Question	Scheme	Marks	AOs
15 (a)	Deduces the line has gradient "-3" and point $(7,4)$ Eg $y-4 = -3(x-7)$	M1	2.2a
	y = -3x + 25	A1	1.1b
		(2)	
(b)	Solves $y = -3x + 25$ and $y = \frac{1}{3}x$ simultaneously	M1	3.1a
	$P = \left(\frac{15}{2}, \frac{5}{2}\right) \text{ oe}$	A1	1.1b
	Length $PN = \sqrt{\left(\frac{15}{2} - 7\right)^2 + \left(4 - \frac{5}{2}\right)^2} = \left(\sqrt{\frac{5}{2}}\right)$	M1	1.1b
	Equation of <i>C</i> is $(x-7)^2 + (y-4)^2 = \frac{5}{2}$ o.e.	A1	1.1b
		(4)	
(c)	Attempts to find where $y = \frac{1}{3}x + k$ meets <i>C</i> using vectors		
	Eg: $\binom{7.5}{2.5} + 2 \times \binom{-0.5}{1.5}$	M1	3.1a
	Substitutes their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y = \frac{1}{3}x + k$ to find k	M1	2.1
	$k = \frac{10}{3}$	A1	1.1b
		(3)	
		1	(9 marks)
(c)	Attempts to find where $y = \frac{1}{3}x + k$ meets <i>C</i> via		
	simultaneous equations proceeding to a 3TQ in x (or y) FYI $\frac{10}{9}x^2 + \left(\frac{2}{3}k - \frac{50}{3}\right)x + k^2 - 8k + \frac{125}{2} = 0$	M1	3.1a
	Uses $b^2 - 4ac = 0$ oe and proceeds to $k =$	M1	2.1
	$k = \frac{10}{3}$	A1	1.1b

www.yesterdaysmathsexam.com

Notes:

(a)

M1: Uses the idea of perpendicular gradients to deduce that gradient of *PN* is -3 with point (7,4) to find the equation of line *PN*

(3)

So sight of y-4 = -3(x-7) would score this mark

If the form y = mx + c is used expect the candidates to proceed as far as c = ... to score this mark.

A1: Achieves y = -3x + 25

Question	Scheme	Marks	AOs
7(a)(i)	$(x-5)^{2} + (y+2)^{2} = \dots$	M1	1.1b
	(5, -2)	A1	1.1b
(ii)	$r = \sqrt{"5"^2 + "-2"^2 - 11}$	M1	1.1b
	$r = 3\sqrt{2}$	A1	1.1b
		(4)	
(b)	$y = 3x + k \Longrightarrow x^{2} + (3x + k)^{2} - 10x + 4(3x + k) + 11 = 0$	M1	2.1
	$\Rightarrow x^{2} + 9x^{2} + 6kx + k^{2} - 10x + 12x + 4k + 11 = 0$		2.1
	$\Rightarrow 10x^2 + (6k+2)x + k^2 + 4k + 11 = 0$	A1	1.1b
	$b^{2} - 4ac = 0 \Longrightarrow (6k + 2)^{2} - 4 \times 10 \times (k^{2} + 4k + 11) = 0$	M1	3.1a
	$\Rightarrow 4k^2 + 136k + 436 = 0 \Rightarrow k = \dots$	M1	1.1b
	$k = -17 \pm 6\sqrt{5}$	A1	2.2a
		(5)	
		(9	marks)
	Notes		

www.yesterdaysmathsexam.com

(a)(i)

M1: Attempts to complete the square on by halving both x and y terms.

Award for sight of $(x \pm 5)^2$, $(y \pm 2)^2 = ...$ This mark can be implied by a centre of $(\pm 5, \pm 2)$. A1: Correct coordinates. (Allow x = 5, y = -2) (a)(ii)

M1: Correct strategy for the radius or radius². For example award for $r = \sqrt{\pm 5^{2} + \pm 2^{2} - 11}$ or an attempt such as $(x-a)^{2} - a^{2} + (y-b)^{2} - b^{2} + 11 = 0 \Rightarrow (x-a)^{2} + (y-b)^{2} = k \Rightarrow r^{2} = k$

A1: $r = 3\sqrt{2}$. Do not accept for the A1 either $r = \pm 3\sqrt{2}$ or $\sqrt{18}$

The A1 can be awarded following sign slips on (5, -2) so following $r^2 = "\pm 5"^2 + "\pm 2"^2 - 11$

- (b) Main method seen
- M1: Substitutes y = 3x + k into the given equation (or their factorised version) and makes progress by attempting to expand the brackets. Condone lack of = 0
- A1: Correct 3 term quadratic equation.

The terms must be collected but this can be implied by correct *a*, *b* and *c*

- M1: Recognises the requirement to use $b^2 4ac = 0$ (or equivalent) where both *b* and *c* are expressions in *k*. It is dependent upon having attempted to substitute y = 3x + k into the given equation
- M1: Solves 3TQ in *k*. See General Principles.

The 3TQ in k must have been found as a result of attempt at $b^2 - 4ac \dots 0$ A1: Correct simplified values

Look carefully at the method used. It is possible to attempt this using gradients

(b) Alt 1	$x^{2} + y^{2} - 10x + 4y + 11 = 0 \Longrightarrow 2x + 2y \frac{dy}{dx} - 10 + 4\frac{dy}{dx} = 0$	M1 A1	2.1 1.1b
	Sets $\frac{dy}{dx} = 3 \implies x + 3y + 1 = 0$ and combines with equation for C $\implies 5x^2 - 50x + 44 = 0$ or $5y^2 + 20y + 11 = 0$ $\implies x = \dots$ or $y = \dots$	M1	3.1a
	$x = \frac{25 \pm 9\sqrt{5}}{5}, \ y = \frac{-10 \pm 3\sqrt{5}}{5}, \ k = y - 3x \Longrightarrow k = \dots$	M1	1.1b
	$k = -17 \pm 6\sqrt{5}$	A1	2.2a

	For $p = awrt 63100$ or $q = awrt 1.122$	A1	1.1b	
	For correct equations in p and q $p = 10^{4.8}$ and $q = 10^{0.05}$	dM1	3.1a	
	For $p = awrt 63100$ and $q = awrt 1.122$	A1	1.1b	
		(4)		
(b)	(i) The value of the painting on 1st January 1980	B1	3.4	
	(ii) The proportional increase in value each year	B1	3.4	
(c)	Uses $V = 63100 \times 1.122^{30}$ or $\log V = 0.05 \times 30 + 4.8$ leading to $V =$	(2) M1	3 /	
(0)	$\frac{-3}{-3} = \frac{-3}{100} + \frac{1122}{122} = \frac{-3}{100} + $	A 1	1.1h	
	- awit (£)200000	(2)	1.10	
		(2)	marks)	
	Notes	(0		
(a)				
M1: For	a correct equation in p or q This is usually $p = 10^{4.8}$ or $q = 10^{0.05}$ by	t may be		
$\log q = 0.$	$0.5 \text{ or } \log p = 4.8$			
A1: For	p = awrt 63100 or q = awrt 1.122	. 11		
MI: For	linking the two equations and forming correct equations in p and q. The	s is usually		
$p = 10^{mo}$	and $q = 10^{100}$ but may be $\log q = 0.05$ and $\log p = 4.8$	<i>I</i> [1]		
AI: For	b = awrt 63100 and $q = awrt 1.122$ Both these values implies M11	VII		
ALT I(a)			• • • •	
M1: Substitutes $t = 0$ and states that $\log p = 4.8$				
A1: $p = awrt 63100$				
M1: Uses A1: <i>p</i> = 3	s their found value of p and another value of t to find form an equation awrt 63100 and $q = awrt 1.122$	in q		
(b)(i) Pla The value of the pointing on lat January 1080 (is 662-100)				
Acc	ept the original value/cost of the painting or the initial value/cost of the	painting		
(b)(ii)		F		
B1: The p	proportional increase in value each year. Eg Accept an explanation that	explains th	at the	
value of t	he painting will rise 12.2% a year. (Follow through on their value of q .) vimal multir	lier	
represent	ing the vear on vear increase in value"	innar marci		
Do not ac	cept "the amount" by which it is rising or "how much" it is rising by			
If they are not labelled (b)(i) and (b)(ii) mark in the order given but accept any way around				
as long as clearly labelled "p is" and "q is"				
M1: For	substituting $t = 30$ into $V = pq^t$ using their values for p and q or subst	tuting $t = 30$) into	
$\log_{10}V = 0.05t + 4.8$ and proceeds to V				
A1: For awrt either £1.99 million or £2.00 million. Condone the omission of the £ sign. Remember to isw after a correct answer				
Question	Scheme	Marks	AOs	

Question	Scheme		AUS
14 (a)	Attempts to complete the square $(x \pm 3)^2 + (y \pm 5)^2 =$	M1	1.1b

	(i) Centre (3,-5)	A1	1.1b
	(ii) Radius 5	A1	1.1b
		(3)	
(b)	Uses a sketch or otherwise to deduce $k = 0$ is a critical value	B1	2.2a
	Substitute $y = kx$ in $x^2 + y^2 - 6x + 10y + 9 = 0$	M1	3.1a
	Collects terms to form correct 3TQ $(1+k^2)x^2 + (10k-6)x + 9 = 0$	A1	1.1b
	Attempts $b^2 - 4ac0$ for their a, b and c leading to values for k " $(10k-6)^2 - 36(1+k^2)0$ " $\rightarrow k =,$ $\left(0 \text{ and } \frac{15}{8}\right)$	M1	1.1b
	Uses $b^2 - 4ac > 0$ and chooses the outside region (see note) for their critical values (Both <i>a</i> and <i>b</i> must have been expressions in <i>k</i>)	dM1	3.1a
	Deduces $k < 0, k > \frac{15}{8}$ oe	A1	2.2a
		(6)	
		(9 1	marks)

Notes

(a)

M1: Attempts $(x \pm 3)^2 + (y \pm 5)^2 = ...$

This mark may be implied by candidates writing down a centre of $(\pm 3, \pm 5)$ or $r^2 = 25$

(i) A1: Centre (3, -5)

(ii) A1: Radius 5. Do not accept $\sqrt{25}$

Answers only (no working) scores all three marks

(b)

B1: Uses a sketch or their subsequent quadratic to deduce that k = 0 is a critical value. You may award for the correct k < 0 but award if $k \le 0$ or even with greater than symbols

M1: Substitutes y = kx in $x^2 + y^2 - 6x + 10y + 9 = 0$ or their $(x \pm 3)^2 + (y \pm 5)^2 = ...$ to form an

equation in just x and k. It is possible to substitute $x = \frac{y}{k}$ into their circle equation to form an equation in just y and k.

A1: Correct 3TQ $(1+k^2)x^2 + (10k-6)x + 9 = 0$ with the terms in x collected. The "= 0" can be implied by subsequent work. This may be awarded from an equation such as

 $x^{2} + k^{2}x^{2} + (10k-6)x + 9 = 0$ so long as the correct values of a, b and c are used in $b^{2} - 4ac...0$.

FYI The equation in y and k is $(1+k^2)y^2 + (10k^2 - 6k)y + 9k^2 = 0$ oe

M1: Attempts to find two critical values for *k* using $b^2 - 4ac...0$ or $b^2...4ac$ where ... could be "=" or any inequality.

dM1: Finds the outside region using their critical values. Allow the boundary to be included. It is dependent upon all previous M marks and both *a* and *b* must have been expressions in *k*. Note that it is possible that the correct region could be the inside region if the coefficient of k^2 in 4ac is larger than the coefficient of k^2 in b^2 Eg.

 $b^{2} - 4ac = (k - 6)^{2} - 4 \times (1 + k^{2}) \times 9 > 0 \Longrightarrow -35k^{2} - 12k > 0 \Longrightarrow k (35k + 12) < 0$

www.	vesterd	avsmathse	xam.com
	1000010	~	

Question	Scheme	Marks	AOs	
10(a)	$x^2 + y^2 - 4x + 8y - 8 = 0$			
	Attempts $(x-2)^{2} + (y+4)^{2} - 4 - 16 - 8 = 0$	M1	1.1b	
	(i) Centre (2,-4)	A1	1.1b	
	(ii) Radius $\sqrt{28}$ oe Eg $2\sqrt{7}$	Al	1.1b	
		(3)		
(b)	Attempts to add/subtract 'r' from '2' $k = 2 \pm \sqrt{28}$	M1	3.1a	
		A1ft	1.1b	
		(2)		
	(5 mark			
	Notes			
 (a) M1: Attempts to complete the square. Look for (x±2)² + (y±4)² If a candidate attempts to use x² + y² + 2gx + 2fy + c = 0 then it may be awarded for a centre of (±2,±4) Condone a = ±2,b = ±4 A1: Centre (2,-4) This may be written separately as x = 2, y = -4 BUT a = 2,b = -4 is A0 A1: Radius √28 or 2√7 isw after a correct answer (b) M1: Attempts to add or subtract their radius from their 2. Alternatively substitutes y = -4 into circle equation and finds x/k by solving the quadratic equation by a suitable method. A third (and more difficult) method would be to substitute x = k into the equation to form a quadratic eqn in y ⇒ y² + 8y + k² - 4k - 8 = 0 and use the fact that this would have one root. E.g. b² - 4ac = 0 ⇒ 64 - 4(k² - 4k - 8) = 0 ⇒ k = Condone slips but the method must be sound. 				
A1ft: $k = 2 + \sqrt{28}$ and $k = 2 - \sqrt{28}$ Follow through on their 2 and their $\sqrt{28}$ If decimals are used the values must be calculated. Eg $k = 2 \pm 5.29 \rightarrow k = 7.29, k = -3.29$ Accept just $2 \pm \sqrt{28}$ or equivalent such as $2 \pm 2\sqrt{7}$ Condone $x = 2 + \sqrt{28}$ and $x = 2 - \sqrt{28}$ but not $y = 2 + \sqrt{28}$ and $y = 2 - \sqrt{28}$				

www.	yes	terd	aysm	aths	exam.	com
	-		-			

Question	Scheme	Marks	AOs			
11. (i)	$x^{2} + y^{2} + 18x - 2y + 30 = 0 \Longrightarrow (x+9)^{2} + (y-1)^{2} = \dots$	M1	1.1b			
	Centre $(-9,1)$	A1	1.1b			
	Gradient of line from $P(-5,7)$ to " $(-9,1)$ " = $\frac{7-1}{-5+9} = \left(\frac{3}{2}\right)$					
	dM1	3.1a				
	$3y-21 = -2x-10 \Longrightarrow 2x+3y-11 = 0$	A1	1.1b			
		(5)				
(ii)	$x^{2} + y^{2} - 8x + 12y + k = 0 \Longrightarrow (x - 4)^{2} + (y + 6)^{2} = 52 - k$	M1	1.1b			
	Lies in Quadrant 4 if radius $< 4 \implies "52 - k" < 4^2$	M1	3.1a			
	$\Rightarrow k > 36$	A1	1.1b			
	Deduces $52 - k > 0 \Rightarrow$ Full solution $36 < k < 52$	A1	3.2a			
		(4)				
		(9 marks)			

Notes

(i)

M1: Attempts $(x \pm 9)^2 \dots (y \pm 1)^2 = \dots$ It is implied by a centre of $(\pm 9, \pm 1)$

A1: States or uses the centre of *C* is (-9,1)

M1: A correct attempt to find the gradient of the radius using their (-9,1) and P. E.g. $\frac{7 - "1"}{-5 - "-9"}$

dM1: For the complete strategy of using perpendicular gradients and finding the equation of the tangent to the circle. It is dependent upon both previous M's. $y-7 = -\frac{1}{\text{gradient } CP}(x+5)$ Condone a sign slip on one of the -7 or the 5.

A1:
$$2x+3y-11=0$$
 oe such as $k(2x+3y-11)=0, k \in \mathbb{Z}$

.....

Attempt via implicit differentiation. The first three marks are awarded M1: Differentiates $x^2 + y^2 + 18x - 2y + 30 = 0 \Rightarrow ...x + ...y \frac{dy}{dx} + 18 - 2\frac{dy}{dx} = 0$ A1: Differentiates $x^2 + y^2 + 18x - 2y + 30 = 0 \Rightarrow 2x + 2y \frac{dy}{dx} + 18 - 2\frac{dy}{dx} = 0$ M1: Substitutes P(-5,7) into their equation involving $\frac{dy}{dx}$

Question	Sc	heme	Marks	AOs
17 (a)	$\frac{\text{Way 1:}}{\text{Finds circle equation}}$ $(x \pm 2)^2 + (y \mp 6)^2 = (10 \pm (-2))^2 + (11 \mp 6)^2$	$\frac{\text{Way 2:}}{\text{Finds distance between}}$ $(-2, 6) \text{ and } (10, 11)$	M1	3.1a
	Checks whether (10, 1) satisfies their circle equation	Finds distance between $(-2, 6)$ and $(10, 1)$	M1	1.1b
	Obtains $(x+2)^2 + (y-6)^2 = 13^2$ and checks that $(10+2)^2 + (1-6)^2 = 13^2$ so states that (10, 1) lies on C *	Concludes that as distance is the same (10, 1) lies on the circle C^*	A1*	2.1
			(3)	
(b) Finds radius gradient $\frac{11-6}{10-(-2)}$ or $\frac{1-6}{10-(-2)}$ (m)		or $\frac{1-6}{10-(-2)}$ (<i>m</i>)	M1	3.1a
	Finds gradient perpendicular to	M1	1.1b	
	Finds (equation and) y intercept	of tangent (see note below)	M1	1.1b
	Obtains a correct value for y inte	A1	1.1b	
	Way 1: Deduces gradient of second tangent	<u>Way 2</u> : Deduces midpoint of PQ from symmetry (0, 6)	M1	1.1b
	Finds (equation and) y intercept of second tangent	Uses this to find other intercept	M1	1.1b
	So obtains distance $PQ = 35 + 23 = 58*$			1.1b
			(7)	
			(10 n	narks)

Question Number	Scheme	Marks		
4. (a)	Usually answered in radians: Uses $BCD = 3.5 \times (angle)$, $= 3.5 \times 1.77 = 6.195$ (m) (accept awrt 6.20)	M1 A1 (2)		
(b)	Area = $\frac{1}{2}(3.5)^2 \times 1.77 = 10.84$ (m ²)	M1 A1		
	-	(2)		
(c)	Area of triangle = $\frac{1}{2} \times 3.7 \times 3.5 \times \sin(\text{angle})$, = $\frac{1}{2} \times 3.7 \times 3.5 \times \sin(\frac{\pi}{2} - \frac{1.77}{2})$ (=awrt 4.1)	M1, A1		
	Total area = $"10.84"+2 \times "4.101"$ = 19.04	M1 A1cao		
		(4) [8]		
	Notes			
(a)	M1: uses $s = 3.5 \times \theta$ with θ in radians or completely correct work in degrees			
	A1: awrt 6.20 or just 6.2 (do not need to see units) Correct answer can imply the method.			
(b)	M1 for attempt to use $A = \frac{1}{2} \times 3.5^2 \times \theta$ (Accept θ in degrees.)			
	A1 for awrt 10.84 (do not need to see units) isw if correct answer is followed by 10.8. Correct can imply the method.	et answer		
(c)	M1: Uses area of triangle $\frac{1}{2} \times 3.7 \times 3.5 \times \sin(\text{angle})$ Must be correct method for area of triangle	e but may		
	be less direct.			
	A1: Correct expression using correct angle i.e. $\frac{\pi}{2} - \frac{1.77}{2}$ or awrt 0.69 or awrt 39 degrees (need	at least 2		
	sf if no other work seen, but may be implied by correct final answer) If correct expression is g	given then		
	isw (so e.g. isw an answer of 0.0775 implying angle set to degrees on calculator)	,		
	M1: Adds twice their second calculated area (even if rectangle or segment) to their sector at have been slips or errors in one or both formulae – such as missing ¹ / ₂ or mixture of degrees a	rea (may		
	or weak attempt at triangle area) so M0A0M1A0 is a possible mark distribution	na radians		
	A1: 19.04 cao (common answer through insufficient accuracy is 19.08 which loses final mar	k)		
	Special Case . The mark profile M1A0M1A0M1A0M1A0 can be given if the angle is misund as 1.77π or as <i>AFB</i> for example	lerstood		
	If "10.84"+ $3.5 \times 3.7 \sin(\text{angle})$ is used then this can gain both M marks and the A marks if	correct.		
	But use of $3.5 \times 3.7 \sin(\text{angle})$ and later doubled and added to "10.84" is 1 st M0, 2 nd M1.			

Question number	Scheme	Marks
5	$x^2 + y^2 - 10x + 6y + 30 = 0$	
(a)	Uses any appropriate method to find the coordinates of the centre, e.g achieves $(x \pm 5)^2 + (y \pm 3)^2 = \dots$ Accept ($\pm 5, \pm 3$) as indication of this.	M1

	Centre is $(5, -3)$.		A1	(2)
(b) Way 1	Uses $(x \pm "5")^2 - "5^2" + (y \pm "3")^2 - r = \sqrt{"25" + "9" - 30}$ or $r^2 = "25" + r^2$	-"32" + 30 = 0 to give "9"-30 (not 30 - 25 - 9)	M1	(-)
	<i>r</i> = 2		Alcao	
Or Way 2	Using $\sqrt{g^2 + f^2 - c}$ from $x^2 + y^2 + $ stated or correct working)	2gx + 2fy + c = 0 (Needs formula	M1	(2)
	<i>r</i> = 2		A1	
(c) Way 1	Use $x = 4$ in <i>an</i> equation of circle and	obtain equation in y only	M1	(2)
	e.g $(4-5)^2 + (y+3)^2 = 4$ or 4	$4^2 + y^2 - 10 \times 4 + 6y + 30 = 0$		
	Solve their quadratic in y and obtain to	wo solutions for <i>y</i>	dM1	
	e.g. $(y+3)^2 = 3$ or $y^2 + 6y + 6 = 0$) so $y = -3 \pm \sqrt{3}$	A1	
Or Way 2	\mathcal{Q}	Divide triangle <i>PTQ</i> and use Pythagoras with " r " ² -("5"-4) ² = h^2 ,	M1	(3)
		Find <i>h</i> and evaluate $"-3"\pm h$. May recognise $(1,\sqrt{3}, 2)$ triangle.	dM1	
		So $y = -3 \pm \sqrt{3}$		
	P P		A1	(3) [7]

Question Number	Sch	neme	Marks
3.	<i>P</i> (7, 8) and <i>Q</i> (10, 13)		
(a)	$\{PQ = \} \sqrt{(7-10)^2 + (8-13)^2} \text{ or } \sqrt{(10-7)^2}$	$+(13-8)^2$ Applies distance formula. Can be implied.	M1
	$\{PQ\} = \sqrt{34}$	$\sqrt{34}$ or $\sqrt{17}.\sqrt{2}$	A1
			[2]
(b)	$(()^2)$	$(x \pm 7)^2 + (y \pm 8)^2 = k$,	M1
Way 1	$(x-7)^2 + (y-8)^2 = 34$ (or ($\sqrt{34}$))	where k is a positive value.	
	× ,	$(x-7)^2 + (y-8)^2 = 34$	A1 oe
		2 2 14 116	[2]
(b)	2 2	$x^2 + y^2 \pm 14x \pm 16y + c = 0$,	M1
Way 2	$x^2 + y^2 - 14x - 16y + 79 = 0$	where c is any value < 113 .	
		$x^2 + y^2 - 14x - 16y + 79 = 0$	Al oe
	12 0 5		[2]
(c) Way 1	$\{\text{Gradient of radius}\} = \frac{13-8}{10-7} \text{ or } \frac{5}{3}$	This must be seen or implied in part (c).	B1
	1 (2)	Using a perpendicular gradient method on their	
	Gradient of tangent $= -\frac{1}{m} \left[= -\frac{5}{5} \right]$	gradient. So Gradient of tangent = $-\frac{1}{$	M1
	m(-5)	gradient of radius	
	$y - 13 = -\frac{3}{5}(x - 10)$	y - 13 = (their changed gradient)(x - 10)	M1
	3x + 5y - 95 = 0	3x + 5y - 95 = 0 o.e.	A1
			[4]
(c)	$2(x-7) + 2(y-8)\frac{dy}{dt} = 0$	Correct differentiation (or equivalent).	B1
Way 2	2(x + y) + 2(y + 0) dx = 0	Seen or implied	
	$dy = \frac{1}{2} \frac{dy}{dy} =$	Substituting both $x = 10$ and $y = 13$ into a	
	$2(10-7) + 2(13-8)\frac{1}{dx} = 0 \implies \frac{1}{dx} = -\frac{1}{5}$	valid differentiation to find a value for $\frac{dy}{dx}$	MI
	3	dx	
	$y - 13 = -\frac{5}{5}(x - 10)$	y - 13 = (their gradient)(x - 10)	M1
	3x + 5y - 95 = 0	3x + 5y - 95 = 0 o.e.	A1
	-		[4]
(c)		10x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0	B1
Way 3	10x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0	10x + 13y - 7(x + 10) - 8(y + 13) + c = 0	м2
		where <i>c</i> is any <u>value</u> < 113	1812
	3x + 5y - 95 = 0	3x + 5y - 95 = 0 o.e.	A1
			[4] o
			0

Question Number	Scheme	Marks
13 (a)(i)	(3,-4)	B1
(a)(ii)	$\sqrt{30}$	B1
(b)	Attempts $(6-3)^2 + (k+4)^2$, < 30	[2] M1,M1
	$k^2 + 8k - 5 < 0$	A1*
(c)	Solves quadratic by formula or completion of square to give $k = k = -4 \pm \sqrt{21}$	[3] M1 A1
	Chooses region between two values and deduces $-4 - \sqrt{21} < k < -4 + \sqrt{21}$	M1 A1 cao [4]
		(9 marks
(a)(1)(11) B1	(3,-4) Accept as $x = v = 0$ or even without the brackets	
B1	$\sqrt{30}$ Do not accept decimals here but remember to isw	
(b)	This is scored M1 A1 A1 on e -pen. We are marking it M1 M1 A1	
M1	Attempts to find the length or length ² from $P(6,k)$, to the centre of $C(3,-4)$ following the	rough on
	their C. Look for, using a correct C, either $(6-'3')^2 + (k+'4')^2$ or $\sqrt{(6-'3')^2 + (k+'4')^2}$	
	Another way is to substitute $(6,k)$ into $(x-3)^2 + (y+4)^2 = 30$ but it is very difficult to sco	re either
M1	of the other two marks using this method. Forms an inequality by using the length from P to the centre of $C <$ the radius of C	
	$(6-3)^2 + (k+4)^2 < 30$. In almost all cases I would expect to see < 30 before < 0	
	Using the alternative method, they would also need the line $(6-3)^2 + (k+4)^2 < 30$. (As if the second se	he point
A1*	lies on another circle, the radius/distance would need to be smaller than 30) $k^2 + 8k - 5 < 0$	
	This is a given answer and you must check that all aspects are correct. In most cases y expect to see an intermediate line (with < 30) before the final answer appear with < 0 .	ou should
(c)		
M1	Solves the equation $k^2 + 8k - 5 = 0$ by formula or completing the square. Eactorisation to integer roots is not a suitable method in this case and scores M0	
	The answers could just appear from a graphical calculator. Accept decimals for the M's onl	у
A1	Accept $k = -4 \pm \sqrt{21}$ or exact equivalent $k = \frac{-8 \pm \sqrt{84}}{2}$	
	Do not accept decimal equivalents $k = -8.58$, (+)0.58 2dp for this mark	
M1	Chooses inside region from their two roots. The roots could just appear or have been derive factorisation.	ed by
A1	cao $-4 - \sqrt{21} < k < -4 + \sqrt{21}$ Accept equivalents such as $(-4 - \sqrt{21}, -4 + \sqrt{21})$, $k > -4 - \sqrt{21}$ and $k < -4 + \sqrt{21}$, even $k > -4 - \sqrt{21}$, $k < -4 + \sqrt{21}$	
	Accept for 3 out of 4 $\begin{bmatrix} -4 - \sqrt{21}, -4 + \sqrt{21} \end{bmatrix}$, $k > -4 - \sqrt{21}$ or $k < -4 + \sqrt{21}, -4 - \sqrt{21} \le k \le -4 + \sqrt{21}$	
	Do not accept $-4 - \sqrt{21} < x < -4 + \sqrt{21}$ for this final mark	

Ques Nun	stion nber	Scheme	Marks		
14	(a)	$\left(\frac{1+7}{2},\frac{4+8}{2}\right) = (4,6)$	M1A1 (2)		
((b)	$\frac{\sqrt{(7-1)^2 + (8-4)^2}}{2} \text{ Or } \sqrt{('4'-1)^2 + ('6'-4)^2} \text{ Or } \sqrt{(7-4')^2 + (8-6')^2}$	M1		
(4	c)	(Radius of circle) = $\sqrt{13}$ Equation of C ₂ is $x^2 + y^2 = r^2$	(2) M1		
		Attempts either value of r as $(\sqrt{4}^{2} + 6)^{2} \pm \text{their } r)$ When $r = \sqrt{52} - \sqrt{13} = \sqrt{13} \implies x^{2} + y^{2} = 13$ When $r = \sqrt{52} + \sqrt{13} = 3\sqrt{13} \implies x^{2} + y^{2} = 117$	M1 A1 A1		
			(4) (8marks)		
A1 (b) M1 A1 (c) M1	A1 (4, 6). No working is required, Correct answer scores both marks. Condone lack of brackets (b) M1 Scored for using Pythagoras' theorem to find the distance between their centre and a point. Look for an attempt at $\sqrt{('4'-1)^2 + ('6'-4)^2}$ or similar. If the original coordinates are used then there must be some attempt to halve. A1 = $\sqrt{13}$ Correct answer scores both marks (c) M1 For stating the equation of C ₂ is $x^2 + y^2 = r^2$ or $(x-0)^2 + (y-0)^2 = r^2$ for any 'r' including an				
M1	Atter	mpts either value of r Look for $\left(\sqrt{4'^2 + 6'^2} \pm \text{their } r\right)$ Accept $r = \frac{\sqrt{4^2 + 6^2}}{2}$			
A1 A1	Eithe Allo Both Any	er of $x^2 + y^2 = 13$ or $x^2 + y^2 = 117$ w for this mark variations like $(x-0)^2 + (y-0)^2 = \sqrt{13}^2$ of $x^2 + y^2 = 13$ and $x^2 + y^2 = 117$. Equations must be simplified as seen her one correct equation will imply the first two M's.	e		
Alt me M1:	ethod 1 As al	to find equations using the intersections:			

M1: Solves 'their' $y = \left(\frac{3}{2}\right)^{2} x$ with their $(x - 4')^{2} + (y - 6')^{2} = (13') \Rightarrow$ Intersections (2,3) and (6,9)

So this time the method is scored for either $\sqrt{2^{12}+3^{12}}$ or $\sqrt{6^{12}+9^{12}}$ A1 A1 as before

Question Number		Scheme		Marks
2 (a)	Ma	rk (a) and	(b) together	
	$(x \pm 4)(y \pm 2)$	Attempts t sight of (x by a centre $x^2 + y^2 + 2$	to complete the square on x and y or (± 4) and $(y \pm 2)$. May be implied the of $(\pm 4, \pm 2)$. Or if considering $2gx + 2fy + c = 0$, centre is $(\pm g, \pm f)$.	M1
	Centre $C = (4, -2)$	Correct ce But not $g =$	ntre (allow $x = 4, y = -2$) =, $f =$ or $p =, q =$ etc.	A1
	Correct	answer scores both marks		
				(2)
(b)	$r^{2} = 12 + (\pm 4)^{2} + (\pm 2)^{2}$ $r = \sqrt{32}$	2) ²	Must reach: $r^2 = 12 + \text{their} (\pm 4)^2 + \text{their} (\pm 2)^2$ or $r = \sqrt{12 + \text{their} (\pm 4)^2 + \text{their} (\pm 2)^2}$ or if considering $x^2 + y^2 + 2gx + 2fx + c = 0$, $r^2 = g^2 + f^2 - c$ Or $r = \sqrt{g^2 + f^2 - c}$ Must clearly be identifying the radius or radius ² May be implied by a correct exact radius or awrt 5.66 $r = \sqrt{32}$. Accept exact equivalents such as $4\sqrt{2}$. $r =$ not needed but must clearly be the radius. Do not	M1
			allow $\pm\sqrt{32}$ unless minus is rejected	
	Correct	answer sco	ores both marks	
				(2)
(c)	$x = 0 \Longrightarrow y^2 + 4y - 12$	=0	Correct quadratic. Allow $16+(y+2)^2 = 32$	B1
	$(y+6)(y-2) = 0 \Longrightarrow y$	·=	Attempts to solve a 3TQ that has come from substituting $x = 0$ or y = 0 into the given equation or their 'changed' equation. May be implied by correct answers for their quadratic.	M1
	y = 2, -6 or $(0, 2)$ and $($	0,-6)	Correct y values or correct coordinates. Accept sight of these for all 3 marks if no incorrect working seen but must clearly be y values or correct coordinates. This may be implied by the correct roots of a quadratic in y.	A1
				(7 marks)

Question	Scheme				
13 (a)	See $(x\pm 1)^2 + (y\pm 3)^2 = r^2$	Or see $x^2 + y^2 \pm 2x \pm 6y + c = 0$	M1		
	Attempt $\sqrt{(8-1)^2 + (-2-(-3))^2}$ or $(8-1)^2 + (-2-(-3))^2$	Substitute $(8, -2)$ into equation	M1		
	$(x-1)^2 + (y+3)^2 = 50$	$x^2 + y^2 - 2x + 6y - 40 = 0$	A1, A1 [4]		
(b)	Gradient of $AP = \frac{1}{7}$		B1		
	So gradient of tangent is -7		M1		
	Equation of tangent is $(y + 2) = -7$	(x - 8)	dM1		
	y = -7x + 54 or $m = -7$, $c = 54$		A1 [4]		
	Way 1	Way 2			
(c)	y = x + 6 meets circle when $(x - 1)^2 + (x + 9)^2 = 50$ or when $(y - 7)^2 + (y + 3)^2 = 50$	As tangent has gradient 1 AQ has gradient -1 and $\frac{y - (-3)}{x - 1} = -1$	M1		
	i.e. $2x^2 + 16x + 32 = 0$	y + x = -2	Al		
	or when $2y - 8y + 8 = 0$	Solve $y + x = -2$ with $y = x + 6$ or			
	Solve to give x or $y =$	alternatively solve $y + x = -2$ with the equation of the circle to give x or $y =$	M1		
	Substitute to give y	= (or $x =$)	dM1		
	(-4, 2) only		A1 [5]		
			13 marks		
(a)		Notes			
(a) M1 : Scored It need	d for centre at $(1,-3) \Rightarrow (x\pm 1)^2 + (y\pm 3)$ l for an attempt at finding the radius of not be in the equation It can be <u>impl</u>	$x^{2} = \dots$ or $x^{2} + y^{2} \pm 2x \pm 6y + \dots = 0$ or the radius ² (see scheme). <u>ied</u> by $\sqrt{50}$ or $5\sqrt{2}$ or 50			
If the f	form $x^2 + y^2 \pm 2x \pm 6y + c = 0$ is used a	it is for substituting $(8, -2)$ into the equation	1		
AI: LHS 0 A1: Correc	r KHS correct $(x-1)^2 + (y+3)^2 =$	or $(x \pm a)^2 + (y \pm b)^2 = 50 x^2 + y^2 - 2x + 6y \dots$ 50 or $x^2 \pm y^2 - 2x \pm 6y - 40 = 0$ or $x^2 \pm y^2 - 2$	=0 r + 6v - 40		
(b)	(x - 1) + (y + 3) =	5001 x + y = 2x + 0y - 40 = 001 x + y = 2.	x + 0y = +0		
B1 : Obtain $1/7$. Implied by use of -7 in their tangent M1 : Uses negative reciprocal					
dM1 : Linear equation through point (8, -2) with their negative reciprocal gradient					
A1. Cao (c)					
M1: Eliminates x or y from two relevant equations, that is whose intersection is Q .					
 M1: Contect quadratic in x of in y M1: Solves (with usual rules) to give first variable. The first M must have been scored dM1: Substitute in either (relevant) equation to give second coordinate, dependent upon both previous 					
A1: Correct	answer accept $x = -4$, $y = 2$. With	hold this if two answers given			

Question Number	Scheme	Marks	
12(a)	Writes C as $(x-a)^2 + (y-0)^2 = a^2$	M1A1	
(b)	Subs $(4,-3) \Rightarrow (4-a)^2 + (-3-0)^2 = a^2$ $\Rightarrow 16 - 8a + a^2 + 9 = a^2$	M1	(2)
	$\Rightarrow 25 = 8a$ $\Rightarrow a = \frac{25}{8}$	dM1A1 (5 marks)	(3)

Mark parts (a) and (b) together. Award marks in (a) from (b) and vice versa, but see note (a)

M1 Attempts to find the equation of *C* centre (*a*,0) radius *a*. Accept $(x \pm a)^2 + y^2 = a^2$ oe If the alternative form of the circle is used accept $x^2 + y^2 \pm 2ax = a^2 - a^2$ Allow for the M1 $(x \pm a)^2 + (y \pm 0)^2 = r^2$

A1 Writes C as
$$(x-a)^2 + (y-0)^2 = a^2$$
 or equivalent $x^2 + y^2 - 2ax = 0$

- (b)
- M1 Subs x = 4 and y = -3 into their circle equation for *C* which must be of the form $(x \pm a)^2 + (y \pm 0)^2 = a^2$
- dM1 Proceeds to a linear equation in 'a' and reaches a=... Condone numerical slips A1 $a = \frac{25}{8}$ Accept exact alternatives

Note: There are some candidates who write the equation of the circle as $(x-a)^2 + (y-0)^2 = r^2$ in part (a) This is M1 A0 However in part (b) they substitute (4,-3) and write down $(4-a)^2 + (-3)^2 = a^2$ We will allow them to score all 3 marks in part (b).

Had they written $(x-a)^2 + y^2 = a^2$ in (b) we would allow them to score all 5 marks

Question Number	Scheme	Marks
15 (a)	Mid-point of $AB = (2, -3)$	M1 A1
	$(r^{2}) = (12 - "2")^{2} + (2 - "-3")^{2}$ or $(r^{2}) = (-8 - "2")^{2} + (-8 - "-3")^{2}$ or $(d^{2}) = (-8 - 12)^{2} + (-8 - 2)^{2}$	M1
	$r^2 = 125$	A1
	$"125" = (x \pm "2")^{2} + (y \pm "-3")^{2}$	M1
	$125 = (x-2)^2 + (y+3)^2$	A1
		[6]
(b)	gradient from "(2, -3)" to (4, 8) = $\frac{8 - "-3"}{4 - "2"}$, $\left(=\frac{11}{2}\right)$	M1
	ZM has gradient $-\frac{1}{m} \qquad \left(=-\frac{2}{11}\right)$	M1
	Either: $y - 8 = "-\frac{2}{11}"(x - 4)$ or: $y = "-\frac{2}{11}"x + c$ and $8 = "-\frac{2}{11}"(4) + c \implies c = "8\frac{8}{11}"$	ddM1
	2x + 11y - 96 = 0	A1
		[4]
		(10marks)
	Notes	(Tomarks)
(a)	M1: Uses midpoint formula, or implied by <i>y</i> coordinate of -3 or <i>x</i> coordinate of 2	
	A1: cao M1: Finds radius or radius ² , diameter or diameter ² using any valid method – probably distance to one of the points. Need not state $r = \dots$ so ignore lhs – you are just looking for correct use Pythagoras with or without the square root so ignore how they reference it for this mark. A1: for any equivalent $r^2 = 125$ or $r = \sqrt{125}$ (11.18) etc. Their numeric answer must be identified either r or r^2 (may be implied by their equation). If they halve it or double it, this is M1 A0. M1: Attempt to use a true equation for circle with their centre and radius or the letter r , allow site brackets but do not allow use or r instead of r^2 in the equation. So must be using $r^2 = (\mathbf{x} \pm)^2 + (\mathbf{y} \pm)^2$	from centre of fied here as ign slips in
	A1: correct answer only (Allow $(5\sqrt{5})^2$ instead of 125 but not $5\sqrt{5}^2$)	
(b)	 M1: States or uses gradient equation correctly with their centre and (4, 8). Must be using their (4, 8). If no method is shown and gradient incorrect for their values score M0. M1: Finds negative reciprocal. Follow through their gradient ddM1: Correct straight line method with (4, 8) and perpendicular gradient. Dependent on both method marks having been scored. A1: cao – accept multiples of this equation (Note integer coefficients not required) A common error here is to use the diameter to find the gradient. This usually scores M0M1ddM just one mark for the perpendicular gradient rule. (b) Alternative uses implicit differentiation: e.g. 	r centre and previous I0A0 i.e.
	$125 = (x-2)^2 + (y+3)^2 \Rightarrow 2(x-2) + 2(y+3)\frac{dy}{dt} = 0$ M1(correct implicit differentiation)	oe
	$\Rightarrow \frac{dy}{dx} = \frac{2-x}{y+3} = \frac{2-4}{8+3}$ M1(Substitution) Then follow the scheme.	

Question	Scheme	Marks
number		
15 (a)	$\sqrt{(12-5)^2 + (7-6)^2}$, = $\sqrt{50}$ or $5\sqrt{2}$	M1, A1
		[2]
(b)	See $(x \pm 5)^2 + (y \pm 6)^2 = (\text{their numerical } r)^2$	M1
	$(x-5)^2 + (y-6)^2 = ,50$	B1, A1 [3]
(c)	Gradient of $AP = \frac{1}{7}$	B1
	So gradient of tangent is -7	M1
	Equation of tangent is $(y - 7) = -7(x - 12)$	dM1 A1 [4]
(d)	$AB = \sqrt{180} = (6\sqrt{5}), BC = \sqrt{160} = (4\sqrt{10}), AC = 10$	M1 A1 A1
	$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{160 + 100 - 180}{20\sqrt{160}}$	M1
	So $C = awrt 71.6$	A1 [5]
		[3] 14 marks

Question Number	Scheme	Marks
15. (a) (b)	gradient = $\frac{11-3}{6-0}$, = $\frac{4}{3}$ Mid-point of $XY = (3, 7)$ ZM has gradient $-\frac{1}{m}$ $\left(=-\frac{3}{4}\right)$	M1 A1 [2] M1 A1 B1ft
	Either: $y - 7'' = -\frac{3}{4}(x - 3'')$ or: $y = -\frac{3}{4}x + c$ and $7'' = -\frac{3}{4}(3'') + c \implies c = 9\frac{1}{4}$	M1
	$4y + 3x - 37 = 0$ or $y - 7 = -\frac{3}{4}(x - 3)$ Or $y = -\frac{3}{4}x + 9\frac{1}{4}$	A1 [5]
(c)	Substitute $y = 10$ into their line equation to give $x =$	M1
	x = -1	A1 [2]
(d)	$(r^{2}) = (-1-0)^{2} + (10-3)^{2} $ or $(r^{2}) = (-1-6)^{2} + (10-11)^{2}$ $r^{2} = 50$ $"50" = (x \pm "(-1)")^{2} + (y \pm "10")^{2}$ $"50" = (x - "(-1)")^{2} + (y - "10")^{2}$ $x^{2} + y^{2} + 2x - 20y + 51 = 0$	M1 A1 M1 A1ft A1 [5] (14 marks)
	Alternative methods to part (d) (i)Use equation $x^2 + y^2 + ax + by + c = 0$ and substitute three points, usually (0,3), (6,11) and another point on the circle maybe (-2,17) or (-8,9) - not point Z Solves simultaneous equations a = 2, b = -20 and $c = 51(ii) Uses centre to write a = and b = (doubles x coordinate and y coordinate respectively,\pm"2" and \pm"20")Obtains a = 2 and b = -20 (or just writes these values down so these answers imply M1A1)Completes method to find c, (could substitute one of the points on the circle) or could find rAccurate work e.g. r^2 = 50 or e.g. x^2 + y^2 + 2x - 20y = (-8)^2 + 9^2 + 2x - 8 - 20 \times 9 =c = 51$	M1 dM1 A1,A1,A1 M1 A1 dM1 A1 A1 A1