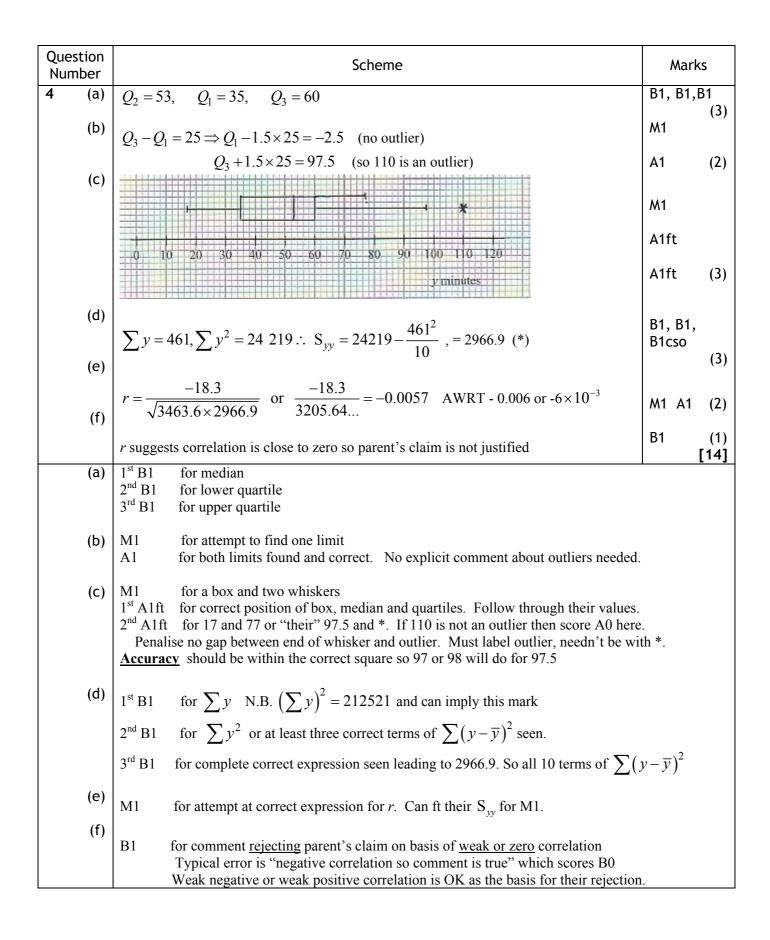


Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6683/01)



January 2009 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks	
1	$S_{xx} = 57.22 - \frac{(21.4)^2}{10} = 11.424$		
(α)	$S_{xy} = 313.7 - \frac{21.4 \times 96}{10} = 108.26$	A1 (3)	
(b)	$S_{xx} = 57.22 - \frac{(21.4)^2}{10} = 11.424$ $S_{xy} = 313.7 - \frac{21.4 \times 96}{10} = 108.26$ $b = \frac{S_{xy}}{S_{xx}} = 9.4765$	M1 A1 M1	
	$a = \overline{y} - b\overline{x} = 9.6 - 2.14b = (-10.679)$	A1 (4)	
(c)	y = -10.7 + 9.48x Every (extra) hour spent using the programme produces about <u>9.5 marks improvement</u>	B1ft (1)	
(d)	$y = -10.7 + 9.48 \times 3.3 = 20.6$ awrt 21	M1,A1 (2)	
(e)	Model may not be valid since [8h is] outside the range [0.5 - 4].	B1 (1) [11]	
(a)	M1 for a correct expression 1^{st} A1 for AWRT 11.4 for S_{xx}		
	2^{nd} A1 for AWRT 108 for S_{xy}		
	Correct answers only: One value correct scores M1 and appropriate A1, both correct M1	A1A1	
(b)	1 st M1 for using their values in correct formula 1 st A1 for AWRT 9.5 2 nd M1 for correct method for <i>a</i> (minus sign required) 2 nd A1 for equation with <i>a</i> and <i>b</i> AWRT 3 sf (e.g. $y = -10.68 + 9.48x$ is fine)		
(c)	 Must have a full equation with a and b correct to awrt 3 sf B1ft for comment conveying the idea of <u>b marks per hour</u>. Must mention value of b but can ft their value of b. No need to mention "extra" but must mention "marks" and "hour(s)" 		
(d)	e.g. "9.5 times per hour" scores B0 M1 for sub $x = 3.3$ into their regression equation from the end of part (b) A1 for awrt 21		
(e)	B1 for a statement that says or implies that it may <u>not</u> be valid because <u>outside the r</u> They do not have to mention the values concerned here namely 8 h or 0.5 - 4	ange.	

Question Number	Scheme	Marks	
2 (a)	$E = \text{take regular exercise} \qquad B = \text{always eat breakfast} P(E \cap B) = P(E \mid B) \times P(B) = \frac{9}{25} \times \frac{2}{3} = 0.24 \text{ or } \frac{6}{25} \text{ or } \frac{18}{75}$	M1 A1 (2)	
(b)	$P(E \cup B) = \frac{2}{3} + \frac{2}{5} - \frac{6}{25} \text{or } P(E' \mid B') \text{or } P(B' \cap E) \text{or } P(B \cap E')$ $= \frac{62}{75} \left \begin{array}{c} = \frac{13}{25} \\ = \frac{12}{75} \end{array} \right = \frac{12}{75} \\ P(E' \cap B') = 1 - P(E \cup B) = \frac{13}{75} \text{or } 0.17\dot{3}$	M1 A1 M1 A1 (4)	
(c)	$P(E B) = 0.36 \neq 0.40 = P(E) \text{or} P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$ So <i>E</i> and <i>B</i> are <u>not</u> statistically independent	M1 A1 (2) [8]	
(a) M1 for $\frac{9}{25} \times \frac{2}{3}$ or P(E B) × P(B) and at least one correct value seen. A1 for 0.24 or ex			
(b)	NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks. 1 st M1 for use of the addition rule. Must have 3 terms and some values, can ft their (a) <u>Or</u> a full method for P(E' B') requires 1 - P(E B') and equation for P(E B'): (a) + $\frac{x}{3} = \frac{2}{5}$		
(c)	$\frac{Or}{2} a \text{ full method for } P(B' \cap E) \text{ or } P(B \cap E') \text{ [or other valid method]}$ $2^{nd} M1 \text{ for a method leading to answer e.g. } 1 - P(E \cup B)$ $\frac{Or}{2} P(B') \times P(E' \mid B') \text{ or } P(B') - P(B' \cap E) \text{ or } P(E') - P(B \cap E')$ $\frac{Venn \text{ Diagram } 1^{st} \text{ M1 for diagram with attempt at } \frac{2}{5} - P(B \cap E) \text{ or } \frac{2}{3} - P(B \cap E) \text{ . Can ft their (a)}}{1^{st} \text{ A1 for a correct first probability as listed or } 32, 18 \text{ and } 12 \text{ on Venn Diagram}}$ $2^{nd} M1 \text{ for attempting } 75 \text{ their (18 + 32 + 12)}$ $M1 \text{ for identifying suitable values to test for independence e.g. } P(E) = 0.40 \text{ and } P(E B) = 0.36$ $Or P(E) \times P(B) = \dots \text{ and } P(E \cap B) = \text{their (a) [but their (a) } \neq \frac{2}{5} \times \frac{2}{3} \text{]. Values seen somewhere}$ $A1 \text{ for correct values and a correct comment}$		
	<u>Diagrams</u> You may see these or find these useful for identifying probabilities. <u>Diagrams</u> You may see these or find these useful for identifying probabilities. <u>Common Errors</u> (a) $\frac{9}{25}$ is M0A0 (b) $P(EUB) = \frac{53}{75}$ so $1 - P(E \cup B) = \frac{22}{75}$ (b) $P(B') \times P(E')$ scores 0/4	scores M1A0	

Ques Nurr			Scheme		Marks	
3	(a)	$E(X) = 0 \times 0.4 + 1 \times 0.3 + + 3 \times 0.1, = 1$			M1, A1 (2)	
	(b)	$F(1.5) = [P(X \le 1.5) =] P(X)$	M1, A1 (2)			
	(c)	$E(X^2) = 0^2 \times 0.4 + 1^2 \times 0.3 + + 3^2 \times 0.1$, = 2			M1, A1	
		$Var(X) = 2 - 1^2$, = 1 (*)			M1, A1cso (4)	
	(d)	$Var(5-3X) = (-3)^2 Var(X), = 9$			M1, A1 (2)	
	(e)	Total	Cases	Probability		
			$(X=3) \cap (X=1)$	$0.1 \times 0.3 = 0.03$		
		4	$(X=1) \cap (X=3)$	$0.3 \times 0.1 = 0.03$		
			$(X=2) \cap (X=2)$	$0.2 \times 0.2 = 0.04$	DADADA	
		5	$(X=3) \cap (X=2)$	$0.1 \times 0.2 = 0.02$	B1B1B1	
		5	$(X=2) \cap (X=3)$	$0.2 \times 0.1 = 0.02$	M1	
		6	$(X=3) \cap (X=3)$	$0.1 \times 0.1 = 0.01$	A1	
		Total probability = $0.03 + 0.0$	03+0.04 +0.02 + 0.02 + 0	0.01 = 0.15	A1 (6) [16]	
	(a)	M1 for at least 3 terms see	en. Correct answer only	scores M1A1. Dividing		
	(b) M1 for $F(1.5) = P(X \le 1)$.[Beware: $2 \times 0.2 + 3 \times 0.1 = 0.7$ but scores M0A0] (c) 1^{st} M1 for at least 2 non-zero terms seen. $E(X^2) = 2$ alone is M0. Condone calling $E(X^2) = 1^{st}$ A1 is for an answer of 2 or a fully correct expression.				.0]	
					alling $E(X^2) = Var(X)$.	
ALT			•		1 even if $E(X) \neq 1$	
		2^{nd} M1 for $-\mu^2$, condone 2 – 1, unless clearly 2 Allow $2-\mu^2$, with = 1 even if $E(X) \neq 1$ 2^{nd} A1 for a fully correct solution with no incorrect working seen, both Ms required.				
		$\sum (x - \mu)^2 \times P(X = x)$				
			1 list of $(u, v)^2 = 1$	and much abilities 1 St A	1 if all assumed	
		1 st M1 for an attempt at a full list of $(x - \mu)^2$ values and probabilities. 1 st A1 if all correct				
		2^{nd} M1 for at least 2 non-zero terms of $(x - \mu)^2 \times P(X = x)$ seen. 2^{nd} A1 for $0.4 + 0.2 + 0.4 = 1$				
	(d)	M1 for use of the correct formula. $-3^2 \operatorname{Var}(X)$ is M0 unless the final answer is >0.				
	(e)					
			or a total of 4 or 5 or 6 .	e.g. (2,2) counted twice	for a total of 4 is B0	
ALT		2 nd B1 for all cases listed for 3 rd B1 for a complete list of		}These may be high	} lighted in a table	
		Using Cumulative probabiliti	es			
			ulative probabilities used			
		M1 for one correct pair of correct probabilities multiplied				
		1^{st} A1 for all 6 correct probabilities listed (0.03, 0.03, 0.04, 0.02, 0.02, 0.01) needn't be added. 2^{nd} A1 for 0.15 or exact equivalent only as the final answer.				
		2 A1 IOF 0.15 OF exact equ	invalent only as the final	answer.		

Question Number		Scheme		Marks	
5 (16-2 8- 1	0 hours: width = $10.5 - 7.5 = 3$ represented by 1.5cm 25 hours: width = $25.5 - 15.5 = 10$ so represented by <u>5 cm</u> 0 hours: height = fd = $18/3 = 6$ represented by 3 cm 25 hours: height = fd = $15/10 = 1.5$ represented by <u>0.75 cm</u>	B1 M1 A1	(3)	
(b) Q_2	$= 7.5 + \frac{(52 - 36)}{18} \times 3 = 10.2$	M1 A1		
	$Q_1 =$	$= 7.5 + \frac{(52 - 36)}{18} \times 3 = 10.2$ = 5.5 + $\frac{(26 - 20)}{16} \times 2[= 6.25 \text{ or } 6.3] \text{ or } 5.5 + \frac{(26.25 - 20)}{16} \times 2[= 6.3]$	A1		
	$Q_3 =$ IQR	$= 10.5 + \frac{(78 - 54)}{25} \times 5 [= 15.3] \text{or } 10.5 + \frac{(78.75 - 54)}{25} \times 5 [= 15.45 \ \text{(}15.5]$ = (15.3 - 6.3) = 9	A1 A1ft	(5)	
(c)	$fx = 1333.5 \Rightarrow \overline{x} = \frac{1333.5}{104} = $ AWRT <u>12.8</u> $fx^2 = 27254 \Rightarrow \sigma_x = \sqrt{\frac{27254}{104} - \overline{x}^2} = \sqrt{262.05 - \overline{x}^2} $ AWRT <u>9.88</u>	M1 A1		
(d) \sum	$fx^2 = 27254 \Rightarrow \sigma_x = \sqrt{\frac{27254}{104} - \bar{x}^2} = \sqrt{262.05 - \bar{x}^2}$ AWRT <u>9.88</u>	M1 A1	(4)	
(-	$-Q_2 [=5.1] > Q_2 - Q_1 [=3.9]$ or $Q_2 < \overline{x}$ lata is positively skew	B1ft dB1	(2)	
		median and IQR, e data is skewed or not affected by extreme values or outliers	B1 B1	(2) [16]	
(a) M1	For attempting both frequency densities $\frac{18}{3}(=6)$ and $\frac{15}{10}$, $\frac{15}{10} \times SF$, where $SF \neq 10^{-10}$: 1		
(b)	NB Wrong class widths (2 and 9) gives $\frac{h}{1.66} = \frac{3}{9} \rightarrow h = \frac{5}{9}$ or 0.55 and scores M1A0			
·	M1				
	2^{nd}	A1 for a correct expression for either Q_1 or Q_3 (allow 26.25 and 78.75) <u>Mu</u>	<u>NB</u> : ist see		
		A1 for correct expressions for both Q_1 and Q_3	and 78.75) <u>Must see</u> some		
(、 、	A1ft for IQR, ft their quartiles. Using $(n + 1)$ gives 6.28 and 15.45 <u>m</u>	<u>some</u> nethod		
(d) $\begin{bmatrix} 1 & 1 \\ 2^{nd} \end{bmatrix}$	—			
·	1 st B	for suitable test, values need not be seen but statement must be compatible wivelues used. Follow through their values	for stating positive skew		
(e) 2 nd c				
	1 st B 2 nd B	31 for suitable reason	<u>dently</u>		
		e.g. "use median because data is skewed" scores B0B1 since IQR is not mentioned			

	uestion Scheme		Marks		
6	(a)				
	()	$P(X < 39) = P\left(Z < \frac{39 - 30}{5}\right)$	M1		
		= P(Z < 1.8) = 0.9641 (allow awrt 0.964)	A1	(2)	
	(b)				
		$P(X < d) = P\left(Z < \frac{d - 30}{5}\right) = 0.1151$			
		$1 - 0.1151 = 0.8849$ (allow ± 1.2)	M1 B1		
		$\Rightarrow \qquad z = -1.2 \qquad (anow - 1.2)$	M1A1	(4)	
		$1-0.1151 = 0.8849$ $\Rightarrow z = -1.2$ $\therefore \frac{d-30}{5} = -1.2$ $\frac{d=24}{d=24}$ (allow ± 1.2)			
	(c)				
		$P(X > e) = 0.1151$ so $e = \mu + (\mu - \text{their } d)$ or $\frac{e - 30}{5} = 1.2 \text{ or } - \text{their } z$	M1		
		<u>e = 36</u>	A1	(2)	
	(d)	$P(d < X < e) = 1 - 2 \times 0.1151$			
		= 0.7698 AWRT <u>0.770</u>	M1 A1	(2)	
				[10]	
		Answer only scores all marks in each section BUT check (b) and (c) are in correct order			
	(a)	39-30			
	. ,	M1 for standardising with σ , $z = \pm \frac{39-30}{5}$ is OK			
		A1 for 0.9641 or awrt 0.964 but if they go on to calculate $1 - 0.9641$ they get M1A6	0		
	(b)	1^{st} M1 for attempting 1-0.1151. Must be seen in (b) in connection with finding d			
		B1 for $z = \pm 1.2$. They must state $z = \pm 1.2$ or imply it is a z value by its use.			
		This mark is only available in part (b).			
		2^{nd} M1 for $\left(\frac{d-30}{5}\right)$ = their negative z value (or equivalent)			
	(c)	M1 for a full method to find <i>e</i> . If they used $z = 1.2$ in (b) they can get M1 for $z = \pm 1.2$ here			
		If they use symmetry about the mean $\mu + (\mu - \text{their } d)$ then ft their d for M1			
		Must explicitly see the method used unless the answer is correct.			
	(d)	M1 for a complete method or use of a correct expression e.g. "their 0.8849" - 0.1151			
		or If their $d <$ their e using their values with $P(X < e) - P(X < d)$			
		If their $d \ge$ their <i>e</i> then they can only score from an argument like $1 - 2x0.1151$ A negative probability or probability > 1 for part (d) scores M0A0			