

Mark Scheme (Results) January 2011

GCE

GCE Core Mathematics C3 (6665) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011
Publications Code US026238
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- · awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

January 2011 Core Mathematics C3 6665 Mark Scheme

Question Number	Scheme		Mar	ks
1. (a)	$7\cos x - 24\sin x = R\cos(x+\alpha)$			
	$7\cos x - 24\sin x = R\cos x\cos\alpha - R\sin x\sin\alpha$			
	Equate $\cos x$: $7 = R \cos \alpha$			
	Equate $\sin x$: $24 = R \sin \alpha$			
	$R = \sqrt{7^2 + 24^2} \; ; = 25$	R=25	B1	
	$\tan \alpha = \frac{24}{7} \implies \alpha = 1.287002218^{c}$	$\tan \alpha = \frac{24}{7}$ or $\tan \alpha = \frac{7}{24}$ awrt 1.287	M1 A1	
	Hence, $7\cos x - 24\sin x = 25\cos(x + 1.287)$			(3)
(1.)	Minimum valua = 25	25 D	D16t	(3)
(b)	Minimum value = -25	-25 or -R	B1ft	(1)
(c)	$7\cos x - 24\sin x = 10$			
	$25\cos(x+1.287) = 10$			
	$\cos\left(x+1.287\right) = \frac{10}{25}$	$\cos(x \pm \text{their } \alpha) = \frac{10}{(\text{their } R)}$	M1	
	PV = 1.159279481° or 66.42182152°	For applying $\cos^{-1}\left(\frac{10}{\text{their }R}\right)$	M1	
	So, $x + 1.287 = \{1.159279^{c}, 5.123906^{c}, 7.442465^{c}\}$	either $2\pi + \text{or} - \text{their PV}^c \text{ or}$ $360^\circ + \text{or} - \text{their PV}^\circ$	M1	
	gives, $x = \{3.836906, 6.155465\}$	awrt 3.84 OR 6.16 awrt 3.84 AND 6.16	A1 A1	(5)
				[9]

Question Number	Scheme		Marks
2. (a)	$\frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)}$		
	$= \frac{(4x-1)(2x-1)-3}{2(x-1)(2x-1)}$ $= \frac{8x^2 - 6x - 2}{\{2(x-1)(2x-1)\}}$	An attempt to form a single fraction Simplifies to give a correct quadratic numerator over a correct quadratic denominator	M1 A1 aef
	$= \frac{2(x-1)(4x+1)}{\{2(x-1)(2x-1)\}}$ $= \frac{4x+1}{2x-1}$	An attempt to factorise a 3 term quadratic numerator	M1 A1 (4)
(b)	$f(x) = \frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)} - 2, x > 1$ $f(x) = \frac{(4x+1)}{(2x-1)} - 2$		
	$= \frac{(4x+1) - 2(2x-1)}{(2x-1)}$ $= \frac{4x+1-4x+2}{(2x-1)}$	An attempt to form a single fraction	M1
	$=\frac{3}{(2x-1)}$	Correct result	A1 * (2)
(c)	$f(x) = \frac{3}{(2x-1)} = 3(2x-1)^{-1}$ $f'(x) = 3(-1)(2x-1)^{-2}(2)$		
		$\pm k (2x - 1)^{-2}$ Either $\frac{-6}{9}$ or $-\frac{2}{3}$	M1 A1 aef
	$f'(2) = \frac{-6}{9} = -\frac{2}{3}$	Either $\frac{-6}{9}$ or $-\frac{2}{3}$	(3)
			[9]

Question Number	Scheme	Marks
3.	or $\cos^2 \theta - \sin^2 \theta$ for	$\cos^2 \theta - 1$ M1
	$2 - 4\sin^2\theta = 1 - 2\sin\theta$ $4\sin^2\theta - 2\sin\theta - 1 = 0$ Forms a "quadratic in si $\sin\theta = \frac{2 \pm \sqrt{4 - 4(4)(-1)}}{8}$ Applies the quadratic for alternative materials and the second seco	formula _{M1}
	PVs: $\alpha_1 = 54^{\circ}$ or $\alpha_2 = -18^{\circ}$ $\theta = \{54, 126, 198, 342\}$ Any one correct $180-6$ All four solutions	their pv dM1(*)

Question Number	Scheme		Marks
4.	$\theta = 20 + Ae^{-kt} (eqn *)$		
	$\{t = 0, \theta = 90 \Rightarrow\}$ $90 = 20 + Ae^{-k(0)}$ $90 = 20 + A \Rightarrow \underline{A = 70}$	Substitutes $t = 0$ and $\theta = 90$ into eqn *	M1
	$90 = 20 + A \implies \underline{A = 70}$	$\underline{A = 70}$	A1 (2)
(b)	$\theta = 20 + 70e^{-kt}$		
	$\{t = 5, \theta = 55 \implies\} 55 = 20 + 70e^{-k(5)}$ $\frac{35}{70} = e^{-5k}$	Substitutes $t = 5$ and $\theta = 55$ into eqn * and rearranges eqn * to make $e^{\pm 5k}$ the subject.	M1
	$ \ln\left(\frac{35}{70}\right) = -5k $	Takes 'lns' and proceeds to make ' $\pm 5k$ ' the subject.	dM1
	$-5k = \ln\left(\frac{1}{2}\right)$		
	$-5k = \ln 1 - \ln 2 \implies -5k = -\ln 2 \implies \underline{k = \frac{1}{5}\ln 2}$	Convincing proof that $k = \frac{1}{5} \ln 2$	A1 * (3)
(c)	$\theta = 20 + 70e^{-\frac{1}{5}t\ln 2}$		
	$\theta = 20 + 70e^{-\frac{1}{5}t \ln 2}$ $\frac{d\theta}{dt} = -\frac{1}{5} \ln 2.(70)e^{-\frac{1}{5}t \ln 2}$	$\pm \alpha e^{-kt}$ where $k = \frac{1}{5} \ln 2$ -14 \ln 2 e^{-\frac{1}{5}t \ln 2}	M1 A1 oe
	When $t = 10$, $\frac{d\theta}{dt} = -14 \ln 2 e^{-2 \ln 2}$		
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{7}{2}\ln 2 = -2.426015132$		
	Rate of decrease of $\theta = 2.426 ^{\circ}C/\min$ (3 dp.)	awrt ± 2.426	A1 (3) [8]

Question Number	Scheme		Mar	ks
5. (a)	Crosses x-axis \Rightarrow f(x) = 0 \Rightarrow (8 - x) ln x = 0			
	Either $(8 - x) = 0$ or $\ln x = 0 \Rightarrow x = 8, 1$ Either on	e of $\{x\}=1$ OR $x=\{8\}$	B1	
	Coordinates are $A(1, 0)$ and $B(8, 0)$.	$(1, \{0\})$ and $B(8, \{0\})$	B1	(2)
				(2)
(b)	Apply product rule: $\begin{cases} u = (8 - x) & v = \ln x \\ \frac{du}{dx} = -1 & \frac{dv}{dx} = \frac{1}{x} \end{cases}$	vu' + uv'	M1	
	$f'(x) = -\ln x + \frac{8-x}{x}$	Any one term correct	A1	
		Both terms correct	A1	(3)
(c)	Sign change (and as $f'(x)$ is continuous) therefore	mpts to evaluate both f'(3.5) and f'(3.6)	M1	
		correct to at least 1 sf, change and conclusion	A 1	(2)
(d)	At Q , $f'(x) = 0 \Rightarrow -\ln x + \frac{8-x}{x} = 0$	Setting $f'(x) = 0$.	M1	
		tting up the numerator and proceeding to x=	M1	
	$\Rightarrow \frac{8}{x} = \ln x + 1 \Rightarrow 8 = x(\ln x + 1)$			
	$\Rightarrow x = \frac{8}{\ln x + 1} \text{ (as required)}$ No e	For correct proof. rrors seen in working.	A1	(3)

Question Number	Scheme		Marks
(e)	Iterative formula: $x_{n+1} = \frac{8}{\ln x_n + 1}$		
	$x_1 = \frac{8}{\ln(3.55) + 1}$ $x_1 = 3.528974374$ $x_2 = 3.538246011$ $x_3 = 3.534144722$	An attempt to substitute $x_0 = 3.55$ into the iterative formula. Can be implied by $x_1 = 3.528(97)$ Both $x_1 = \text{awrt } 3.529$ and $x_2 = \text{awrt } 3.538$	M1 A1
	$x_1 = 3.529$, $x_2 = 3.538$, $x_3 = 3.534$, to 3 dp.	x_1 , x_2 , x_3 all stated correctly to 3 dp	A1 (3) [13]

Question	Calcana	Maulia
Number	Scheme	Marks
6. (a)	$y = \frac{3 - 2x}{x - 5} \implies y(x - 5) = 3 - 2x$ Attempt to make x (or swapped y) the subject	M1
	xy - 5y = 3 - 2x	
	$\Rightarrow xy + 2x = 3 + 5y \Rightarrow x(y + 2) = 3 + 5y$ Collect x terms together and factorise.	M1
	$\Rightarrow x = \frac{3+5y}{y+2} \qquad \therefore f^{-1}(x) = \frac{3+5x}{x+2} \qquad \qquad \frac{3+5x}{x+2}$	A1 oe
		(3)
(b)	Range of g is $-9 \le g(x) \le 4$ or $-9 \le y \le 4$ Correct Range	B1 (1)
(c)	Deduces that g(2) is 0. Seen or implied.	M1
	g g(2)=g(0) = -6, from sketch.	A1 (2)
(d)	fg(8) = f(4) Correct order g followed by f	M1
	$=\frac{3-4(2)}{4-5}=\frac{-5}{-1}=\underline{5}$	A1
() (!)		(2)
(e)(i)	Correct shape	В1
	$(2,\{0\}),(\{0\},6)$	В1

Question Number	Scheme	Marks
(e)(ii)	Correct shape Graph goes through $(\{0\}, 2)$ and $(-6, \{0\})$ which are marked.	B1 B1 (4)
(f)	Domain of g^{-1} is $-9 \le x \le 4$ Either correct answer or a follow through from part (b) answer	B1√ (1) [13]

Question Number	Scheme		Marks
7			
(a)	$y = \frac{3 + \sin 2x}{2 + \cos 2x}$		
	Apply quotient rule: $\begin{cases} u = 3 + \sin 2x & v = 2 + \cos 2x \\ \frac{du}{dx} = 2\cos 2x & \frac{dv}{dx} = -2\sin 2x \end{cases}$		
	$\frac{dy}{dx} = \frac{2\cos 2x(2 + \cos 2x) - 2\sin 2x(3 + \sin 2x)}{(2 + \cos 2x)^2}$	Applying \(\frac{vu^r - uv^1}{v^2} \) Any one term correct on the numerator Fully correct (unsimplified).	M1 A1 A1
	$= \frac{4\cos 2x + 2\cos^2 2x + 6\sin 2x + 2\sin^2 2x}{\left(2 + \cos 2x\right)^2}$		
	$= \frac{4\cos 2x + 6\sin 2x + 2(\cos^2 2x + \sin^2 2x)}{(2 + \cos 2x)^2}$	For correct proof with an understanding	
	$= \frac{4\cos 2x + 6\sin 2x + 2}{\left(2 + \cos 2x\right)^2}$ (as required)	that $\cos^2 2x + \sin^2 2x = 1$. No errors seen in working.	A1*
(b)	When $x = \frac{\pi}{2}$, $y = \frac{3 + \sin \pi}{2 + \cos \pi} = \frac{3}{1} = 3$	<i>y</i> = 3	B1
	At $\left(\frac{\pi}{2}, 3\right)$, m(T) = $\frac{6\sin \pi + 4\cos \pi + 2}{(2 + \cos \pi)^2} = \frac{-4 + 2}{1^2} = -2$	$m(\mathbf{T}) = -2$	B1
	Either T : $y-3 = -2(x-\frac{\pi}{2})$ or $y = -2x + c$ and $3 = -2(\frac{\pi}{2}) + c \implies c = 3 + \pi$;	$y - y_1 = m(x - \frac{\pi}{2})$ with 'their TANGENT gradient' and their y_1 ; or uses $y = mx + c$ with 'their TANGENT gradient';	M1
	T: $y = -2x + (\pi + 3)$	$y = -2x + \pi + 3$	A1 (4

Question Number	Scheme	Marks
8.		
	$y = \sec x = \frac{1}{\cos x} = (\cos x)^{-1}$	
	Writes $\sec x$ as $(\cos x)^{-1}$ and gives $\frac{dy}{dx} = -1(\cos x)^{-2}(-\sin x)$ $\frac{dy}{dx} = \pm \left((\cos x)^{-2}(\sin x)\right)$ $-1(\cos x)^{-2}(-\sin x) \text{ or } (\cos x)^{-2}(\sin x)$	M1 A1
	$\frac{dy}{dx} = \left\{ \frac{\sin x}{\cos^2 x} \right\} = \underbrace{\left[\frac{1}{\cos x} \right) \left(\frac{\sin x}{\cos x} \right)}_{\text{Cos } x} = \underbrace{\frac{\sec x \tan x}{\cos x}}_{\text{Must see both } \underline{\underline{\text{underlined steps.}}}}_{\text{Must see both } \underline{\underline{\text{underlined steps.}}}_{\text{Must see both } \underline{\underline{\text{underlined steps.}}}}_{\text{Must see both } \underline{\underline{\text{underlined steps.}}}_{\text{Must see both } \underline{\underline{\text{underlined steps.}}}}_{\text{Must see both } \underline{\underline{\text{underlined steps.}}}_{\text{Must see both } \underline{\text{un$	A1 AG (3)
(b)	$x = \sec 2y$, $y \neq (2n+1)\frac{\pi}{4}$, $n \in \mathbb{Z}$.	
	$\frac{\mathrm{d}x}{\mathrm{d}y} = 2\sec 2y \tan 2y$ $\frac{K\sec 2y \tan 2y}{2\sec 2y \tan 2y}$	M1 A1 (2)
(c)	$\frac{dy}{dx} = \frac{1}{2\sec 2y \tan 2y}$ Applies $\frac{dy}{dx} = \frac{1}{\left(\frac{dx}{dy}\right)}$	M1
	$\frac{dy}{dx} = \frac{1}{2x \tan 2y}$ Substitutes x for sec 2y.	M1
	$1 + \tan^2 A = \sec^2 A \implies \tan^2 2y = \sec^2 2y - 1$ Attempts to use the identity $1 + \tan^2 A = \sec^2 A$	M1
	So $\tan^2 2y = x^2 - 1$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2x\sqrt{(x^2 - 1)}}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2x\sqrt{(x^2 - 1)}}$	A1 (4)
		[9]

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@linneydirect.com</u>

Order Code US026238 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH