1A1 for correct integration of their cubic. Usually e.g.

M1A1

$$\int (4x^3 + 9x^2 - 55x + 42) dx = x^4 + \frac{9}{3}x^3 - \frac{55x^2}{2} + 42x \left\{ + c \right\}$$

(They will not earn any of the last 3 marks)

They may also get first B1 mark for the correct equation of the straight line (usually seen but may be implied by correct line –curve equation) and second B1 if they also use limits 1 and 2 to obtain 4.5 (or find the triangle area 12.5).

Notes

(a) M1: Attempt at differentiation - all powers reduced by 1 with $8 \rightarrow 0$.

A1: the derivative must be correct and uses derivative = 0 to find x or substitutes x = 1 to give 0. Ignore any reference to the other root (-5/2) for this mark.

A1cso: obtains x = 1 from correct work, or deduces turning point (if substitution used – may be implied by a preamble e.g. dy/dx = 0 at T.P.)

N.B. If their factorisation or their second root is incorrect then award A0cso.

If however their factorisation/roots are correct, it is not necessary for them to comment that -2.5 is outside the range given.

(b) **Way 1:**

B1: Obtains y = -25 when x = 1 (may be seen anywhere – even in (a)) or finds correct equation of line is y = 25x - 50

B1: Obtains area of triangle = 12.5 (may be seen anywhere). Allow -12.5. Accept $\frac{1}{2} \times 1 \times 25$

M1: Attempt at integration of cubic; two correct terms for their integration. No limits needed

A1: completely correct integral for the cubic (may be unsimplified)

dM1: We are looking for the start of a correct method here (dependent on previous M). It is for substituting 1 and -1/4 and subtracting. May use 2 and -1/4 and also 2 and 1 **AND subtract** (which is equivalent)

ddM1 (depends on both method marks) **Correct** method **to obtain shaded area** so **adds** two positive numbers (areas) together – one is area of triangle, the other is area of region obtained from integration of correct function with correct limits (may add two negatives then makes positive)

Way 2: This is a long method and needs to be a correct method

B1: Finds y=-25 at x=1, or correct equation of line is y=25x-50

B1: May be implied where WAY 2 is used and final correct answer obtained so award of final A1 results in the award of this B1. It may also be implied by correct integration of line equation or of curve minus line expression between limits 1 and 2. So if only slip is final subtraction (giving final A0, this mark may still be awarded) So may be implied by 4.5 seen for area of "segment shaped" region between line and curve

M1: Attempt at integration of given cubic or after attempt at subtracting their line equation (no limits needed). Two correct terms needed

A1: Completely correct integral for their cubic (may be unsimplified) – may have wrong coefficients of x and wrong constant term through errors in subtraction

dM1: Use limits for original curve between -1/4 and 2 and use limits of 1 and 2 for area between line and curve—needs completely correct limits—see scheme- this is dependent on two integrations

ddM1: (depends on both method marks) Subtracts "their 37.0195" – "their 4.5" Needs consistency of signs.

A1: 32.52 or awrt 32.52 e.g. $32\frac{133}{256}$ NB: This correct answer implies the second B mark

(Trapezium rule gets no marks after first two B marks) The first two B marks may be given wherever seen. The integration of a cubic gives the following M1 and correct integration of their cubic

$$\int (4x^3 + 9x^2 + Ax + B) dx = x^4 + \frac{9}{3}x^3 + \frac{Ax^2}{2} + Bx \left\{ + c \right\} \text{ gives the A1}$$

 ${\tt www.yesterdaysmathsexam.com}$