Question	Scheme	Marks	AOs
1	$\frac{1}{(r+1)(r+3)} \equiv \frac{A}{(r+1)} + \frac{B}{(r+3)} \Longrightarrow A = \dots, B = \dots$	M1	3.1a
	$\sum_{r=1}^{n} \frac{1}{(r+1)(r+3)} = \frac{1}{2 \times 2} - \frac{1}{2 \times 4} + \frac{1}{2 \times 3} - \frac{1}{2 \times 5} + \dots + \frac{1}{2n} - \frac{1}{2(n+2)} + \frac{1}{2(n+1)} - \frac{1}{2(n+3)}$	M1	2.1
	$=\frac{1}{4}+\frac{1}{6}-\frac{1}{2(n+2)}-\frac{1}{2(n+3)}$	A1	2.2a
	$=\frac{5(n+2)(n+3)-6(n+3)-6(n+2)}{12(n+2)(n+3)}$	M1	1.1b
	$=\frac{n(5n+13)}{12(n+2)(n+3)}$	A1	1.1b
		(5)	
	Alternative by induction: $n=1 \Rightarrow \frac{1}{8} = \frac{a+b}{12 \times 3 \times 4}, \ n=2 \Rightarrow \frac{1}{8} + \frac{1}{15} = \frac{2(2a+b)}{12 \times 4 \times 5}$ $a+b=18, \ 2a+b=23 \Rightarrow a=, b=$	M1	3.1a
	Assume true for $n = k$ so $\sum_{r=1}^{k} \frac{1}{(r+1)(r+3)} = \frac{k(5k+13)}{12(k+2)(k+3)}$		
	$\sum_{r=1}^{k+1} \frac{1}{(r+1)(r+3)} = \frac{k(5k+13)}{12(k+2)(k+3)} + \frac{1}{(k+2)(k+4)}$	M1	2.1
	$\frac{k(5k+13)}{12(k+2)(k+3)} + \frac{1}{(k+2)(k+4)} = \frac{k(5k+13)(k+4)+12(k+3)}{12(k+2)(k+3)(k+4)}$	A1	2.2a
	$=\frac{5k^3+33k^2+52k+12k+36}{12(k+2)(k+3)(k+4)}=\frac{(k+1)(k+2)(5k+18)}{12(k+2)(k+3)(k+4)}$	M1	1.1b
	$= \frac{(\underline{k+1})(5(\underline{k+1})+13)}{12(\underline{k+1}+2)(\underline{k+1}+3)}$ So true for $n = k+1$ So $\sum_{r=1}^{n} \frac{1}{(r+1)(r+3)} = \frac{n(5n+13)}{12(n+2)(n+3)}$	A1	1.1b
		(5)	
		(5 n	narks)

Paper 1: Core Pure Mathematics 1 Mark Scheme

Question 1 notes:

Main Scheme

- M1: Valid attempt at partial fractions
- M1: Starts the process of differences to identify the relevant fractions at the start and end
- A1: Correct fractions that do not cancel
- M1: Attempt common denominator
- A1: Correct answer

Alternative by Induction:

- M1: Uses n = 1 and n = 2 to identify values for *a* and *b*
- M1: Starts the induction process by adding the $(k + 1)^{th}$ term to the sum of k terms
- A1: Correct single fraction
- M1: Attempt to factorise the numerator
- A1: Correct answer and conclusion

Ques	tion	Scheme	Marks	AOs
2	When <i>n</i>	$n = 1, 2^{3n+1} + 3(5^{2n+1}) = 16 + 375 = 391$	D1	2.2-
	391 = 1	7×23 so the statement is true for $n = 1$	B1	2.2a
	Assume	e true for $n = k$ so $2^{3k+1} + 3(5^{2k+1})$ is divisible by 17	M1	2.4
	f(k+1)	$)-f(k) = 2^{3k+4} + 3(5^{2k+3}) - 2^{3k+1} - 3(5^{2k+1})$	M1	2.1
	$= 7 \times 2^3$	$^{3k+1} + 7 \times 3(5^{2k+1}) + 17 \times 3(5^{2k+1})$		
		$=7f(k)+17\times 3(5^{2k+1})$	A1	1.1b
		$f(k+1) = 8f(k) + 17 \times 3(5^{2k+1})$	A1	1.1b
	n = k +	tatement is true for $n = k$ then it has been shown true for 1 and as it is true for $n = 1$, the statement is true for all e integers n	A1	2.4
			(6)	
			(6 n	narks)
Note	:			
B1:		atement is true for $n = 1$		
M1:	Assumes the statement is true for $n = k$			
M1:	Attempts $f(k+1) - f(k)$			
A1: A1:	Correct expression in terms of $f(k)$			
A1: A1:	Correct expression in terms of $f(k)$ Obtains a correct expression for $f(k + 1)$			
111.	(k + 1)			

A1: Correct complete conclusion

Quest	ion Scheme	Marks	AOs
3	z = 3 - 2i is also a root	B1	1.2
	$(z - (3 + 2i))(z - (3 - 2i)) = \dots$ or Sum of roots = 6, Product of roots = 13 \Rightarrow	M1	3.1a
	$= z^2 - 6z + 13$	A1	1.1b
	$(z^4 + az^3 + 6z^2 + bz + 65) = (z^2 - 6z + 13)(z^2 + cz + 5) \Longrightarrow c = \dots$	M1	3.1a
	$z^2 + 2z + 5 = 0$	A1	1.1b
	$z^2 + 2z + 5 = 0 \Longrightarrow z = \dots$	M1	1.1a
	$z = -1 \pm 2i$	A1	1.1b
	Im (-1, 2) (3, 2)	B1 $3 \pm 2i$ Plotted correctly	1.1b
	(-1, -2) (3, -2)	B1ft $-1 \pm 2i$ Plotted correctly	1.1b
Notes		(9 n	narks)
 B1: Identifies the complex conjugate as another root M1: Uses the conjugate pair and a correct method to find a quadratic factor A1: Correct quadratic M1: Uses the given quartic and their quadratic to identify the value of <i>c</i> A1: Correct 3TQ M1: Solves their second quadratic A1: Correct second conjugate pair B1: First conjugate pair plotted correctly and labelled B1ft: Second conjugate pair plotted correctly and labelled (Follow through their second conjugate pair) 			

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Question	Scheme	Marks	AOs
$\frac{1}{2}\int (4+\cos 2\theta)^2 d\theta = \frac{1}{2}\int (16+8\cos 2\theta+\cos^2 2\theta) d\theta \qquad M1 \qquad 3.1a$ $\frac{1}{2}\int (4+\cos 2\theta)^2 d\theta = \frac{1}{2}\int (16+8\cos 2\theta+\cos^2 2\theta) d\theta \qquad M1 \qquad 3.1a$ $\frac{1}{2}\cos^2 2\theta = \frac{1}{2} + \frac{1}{2}\cos 4\theta \Rightarrow A = \frac{1}{2}\int (16+8\cos 2\theta+\frac{1}{2}+\frac{1}{2}\cos 4\theta) d\theta \qquad M1 \qquad 3.1a$ $= \frac{1}{2}\left[16\theta+4\sin 2\theta+\frac{\sin 4\theta}{8}+\frac{\theta}{2}\right] \qquad A1 \qquad 1.1b$ Using limits 0 and their $\frac{\pi}{6}$: $\frac{1}{2}\left[\frac{33\pi}{12}+2\sqrt{3}+\frac{\sqrt{3}}{16}-(0)\right] \qquad M1 \qquad 1.1b$ Area of triangle $= \frac{1}{2}(r\cos\theta)(r\sin\theta) = \frac{1}{2}\times\frac{81}{4}\times\frac{1}{2}\times\frac{\sqrt{3}}{2} \qquad M1 \qquad 3.1a$ $\frac{1}{4}\operatorname{Area of} R = \frac{33\pi}{24} + \frac{33\sqrt{3}}{32} - \frac{81\sqrt{3}}{32} \qquad M1 \qquad 1.1b$ $= \frac{11}{8}\pi - \frac{3\sqrt{3}}{2}\left(p = \frac{11}{8}, q = -\frac{3}{2}\right) \qquad A1 \qquad 1.1b$	4	$4 + \cos 2\theta = \frac{9}{2} \Longrightarrow \theta = \dots$	M1	3.1a
$\frac{1}{\cos^{2} 2\theta = \frac{1}{2} + \frac{1}{2}\cos 4\theta \Rightarrow A = \frac{1}{2}\int \left(16 + 8\cos 2\theta + \frac{1}{2} + \frac{1}{2}\cos 4\theta\right)d\theta \qquad M1 \qquad 3.1a$ $= \frac{1}{2}\left[16\theta + 4\sin 2\theta + \frac{\sin 4\theta}{8} + \frac{\theta}{2}\right] \qquad A1 \qquad 1.1b$ Using limits 0 and their $\frac{\pi}{6}$: $\frac{1}{2}\left[\frac{33\pi}{12} + 2\sqrt{3} + \frac{\sqrt{3}}{16} - (0)\right] \qquad M1 \qquad 1.1b$ Area of triangle $= \frac{1}{2}(r\cos\theta)(r\sin\theta) = \frac{1}{2} \times \frac{81}{4} \times \frac{1}{2} \times \frac{\sqrt{3}}{2} \qquad M1 \qquad 3.1a$ $\frac{1}{4}\operatorname{Area of } R = \frac{33\pi}{24} + \frac{33\sqrt{3}}{32} - \frac{81\sqrt{3}}{32} \qquad M1 \qquad 1.1b$ $= \frac{11}{8}\pi - \frac{3\sqrt{3}}{2}\left(p = \frac{11}{8}, q = -\frac{3}{2}\right) \qquad A1 \qquad 1.1b$		$\theta = \frac{\pi}{6}$	A1	1.1b
$=\frac{1}{2}\left[16\theta + 4\sin 2\theta + \frac{\sin 4\theta}{8} + \frac{\theta}{2}\right]$ A1 1.1b Using limits 0 and their $\frac{\pi}{6}: \frac{1}{2}\left[\frac{33\pi}{12} + 2\sqrt{3} + \frac{\sqrt{3}}{16} - (0)\right]$ A1 1.1b Area of triangle = $\frac{1}{2}(r\cos\theta)(r\sin\theta) = \frac{1}{2} \times \frac{81}{4} \times \frac{1}{2} \times \frac{\sqrt{3}}{2}$ M1 3.1a Area of $R = \frac{33\pi}{24} + \frac{33\sqrt{3}}{32} - \frac{81\sqrt{3}}{32}$ M1 1.1b $= \frac{11}{8}\pi - \frac{3\sqrt{3}}{2}\left(p = \frac{11}{8}, q = -\frac{3}{2}\right)$ A1 1.1b		$\frac{1}{2}\int (4+\cos 2\theta)^2 d\theta = \frac{1}{2}\int (16+8\cos 2\theta+\cos^2 2\theta) d\theta$	M1	3.1a
$\frac{1}{2} \begin{bmatrix} 2 & 0 & 2 \end{bmatrix}$ Using limits 0 and their $\frac{\pi}{6}$: $\frac{1}{2} \begin{bmatrix} \frac{33\pi}{12} + 2\sqrt{3} + \frac{\sqrt{3}}{16} - (0) \end{bmatrix}$ M1 1.1b Area of triangle $= \frac{1}{2} (r \cos \theta) (r \sin \theta) = \frac{1}{2} \times \frac{81}{4} \times \frac{1}{2} \times \frac{\sqrt{3}}{2}$ M1 3.1a Area of $R = \frac{33\pi}{24} + \frac{33\sqrt{3}}{32} - \frac{81\sqrt{3}}{32}$ M1 1.1b $= \frac{11}{8} \pi - \frac{3\sqrt{3}}{2} \left(p = \frac{11}{8}, q = -\frac{3}{2} \right)$ A1 1.1b		$\cos^{2} 2\theta = \frac{1}{2} + \frac{1}{2}\cos 4\theta \Longrightarrow A = \frac{1}{2} \int \left(16 + 8\cos 2\theta + \frac{1}{2} + \frac{1}{2}\cos 4\theta\right) d\theta$	M1	3.1a
$\frac{1}{4 \text{ rea of triangle}} = \frac{1}{2} (r \cos \theta) (r \sin \theta) = \frac{1}{2} \times \frac{81}{4} \times \frac{1}{2} \times \frac{\sqrt{3}}{2}$ $\frac{1}{4 \text{ rea of } R = \frac{33\pi}{24} + \frac{33\sqrt{3}}{32} - \frac{81\sqrt{3}}{32}}{1 + \frac{33\sqrt{3}}{2} - \frac{81\sqrt{3}}{32}}$ $\frac{1}{4 \text{ rea of } R = \frac{33\pi}{24} + \frac{33\sqrt{3}}{32} - \frac{81\sqrt{3}}{32}$ $\frac{1}{4 \text{ rea of } R = \frac{11}{8} \pi - \frac{3\sqrt{3}}{2} \left(p = \frac{11}{8}, q = -\frac{3}{2} \right)$ $\frac{1}{4 \text{ rea of } R = \frac{11}{8} \pi - \frac{3\sqrt{3}}{2} \left(p = \frac{11}{8}, q = -\frac{3}{2} \right)$		$=\frac{1}{2}\left[16\theta + 4\sin 2\theta + \frac{\sin 4\theta}{8} + \frac{\theta}{2}\right]$	A1	1.1b
Area of $R = \frac{33\pi}{24} + \frac{33\sqrt{3}}{32} - \frac{81\sqrt{3}}{32}$ $= \frac{11}{8}\pi - \frac{3\sqrt{3}}{2} \left(p = \frac{11}{8}, q = -\frac{3}{2} \right)$ A1 1.1b		Using limits 0 and their $\frac{\pi}{6}$: $\frac{1}{2} \left[\frac{33\pi}{12} + 2\sqrt{3} + \frac{\sqrt{3}}{16} - (0) \right]$	M1	1.1b
$=\frac{11}{8}\pi - \frac{3\sqrt{3}}{2}\left(p = \frac{11}{8}, q = -\frac{3}{2}\right)$ A1 1.1b		Area of triangle = $\frac{1}{2}(r\cos\theta)(r\sin\theta) = \frac{1}{2} \times \frac{81}{4} \times \frac{1}{2} \times \frac{\sqrt{3}}{2}$	M1	3.1a
		Area of $R = \frac{33\pi}{24} + \frac{33\sqrt{3}}{32} - \frac{81\sqrt{3}}{32}$	M1	1.1b
(9 marks)		$=\frac{11}{8}\pi - \frac{3\sqrt{3}}{2}\left(p = \frac{11}{8}, q = -\frac{3}{2}\right)$	A1	1.1b
(**************************************			(9 n	narks)

Notes:

M1: Realises the angle for A is required and attempts to find it

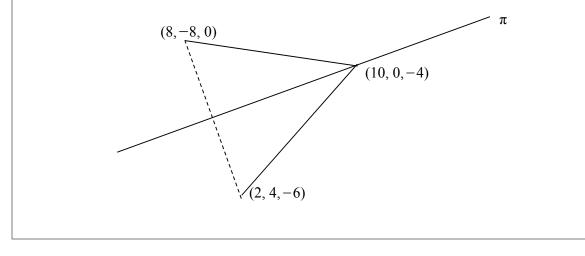
A1: Correct angle

- M1: Uses a correct area formula and squares r to achieve a 3TQ integrand in $\cos 2\theta$
- M1: Use of the correct double angle identity on the integrand to achieve a suitable form for integration
- A1: Correct integration
- M1: Correct use of limits
- M1: Identifies the need to subtract the area of a triangle and so finds the area of the triangle
- M1: Complete method for the area of *R*
- A1: Correct final answer

Question	Scheme	Marks	AOs
5 (a)	Pond contains $1000 + 5t$ litres after t days	M1	3.3
	If x is the amount of pollutant in the pond after t days Rate of pollutant out = $20 \times \frac{x}{1000+5t}$ g per day	M1	3.3
	Rate of pollutant in = 25×2 g = 50g per day	B1	2.2a
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 50 - \frac{4x}{200 + t} *$	A1*	1.1b
		(4)	
(b)	$I = e^{\int \frac{4}{200+t} dt} = (200+t)^4 \Longrightarrow x (200+t)^4 = \int 50(200+t)^4 dt$	M1	3.1b
	$x(200+t)^4 = 10(200+t)^5 + c$	A1	1.1b
	$x = 0, t = 0 \Longrightarrow c = -3.2 \times 10^{12}$	M1	3.4
	$t = 8 \implies x = 10(200+8) - \frac{3.2 \times 10^{12}}{(200+8)^4}$	M1	1.1b
	= 370g	A1	2.2b
		(5)	
(c)	 e.g. The model should take into account the fact that the pollutant does not dissolve throughout the pond upon entry The rate of leaking could be made to vary with the volume of water in the pond 	B1	3.5c
		(1)	
		(10 n	narks)
Notes:			
M1: Expr B1: Corr	Expresses the amount of pollutant out in terms of <i>x</i> and <i>t</i> Correct interpretation for pollutant entering the pond		
(b) M1: Uses equa	Uses the model to find the integrating factor and attempts solution of their differential equation		
M1: Inter M1: Uses	Correct solution Interprets the initial conditions to find the constant of integration Uses their solution to the problem to find the amount of pollutant after 8 days Correct number of grams		
(c)	Suggests a suitable refinement to the model		

uestion	Scheme	Marks	AOs
6(a)	$f(x) = \frac{x+2}{x^2+9} = \frac{x}{x^2+9} + \frac{2}{x^2+9}$	B1	3.1a
	$\int \frac{x}{x^2 + 9} \mathrm{d}x = k \ln \left(x^2 + 9 \right) (+c)$	M1	1.1b
-	$\int \frac{2}{x^2 + 9} \mathrm{d}x = k \arctan\left(\frac{x}{3}\right)(+c)$	M1	1.1b
-	$\int \frac{x+2}{x^2+9} \mathrm{d}x = \frac{1}{2} \ln \left(x^2 + 9 \right) + \frac{2}{3} \arctan \left(\frac{x}{3} \right) + c$	A1	1.1b
		(4)	
(b)	$\int_{0}^{3} f(x) dx = \left[\frac{1}{2} \ln \left(x^{2} + 9 \right) + \frac{2}{3} \arctan \left(\frac{x}{3} \right) \right]_{0}^{3}$ $= \frac{1}{2} \ln 18 + \frac{2}{3} \arctan \left(\frac{3}{3} \right) - \left(\frac{1}{2} \ln 9 + \frac{2}{3} \arctan \left(0 \right) \right)$	M1	1.1b
-	$= \frac{1}{2} \ln \frac{18}{9} + \frac{2}{3} \arctan\left(\frac{3}{3}\right)$ Mean value = $\frac{1}{3-0} \left(\frac{1}{2} \ln 2 + \frac{\pi}{6}\right)$	M1	2.1
-	$\frac{1}{6} \ln 2 + \frac{1}{18} \pi^*$	A1*	2.2a
-	6 18		
(c)	$\frac{1}{6}\ln 2 + \frac{1}{18}\pi + \ln k$	(3) M1	2.2a
-	$\frac{1}{6}\ln 2k^6 + \frac{1}{18}\pi$	A1	1.1b
-		(2)	
		(9 n	narks
1: Reco 1: Reco 1: Both inclue 1: Uses 1: Correc	limits correctly and combines logarithmic terms ectly applies the method for the mean value for their integration	integratio	n
) 1: Uses 1: Corre 1*: Corre) 1: Reali	limits correctly and combines logarithmic terms	by ln k	-

A1: Combines ln's correctly to obtain the correct expression


	Marks	AOs
$x = \cos\theta + \sin\theta\cos\theta = -y\cos\theta$	M1	2.1
$\sin\theta = -y - 1$	M1	2.1
$\left[\left(\frac{x}{-y}\right)^2 = 1 - \left(-y - 1\right)^2$	M1	2.1
$x^{2} = -(y^{4} + 2y^{3})*$	A1*	1.1b
	(4)	
$V = \pi \int x^2 \mathrm{d}y = \pi \int -\left(y^4 + 2y^3\right) \mathrm{d}y$	M1	3.4
$=\pi\left[-\left(\frac{y^5}{5}+\frac{y^4}{2}\right)\right]$	A1	1.1b
$= -\pi \left[\left(\frac{(0)^5}{5} + \frac{(0)^4}{2} \right) - \left(\frac{(-2)^5}{5} + \frac{(-2)^4}{2} \right) \right]$	M1	3.4
$= 1.6\pi \mathrm{cm^3} \mathrm{or} \mathrm{awrt} 5.03 \mathrm{cm^3}$	Al	1.1b
	(4)	
	(8 n	narks)
1 07		
 (b) M1: Uses the correct volume of revolution formula with the given expression A1: Correct integration M1: Correct use of correct limits 		
	sin $\theta = -y - 1$ $\left(\frac{x}{-y}\right)^2 = 1 - (-y - 1)^2$ $x^2 = -(y^4 + 2y^3)^*$ $V = \pi \int x^2 dy = \pi \int -(y^4 + 2y^3) dy$ $= \pi \left[-\left(\frac{y^5}{5} + \frac{y^4}{2}\right) \right]$ $= -\pi \left[\left(\frac{(0)^5}{5} + \frac{(0)^4}{2}\right) - \left(\frac{(-2)^5}{5} + \frac{(-2)^4}{2}\right) \right]$ $= 1.6\pi \text{cm}^3 \text{ or } \text{ awrt } 5.03 \text{cm}^3$ ains x in terms of y and cos θ ains an equation connecting y and sin θ s Pythagoras to obtain an equation in x and y only ains printed answer s the correct volume of revolution formula with the given expression rect integration	$\frac{\sin \theta = -y - 1}{\left(\frac{x}{-y}\right)^2 = 1 - (-y - 1)^2}$ M1 $\frac{\left(\frac{x}{-y}\right)^2 = 1 - (-y - 1)^2$ M1 $\frac{x^2 = -\left(y^4 + 2y^3\right)^*}{(4)}$ M1 $\frac{(4)}{\left(\frac{y}{2}\right)^2 = \pi \int -\left(y^4 + 2y^3\right) dy$ M1 $\frac{1}{\left(\frac{y^5}{5} + \frac{y^4}{2}\right)}$ M1 $\frac{1}{\left(\frac{y^5}{5} + \frac{y^4}{2}\right)^2} - \left(\frac{(-2)^5}{5} + \frac{(-2)^4}{2}\right)$ M1 $\frac{1}{\left(\frac{y^5}{5} + \frac{y^4}{2}\right)^2}$ M1 $\frac{1}{\left(\frac{y^5}{5} + \frac{y^4}{2}\right)^2}$ M1 $\frac{1}{\left(\frac{y^5}{5} + \frac{y^4}{2}\right)^2} - \left(\frac{(-2)^5}{5} + \frac{(-2)^4}{2}\right)$ M1 $\frac{1}{\left(\frac{y^5}{5} + \frac{y^4}{2}\right)^2}$ M1 1

A1: Correct volume

Question	Scheme	Marks	AOs
8	$2+4\lambda-2(4-2\lambda)-6+\lambda=6 \Longrightarrow \lambda=\dots$	M1	1.1b
	$\lambda = 2 \Rightarrow$ Required point is $(2+2(4), 4+2(-2), -6+2(1))$ (10, 0, -4)	Al	1.1b
	$2+t-2(4-2t)-6+t=6 \Longrightarrow t=\dots$	M1	3.1a
	t = 3 so reflection of $(2, 4, -6)$ is $(2 + 6(1), 4 + 6(-2), -6 + 6(1))$	M1	3.1a
	(8, -8, 0)	A1	1.1b
	$ \begin{pmatrix} 10\\0\\-4 \end{pmatrix} - \begin{pmatrix} 8\\-8\\0 \end{pmatrix} = \begin{pmatrix} 2\\8\\-4 \end{pmatrix} $	M1	3.1a
	$\mathbf{r} = \begin{pmatrix} 10\\0\\-4 \end{pmatrix} + k \begin{pmatrix} 1\\4\\-2 \end{pmatrix} \text{ or equivalent e.g. } \left(\mathbf{r} - \begin{pmatrix} 10\\0\\-4 \end{pmatrix}\right) \times \begin{pmatrix} 1\\4\\-2 \end{pmatrix} = 0$	Al	2.5
		(7)	
		(7 n	narks)

Notes:

- M1: Substitutes the parametric equation of the line into the equation of the plane and solves for λ
- A1: Obtains the correct coordinates of the intersection of the line and the plane
- M1: Substitutes the parametric form of the line perpendicular to the plane passing through
- (2, 4, -6) into the equation of the plane to find t
- **M1:** Find the reflection of (2, 4, -6) in the plane
- A1: Correct coordinates
- M1: Determines the direction of *l* by subtracting the appropriate vectors
- A1: Correct vector equation using the correct notation

Question	Scheme	Marks	AOs
9(a)(i)	Weight = mass×g $\Rightarrow m = \frac{30000}{g} = 3000$ But mass is in thousands of kg, so $m = 3$	M1	3.3
(ii)	$\frac{dx}{dt} = 40\cos t + 20\sin t, \ \frac{d^2x}{dt^2} = -40\sin t + 20\cos t$	M1	1.1b
	$3(-40\sin t + 20\cos t) + 4(40\cos t + 20\sin t) + 40\sin t - 20\cos t =$	M1	1.1b
	$= 200 \cos t$ so PI is $x = 40 \sin t - 20 \cos t$	A1*	2.1
	or		
	Let $x = a\cos t + b\sin t$ $\frac{dx}{dt} = -a\sin t + b\cos t, \frac{d^2x}{dt^2} = -a\cos t - b\sin t$	M1	1.1b
	$4b - 2a = 200, -2b - 4a = 0 \Longrightarrow a = \dots, b = \dots$	M1	2.1
	$x = 40\sin t - 20\cos t$	A1*	1.1b
(iii)	$3\lambda^2 + 4\lambda + 1 = 0 \Longrightarrow \lambda = -1, -\frac{1}{3}$	M1	1.1b
	$x = Ae^{-t} + Be^{-\frac{1}{3}t}$	A1	1.1b
	x = PI + CF	M1	1.1b
	$x = Ae^{-t} + Be^{-\frac{1}{3}t} + 40\sin t - 20\cos t$	A1	1.1b
		(8)	
(b)	$t = 0, x = 0 \Longrightarrow A + B = 20$	M1	3.4
	$x = 0, \frac{dx}{dt} = -Ae^{-t} - \frac{1}{3}Be^{-\frac{1}{3}t} + 40\cos t + 20\sin t = 0$ $\implies A + \frac{1}{3}B = 40$	M1	3.4
	$x = 50e^{-t} - 30e^{-\frac{1}{3}t} + 40\sin t - 20\cos t$	A1	1.1b
	$t = 9 \Rightarrow x = 33 \mathrm{m}$	A1	3.4
		(4)	
		(12 n	narks)

Quest	Question 9 notes:		
(a)(i)			
M1:	Correct explanation that in the model, $m = 3$		
(ii)			
M1:	Differentiates the given PI twice		
M1:	Substitutes into the given differential equation		
A1*:	Reaches 200cost and makes a conclusion		
or			
M1:	Uses the correct form for the PI and differentiates twice		
M1:	Substitutes into the given differential equation and attempts to solve		
A1*:	Correct PI		
(iii)			
M1:	Uses the model to form and solve the auxiliary equation		
A1:	Correct complementary function		
M1:	Uses the correct notation for the general solution by combining PI and CF		
A1:	Correct General Solution for the model		
(b)			
M1:	Uses the initial conditions of the model, $t = 0$ at $x = 0$, to form an equation in A and B		
M1:	Uses $\frac{dx}{dt} = 0$ at $x = 0$ in the model to form an equation in A and B		
A1:	Correct PS		
A1:	Obtains 33m using the assumptions made in the model		

www.yesterdaysmathsexam.com