

## Mark Scheme (Results) Summer 2010

GCE

Statistics S1 (6683)



Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024765 All the material in this publication is copyright © Edexcel Ltd 2010

## General Marking Guidance

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
  - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
  - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
  - B marks are unconditional accuracy marks (independent of M marks)
- 3. Abbreviations

These are some of the marking abbreviations that will appear in the mark scheme

- ft follow through
- awrt answers which round to
- oe or equivalent (and appropriate)
- isw ignore subsequent working
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- SC: special case

## www.yesterdaysmathsexam.com June 2010 Statistics S1 6683 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                      | Marks       |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Q1 (a)             | $r = \frac{8825}{\sqrt{1022500 \times 130.9}},$ = awrt <u>0.763</u>                                                                                                         | M1 A1 (2)   |
| (b)                | Teams with high attendance scored more goals (oe, statement in context)                                                                                                     | B1<br>(1)   |
| (c)                | 0.76(3)                                                                                                                                                                     | B1ft<br>(1) |
|                    |                                                                                                                                                                             | Total 4     |
| (a)                | M1 for a correct expression, square root required<br>Correct answer award 2/2                                                                                               | L           |
| (b)                | Context required (attendance and goals). Condone causality.<br>B0 for 'strong positive correlation between attendance and goals' on its own oe                              |             |
| (c)                | Value required.<br>Must be a correlation coefficient between -1 and +1 inclusive.<br>B1ft for 0.76 or better or same answer as their value from part (a) to at least 2 d.p. |             |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks         |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Q2 (a)             | R $P(R)$ and $P(B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1            |
|                    | 5/12 $\frac{1/3}{\frac{1}{2}}$ $H$ $2^{nd}$ set of probabilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1            |
|                    | $7/12 \qquad B \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)           |
| (b)                | $P(H) = \frac{5}{10} \times \frac{2}{10} + \frac{7}{10} \times \frac{1}{10}, = \frac{41}{10}$ or awrt 0.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1 A1         |
|                    | 12 3 12 2 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2)           |
|                    | $P(R H) - \frac{\frac{5}{12} \times \frac{2}{3}}{\frac{2}{3}} = \frac{20}{12}$ or awrt 0.488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M1 Δ1ft Δ1    |
|                    | $\frac{1}{72} \frac{1}{72} \frac$ | (2)           |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3)           |
| (d)                | $\left(\frac{5}{12}\right)^2 + \left(\frac{7}{12}\right)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1 A1ft       |
|                    | $\frac{25}{-\frac{25}{-\frac{49}{-\frac{74}{-\frac{74}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-\frac{37}{-1}{-\frac{37}{-\frac{37}{-1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1            |
|                    | 144 $144$ $144$ $72$ $144$ $72$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3)           |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total 10      |
| (a)                | $1^{\text{st}}$ B1 for the probabilities on the first 2 branches. Accept $0.41\dot{6}$ and $0.58\dot{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
|                    | $2^{\text{nd}}$ B1 for probabilities on the second set of branches. Accept $0.6$ , $0.3$ , $0.5$ and $\frac{1.3}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|                    | Allow exact decimal equivalents using clear recurring notation if required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
| (b)                | M1 for an expression for $P(H)$ that follows through their sum of two products of <b>probabilitie</b> tree diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es from their |
| (c)                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
| Formula<br>seen    | M1 for $\frac{P(R \cap H)}{P(H)}$ with denominator their (b) substituted e.g. $\frac{P(R \cap H)}{P(H)} = \frac{12}{(\text{their (b)})}$ away                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rd M1.        |
| Formula            | probability x probability $\frac{5}{12} \times \frac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
| not seen           | M1 for $\frac{\text{probability} \times \text{probability}}{\text{their } b}$ but M0 if fraction repeated e.g. $\frac{12 - 5}{2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
|                    | 3<br>1 <sup>st</sup> A1ft for a fully correct expression or correct follow through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|                    | $2^{nd} A1$ for $\frac{20}{41}$ o.e.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| (d)                | M1 for $\left(\frac{5}{12}\right)^2$ or $\left(\frac{7}{12}\right)^2$ can follow through their equivalent values from tree diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |
|                    | $1^{\text{st}} \text{A1}$ for both values correct or follow through from their original tree and +<br>$2^{\text{nd}} \text{A1}$ for a correct answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|                    | Special Case $\frac{5}{12} \times \frac{4}{11}$ or $\frac{7}{12} \times \frac{6}{11}$ seen award M1A0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                   | Mar       | ks      |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|
| Q3 (a)             | $2a + \frac{2}{5} + \frac{1}{10} = 1$ (or equivalent)                                                                                                                                                                                                                    | M1        |         |
|                    | $\underline{a = \frac{1}{4} \text{ or } 0.25}$                                                                                                                                                                                                                           | A1        | (2)     |
| (b)                | $\mathbf{E}(X) = \underline{1}$                                                                                                                                                                                                                                          | B1        | (1)     |
| (c)                | $E(X^{2}) = 1 \times \frac{1}{5} + 1 \times \frac{1}{10} + 4 \times \frac{1}{4} + 9 \times \frac{1}{5} \qquad (= 3.1)$                                                                                                                                                   | M1        |         |
|                    | $Var(X) = 3.1 - 1^2$ , $= 2.1 \text{ or } \frac{21}{10} \text{ oe}$                                                                                                                                                                                                      | M1 A1     | (3)     |
| (d)                | $\operatorname{Var}(Y) = (-2)^2 \operatorname{Var}(X), \qquad = \underline{8.4 \text{ or } \frac{42}{5}} \underline{\text{oe}}$                                                                                                                                          | M1 A1     | (2)     |
| (e)                | $X \ge Y$ when $X = 3$ or 2, so probability = " $\frac{1}{4}$ "+ $\frac{1}{5}$                                                                                                                                                                                           | M1 A1f    | t       |
|                    | $=\frac{9}{20}\mathbf{\underline{oe}}$                                                                                                                                                                                                                                   | A1        | (3)     |
|                    |                                                                                                                                                                                                                                                                          | Тс        | otal 11 |
| (a)                | M1 for a clear attempt to use $\sum P(X = x) = 1$                                                                                                                                                                                                                        |           |         |
|                    | Correct answer only 2/2.<br>NB Division by 5 in parts (b), (c) and (d) seen scores 0. Do not apply ISW.                                                                                                                                                                  |           |         |
| (b)                | B1 for 1                                                                                                                                                                                                                                                                 |           |         |
| (c)                | 1 <sup>st</sup> M1 for attempting $\sum x^2 P(X = x)$ at least two terms correct. Can follow through.<br>2 <sup>nd</sup> M1 for attempting $E(X^2) - [E(X)]^2$ or allow subtracting 1 from their attempt at $E(X^2)$ incorrect formula seen.<br>Correct answer only 3/3. | ) provide | d no    |
| (d)                | M1 for $(-2)^2 \operatorname{Var}(X)$ or $4\operatorname{Var}(X)$<br>Condone missing brackets provided final answer correct for their $\operatorname{Var}(X)$ .<br>Correct answer only 2/2.                                                                              |           |         |
| (e)                | Allow M1 for distribution of $Y = 6 - 2X$ and correct attempt at $E(Y^2) - [E(Y)]^2$<br>M1 for identifying $X = 2$ , 3<br>1 <sup>st</sup> A1ft for attempting to find their P(X=2) + P(X = 3)<br>2 <sup>nd</sup> A1 for $\frac{9}{20}$ or 0.45                           |           |         |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                      | Marks    |      |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
| Q4 (a)             | $\frac{2+3}{\text{their total}} = \frac{5}{\text{their total}} = \frac{1}{6}  (\text{** given answer**})$                                                                                                                                                                                                                   | M1 A1cso | (2)  |
| (b)                | $\frac{4+2+5+3}{\text{total}}$ , $=\frac{14}{30}$ or $\frac{7}{15}$ or $0.4\dot{6}$                                                                                                                                                                                                                                         | M1 A1    | (2)  |
| (c)                | $\mathbf{P}(A \cap C) = 0$                                                                                                                                                                                                                                                                                                  | B1       | (1)  |
| (d)                | P(C  reads at least one magazine) = $\frac{6+3}{20} = \frac{9}{20}$                                                                                                                                                                                                                                                         | M1 A1    | (2)  |
| (e)                | $P(B) = \frac{10}{30} = \frac{1}{3}, P(C) = \frac{9}{30} = \frac{3}{10}, P(B \cap C) = \frac{3}{30} = \frac{1}{10} \text{ or } P(B C) = \frac{3}{9}$                                                                                                                                                                        | M1       |      |
|                    | $P(B) \times P(C) = \frac{1}{3} \times \frac{3}{10} = \frac{1}{10} = P(B \cap C)$ or $P(B C) = \frac{3}{9} = \frac{1}{3} = P(B)$                                                                                                                                                                                            | M1       |      |
|                    | So yes they are statistically independent                                                                                                                                                                                                                                                                                   | A1cso    | (3)  |
|                    |                                                                                                                                                                                                                                                                                                                             | Tota     | l 10 |
| (a)                | M1 for $\frac{2+3}{\text{their total}}$ or $\frac{5}{30}$                                                                                                                                                                                                                                                                   |          |      |
| (b)                | M1 for adding at least 3 of "4, 2, 5, 3" and dividing by their total to give a probability<br>Can be written as separate fractions substituted into the completely correct Addition Rule                                                                                                                                    |          |      |
| (c)                | B1 for 0 or 0/30                                                                                                                                                                                                                                                                                                            |          |      |
| (d)                | M1 for a <b>denominator of 20</b> or $\frac{20}{30}$ leading to an answer with denominator of 20                                                                                                                                                                                                                            |          |      |
|                    | $\frac{9}{20}$ only, 2/2                                                                                                                                                                                                                                                                                                    |          |      |
| (e)                | <ul> <li>1<sup>st</sup> M1 for attempting all the required probabilities for a suitable test</li> <li>2<sup>nd</sup> M1 for use of a correct test - must have attempted all the correct probabilities.</li> <li>Equality can be implied in line 2.</li> <li>A1 for fully correct test carried out with a comment</li> </ul> |          |      |

| Question<br>Number | Scheme                                                                                                                                                                                                                                | Marks          |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Q5 (a              | 23, 35.5 (may be in the table)                                                                                                                                                                                                        | B1 B1<br>(2)   |  |
| (                  | Width of 10 units is 4 cm so width of 5 units is <u>2 cm</u>                                                                                                                                                                          | B1             |  |
|                    | Height = $2.6 \times 4 = 10.4$ cm                                                                                                                                                                                                     | M1 A1<br>(3)   |  |
| (                  | $\sum fx = 1316.5 \Rightarrow \bar{x} = \frac{1316.5}{56} = \text{ awrt } \underline{23.5}$                                                                                                                                           | M1 A1          |  |
|                    | $\sum fx^2 = 37378.25$ can be implied                                                                                                                                                                                                 | B1             |  |
|                    | So $\sigma = \sqrt{\frac{37378.25}{56} - \overline{x}^2} = \text{awrt}\underline{10.7}$ allow $s = 10.8$                                                                                                                              | M1 A1<br>(5)   |  |
| (                  | $Q_2 = (20.5) + \frac{(28-21)}{11} \times 5 = 23.68$ awrt <u>23.7 or 23.9</u>                                                                                                                                                         | M1 A1<br>(2)   |  |
| (                  | $Q_3 - Q_2 = 5.6,  Q_2 - Q_1 = 7.9  (\text{or } \overline{x} < Q_2)$                                                                                                                                                                  | M1             |  |
|                    | [7.9 >5.6 so ] <u>negative skew</u>                                                                                                                                                                                                   | A1 (2)         |  |
|                    |                                                                                                                                                                                                                                       | Total 14       |  |
| (                  | <ul> <li>M1 for their width x their height=20.8.</li> <li>Without labels assume width first, height second and award marks accordingly.</li> </ul>                                                                                    |                |  |
| (                  | 1 <sup>st</sup> M1 for reasonable attempt at $\sum x$ and /56                                                                                                                                                                         |                |  |
|                    | 2 <sup>nd</sup> M1 for a method for $\sigma$ or $s$ , $$ is required<br>Typical errors $\sum (fx)^2 = 354806.3 \text{ M0}$ , $\sum f^2 x = 13922.5 \text{ M0}$ and $(\sum fx)^2 = 1733172$<br>Correct answers only, award full marks. | M0             |  |
| (                  | Use of $\sum f(x-\bar{x})^2 = \text{awrt } 6428.75 \text{ for } B1$                                                                                                                                                                   |                |  |
|                    | lcb can be 20, 20.5 or 21, width can be 4 or 5 and the fraction part of the formula correct for M1 - Allow 28.5 in fraction that gives awrt 23.9 for M1A1                                                                             |                |  |
| (                  | M1 for attempting a test for skewness using quartiles or mean and median.<br>Provided median greater than 22.55 and less than 29.3 award for M1 for $Q_3 - Q_2 < Q_2 - Q_1$                                                           | without values |  |
|                    | as a valid reason.<br>SC Accept mean close to median and no skew oe for M1A1                                                                                                                                                          |                |  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                         | Marks      | i     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|
| Q6 (a              | See overlay                                                                                                                                                                                                                                                                                                                    | B1 B1      | (2)   |
| (b                 | The <b>points</b> lie reasonably close to a straight <b>line</b> (o.e.)                                                                                                                                                                                                                                                        | B1         | (1)   |
| (c                 | $\sum d = 27.7, \qquad \sum f = 146$ (both, may be implied)                                                                                                                                                                                                                                                                    | B1         |       |
|                    | $S_{dd} = 152.09 - \frac{(27.7)^2}{6} = 24.208$ awrt <u>24.2</u>                                                                                                                                                                                                                                                               | M1 A1      |       |
|                    | $S_{fd} = 723.1 - \frac{27.7 \times 146}{6} = 49.06$ awrt <u>49.1</u>                                                                                                                                                                                                                                                          | A1         | (4)   |
| (d                 | $b = \frac{S_{fd}}{S_{dd}} = 2.026$ awrt <u>2.03</u>                                                                                                                                                                                                                                                                           | M1 A1      |       |
|                    | $a = \frac{146}{6} - b \times \frac{27.7}{6} = 14.97$ so <u><math>f = 15.0 + 2.03d</math></u>                                                                                                                                                                                                                                  | M1 A1      | (4)   |
| (e                 | A flight costs <b>£2.03</b> (or about <b>£2</b> ) for every extra <b>100km</b> or about <b>2p</b> per <b>km</b> .                                                                                                                                                                                                              | B1ft       | (1)   |
| (f                 | $15.0 + 2.03d < 5d \qquad \text{so}  d > \frac{15.0}{(5 - 2.03)} = 5.00 \sim 5.05$                                                                                                                                                                                                                                             | M1         |       |
|                    | So <i>t</i> > 500~505                                                                                                                                                                                                                                                                                                          | A1         | (2)   |
|                    |                                                                                                                                                                                                                                                                                                                                | Tota       | al 14 |
| (a                 | $\begin{array}{c c} 1^{st} B1 & \text{for at least 4 points correct (allow \pm \text{ one 2mm square})} \\ 2^{nd} B1 & \text{for all points correct (allow } \pm \text{ one 2 mm square} \end{array}$                                                                                                                          | <u> </u>   |       |
| (b                 | Ignore extra points and lines<br>Require reference to points and line for B1.                                                                                                                                                                                                                                                  |            |       |
| (c                 | M1 for a correct method seen for either - a correct expression<br>$1^{\text{st}} \text{A1}$ for $S_{dd}$ awrt 24.2                                                                                                                                                                                                             |            |       |
|                    | $2^{nd}$ A1 for $S_{fd}$ awrt 49.1                                                                                                                                                                                                                                                                                             |            |       |
| (d                 | 1 <sup>st</sup> M1 for a correct expression for $b$ - can follow through their answers from (c)<br>2 <sup>nd</sup> M1 for a correct method to find $a$ - follow through their $b$ and their means<br>2 <sup>nd</sup> A1 for $f$ = in terms of $d$ and all values awrt given expressions. Accept 15 as rounding<br>answer only. | from corre | ect   |
| (e                 | Context of cost and distance required. Follow through their value of $b$                                                                                                                                                                                                                                                       |            |       |
| (f                 | M1 for an attempt to find the intersection of the 2 lines. Value of $t$ in range 500 to 505 seen a Value of $d$ in range 5 to 5.05 award M1.<br>Accept $t$ greater than 500 to 505 inclusive to include graphical solution for M 1A1                                                                                           | ward M1.   |       |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                     | Marks        |      |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|
| Q7 (a)             | $P(D > 20) = P\left(Z > \frac{20 - 30}{2}\right)$                                                                                                                                                                                                                                          | M1           |      |
|                    | (8) = P(Z >- 1.25)                                                                                                                                                                                                                                                                         | A1           |      |
|                    | = <u>0.8944</u> <u>awrt 0.894</u>                                                                                                                                                                                                                                                          | A1           | (3)  |
| (b)                | $P(D < Q_3) = 0.75$ so $\frac{Q_3 - 30}{8} = 0.67$                                                                                                                                                                                                                                         | M1 B1        | (-)  |
|                    | $Q_3 = $ awrt <u>35.4</u>                                                                                                                                                                                                                                                                  | A1           | (3)  |
| (c)                | 35.4 - 30= 5.4 so $Q_1 = 30 - 5.4 = \text{awrt } \underline{24.6}$                                                                                                                                                                                                                         | B1ft         | (1)  |
| (d)                | $Q_3 - Q_1 = 10.8$ so $1.5(Q_3 - Q_1) = 16.2$ so $Q_1 - 16.2 = h$ or $Q_3 + 16.2 = k$                                                                                                                                                                                                      | M1           |      |
|                    | $h=\underline{8.4 \text{ to } 8.6}$ and $k=\underline{51.4 \text{ to } 51.6}$ both                                                                                                                                                                                                         | A1           | (2)  |
| (e)                | 2P(D > 51.6) = 2P(Z > 2.7)                                                                                                                                                                                                                                                                 | M1           |      |
|                    | = 2[1 - 0.9965] = awrt 0.007                                                                                                                                                                                                                                                               | M1 A1        | (3)  |
|                    |                                                                                                                                                                                                                                                                                            | Tota         | l 12 |
| (a)                | M1 for an attempt to standardise 20 or 40 using 30 and 8.<br>$1^{st} A1$ for $z = \pm 1.25$<br>$2^{nd} A1$ for awrt 0.894                                                                                                                                                                  |              |      |
| (b)                | M1 for $\frac{Q_3 - 30}{r} = $ to a z value                                                                                                                                                                                                                                                |              |      |
|                    | M0 for 0.7734 on RHS.<br>B1 for (z value) between 0.67~0.675 seen.<br>M1B0A1 for use of $z = 0.68$ in correct expression with awrt 35.4                                                                                                                                                    |              |      |
| (c)                | Follow through using their of quartile values.                                                                                                                                                                                                                                             |              |      |
| (d)                | M1 for an attempt to calculate 1.5(IQR) and attempt to add or subtract using one of the in the question - follow through their quartiles                                                                                                                                                   | formulae giv | ven  |
| (e)                | 1 <sup>st</sup> M1 for attempting 2P( $D >$ their $k$ ) or (P( $D >$ their $k$ )+ P( $D <$ their $h$ ))<br>2 <sup>nd</sup> M1 for standardising their $h$ or $k$ (may have missed the 2) so allow for standardising P( $D > 51.6$ ) or P( $D < 8.4$ )<br>Require boths Ms to award A mark. |              |      |

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA024765 Summer 2010

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH