Question	Scheme	Marks	AOs		
3	$\log_3(12y+5) - \log_3(1-3y) = 2 \Longrightarrow \log_3 \frac{12y+5}{1-3y} = 2$ or e.g. $2 = \log_3 9$	B1 M1 on EPEN	1.1b		
	$\log_3 \frac{12y+5}{1-3y} = 2 \Rightarrow \frac{12y+5}{1-3y} = 3^2 \Rightarrow 9-27y = 12y+5 \Rightarrow y = \dots$ or e.g. $\log_3 (12y+5) = \log_3 (3^2 (1-3y)) \Rightarrow (12y+5) = 3^2 (1-3y) \Rightarrow y = \dots$	M1	2.1		
	$y = \frac{4}{39}$	A1	1.1b		
		(3)			
		(3	marks)		
	Notes				
B1(M1 or	EPEN): Applies at least one addition or subtraction law of logs correc Can also be awarded for using $2 = \log_3 9$. This may be implied	•			
	$\log_3 \dots = 2 \Longrightarrow \dots = 9$				
obta	orous argument with no incorrect working to remove the log or logs co ain a <u>correct</u> equation in any form and solve for y. ct exact value. Allow equivalent fractions.	rrectly an	d		

Guidance on how to mark particular cases:

$$\log_3(12y+5) - \log_3(1-3y) = 2 \Rightarrow \frac{\log_3(12y+5)}{\log_3(1-3y)} = 2$$
$$\Rightarrow \frac{12y+5}{1-3y} = 3^2 \Rightarrow 9 - 27y = 12y + 5 \Rightarrow y = \frac{4}{39}$$

B1M0A0

$$\log_{3}(12y+5) - \log_{3}(1-3y) = 2 \Rightarrow \frac{\log_{3}(12y+5)}{\log_{3}(1-3y)} = 2 \Rightarrow \log_{3}\frac{12y+5}{1-3y} = 2$$
$$\Rightarrow \frac{12y+5}{1-3y} = 3^{2} \Rightarrow 9 - 27y = 12y + 5 \Rightarrow y = \frac{4}{39}$$

B1M0A0

$$\log_3(12y+5) - \log_3(1-3y) = 2 \Longrightarrow \frac{12y+5}{1-3y} = 3^2 \Longrightarrow 9 - 27y = 12y+5 \Longrightarrow y = \frac{4}{39}$$

B1M1A1

Question	Scheme	Marks	AOs
9 (a)	States $\log a - \log b = \log \frac{a}{b}$	B1	1.2
	Proceeds from $\frac{a}{b} = a - b \rightarrow \dots \rightarrow ab - a = b^2$	M1	1.1b
	$ab-a=b^2 \rightarrow a(b-1)=b^2 \Rightarrow a=\frac{b^2}{b-1} *$	A1*	2.1
		(3)	
(b)	States either $b > 1$ or $b \neq 1$ with reason $\frac{b^2}{b-1}$ is not defined at $b=1$ oe	B1	2.2a
	States $b > 1$ and explains that as $a > 0 \Rightarrow \frac{b^2}{b-1} > 0 \Rightarrow b > 1$	B1	2.4
		(2)	
	1	((5 marks)

(a)

B1: States or uses $\log a - \log b = \log \frac{a}{b}$. This may be awarded anywhere in the question and may be implied by a **starting line** of $\frac{a}{b} = a - b$ oe. Alternatively takes $\log b$ to the rhs and uses the addition law $\log(a-b) + \log b = \log(a-b)b$. Watch out for $\log a - \log b = \frac{\log a}{\log b} = \log(\frac{a}{b})$ which could score 010

M1: Attempts to make 'a' the subject. Awarded for proceeding from $\frac{a}{b} = a - b$ to a point where the two terms in a are on the same side of the equation and the term in b is on the other.

A1*: CSO. Shows clear reasoning and correct mathematics leading to $a = \frac{b^2}{b-1}$. Bracketing must be correct.

Allow a candidate to proceed from $ab - a = b^2$ to $a = \frac{b^2}{b-1}$ without the intermediate line.

(b)

B1: For deducing $b \neq 1$ as $a \rightarrow \infty$ oe such as "you cannot divide by 0" or correctly deducing that b > 1. They may state that *b* cannot be less than 1.

B1: For b > 1 and explaining that as $a > 0 \Rightarrow \frac{b^2}{b-1} > 0 \Rightarrow b > 1$ (as b^2 is positive)

As a minimum accept that b > 1 as *a* cannot be negative.

Note that a > b > 1 is a correct statement but not sufficient on its own without an explanation.

Alt (a)

Note that it is possible to attempt part (a) by substituting $a = \frac{b^2}{b-1}$ into both sides of the given identity.

Question	Scheme	Marks	AOs
1	$2^x \times 4^y = \frac{1}{2\sqrt{2}} \left\{ = \frac{\sqrt{2}}{4} \right\}$		
Special Case	If 0 marks are scored on application of the mark scheme then allow Special Case B1 M0 A0 (total of 1 mark) for any of		
	• $2^{x} \times 4^{y} \to 2^{x+2y}$ • $2^{x} \times 4^{y} \to 4^{\frac{1}{2}x+y}$ • $\frac{1}{2^{x}2\sqrt{2}} \to 2^{-x-\frac{3}{2}}$		
	• $\log 2^x + \log 4^y \rightarrow x \log 2 + y \log 4$ or $x \log 2 + 2y \log 2$		
	• $\ln 2^x + \ln 4^y \rightarrow x \ln 2 + y \ln 4$ or $x \ln 2 + 2y \ln 2$		
	• $y = \log\left(\frac{1}{2^x 2\sqrt{2}}\right)$ o.e. {base of 4 omitted}		
Way 1	$2^x \times 2^{2y} = 2^{-\frac{3}{2}}$	B1	1.1b
	$2^{x} \times 2^{2y} = 2^{-\frac{3}{2}}$ $2^{x+2y} = 2^{-\frac{3}{2}} \implies x+2y = -\frac{3}{2} \implies y = \dots$	M1	2.1
	E.g. $y = -\frac{1}{2}x - \frac{3}{4}$ or $y = -\frac{1}{4}(2x+3)$	A1	1.1b
		(3)	
Way 2	$\log(2^x \times 4^y) = \log\left(\frac{1}{2\sqrt{2}}\right)$	B1	1.1b
	$\log 2^x + \log 4^y = \log\left(\frac{1}{2\sqrt{2}}\right)$	M1	2.1
	$\Rightarrow x \log 2 + y \log 4 = \log 1 - \log(2\sqrt{2}) \Rightarrow y = \dots$		
	$y = \frac{-\log(2\sqrt{2}) - x\log 2}{\log 4} \left\{ \Rightarrow y = -\frac{1}{2}x - \frac{3}{4} \right\}$	A1	1.1b
		(3)	
Way 3	$\log(2^x \times 4^y) = \log\left(\frac{1}{2\sqrt{2}}\right)$	B1	1.1b
	$\log 2^{x} + \log 4^{y} = \log \left(\frac{1}{2\sqrt{2}}\right) \Longrightarrow \log 2^{x} + y \log 4 = \log \left(\frac{1}{2\sqrt{2}}\right) \Longrightarrow y = \dots$	M1	2.1
	$y = \frac{\log\left(\frac{1}{2\sqrt{2}}\right) - \log(2^x)}{\log 4} \left\{ \Rightarrow y = -\frac{1}{2}x - \frac{3}{4} \right\}$	A1	1.1b
		(3)	
Way 4	$\log_2(2^x \times 4^y) = \log_2\left(\frac{1}{2\sqrt{2}}\right)$	B1	1.1b
	$\log_2 2^x + \log_2 4^y = \log_2 \left(\frac{1}{2\sqrt{2}}\right) \Rightarrow x + 2y = -\frac{3}{2} \Rightarrow y = \dots$	M1	2.1
	E.g. $y = -\frac{1}{2}x - \frac{3}{4}$ or $y = -\frac{1}{4}(2x+3)$	A1	1.1b
		(3)	
		(.	3 marks)

Questi	on Scheme	Marks	AOs
Way 5	5 $4^{\frac{1}{2}x} \times 4^{y} = 4^{-\frac{3}{4}}$	B1	1.1b
	5 $4^{\frac{1}{2}x} \times 4^{y} = 4^{-\frac{3}{4}}$ $4^{\frac{1}{2}x+y} = 4^{-\frac{3}{4}} \implies \frac{1}{2}x+y = -\frac{3}{4} \implies y =$ E.g. $y = -\frac{1}{2}x - \frac{3}{4}$ or $y = -\frac{1}{4}(2x+3)$	M1	2.1
	E.g. $y = -\frac{1}{2}x - \frac{3}{4}$ or $y = -\frac{1}{4}(2x+3)$	A1	1.1b
		(3)	
	Notes for Question 1		
	Way 1		
B1:	Writes a correct equation in powers of 2 only		<u> </u>
M1:	Complete process of writing a correct equation in powers of 2 only and usin obtain y written as a function of x .	g correct inde	ex laws to
A1:	$y = -\frac{1}{2}x - \frac{3}{4}$ o.e.		
	Way 2, Way 3 and Way 4		
B1:	Writes a correct equation involving logarithms		
M1:	Complete process of writing a correct equation involving logarithms and us obtain y written as a function of x .	ng correct log	g laws to
A1:	$y = \frac{-\log(2\sqrt{2}) - x\log 2}{\log 4} \text{ or } y = \frac{-\ln(2\sqrt{2}) - x\ln 2}{\ln 4} \text{ or } y = \frac{\log\left(\frac{1}{2\sqrt{2}}\right) - x\ln 2}{\log 4}$ or $y = -\frac{1}{2}x - \frac{3}{4}$ or $y = -\frac{1}{4}(2x+3)$ o.e.	$\log(2^x)$	
D1	Way 5		
B1:	Writes a correct equation in powers of 4 only	~ ~ ~ ~ 1	
M1:	Complete process of writing a correct equation in powers of 4 only and usin obtain y written as a function of x .	g correct inde	ex laws to
A1:	$y = -\frac{1}{2}x - \frac{3}{4}$ o.e.		
Note:	Allow equivalent results for A1 where y is written as a function of x		
Note:	You can ignore subsequent working following on from a correct answer.		
Note:	Allow B1 for $2^x \times 4^y = \frac{1}{2\sqrt{2}} \implies 4^y = \frac{1}{2^x 2\sqrt{2}} \implies \log_4(4^y) = \log_4\left(\frac{1}{2^x 2\sqrt{2}}\right)$		
	followed by M1 A1 for $y = \log_4\left(\frac{1}{2^x 2\sqrt{2}}\right)$ or $y = \log_4\left(\frac{2^{-x}}{2\sqrt{2}}\right)$ or $y = \log_4\left(\frac{2^{-x}}{2\sqrt{2}}\right)$	$g_4\left(\frac{\sqrt{2}}{4(2^x)}\right)$	
	or $y = -\log_4\left(2^{x+\frac{3}{2}}\right)$ or $y = -\log_4(\sqrt{2}(2^{x+1}))$		

Question	Scheme	Marks	AOs
2	$4^{3p-1} = 5^{210} \Longrightarrow (3p-1)\log 4 = 210\log 5$	M1	1.1b
	$\Rightarrow 3p = \frac{210\log 5}{\log 4} + 1 \Rightarrow p = \dots$	dM1	2.1
	p = awrt 81.6	A1	1.1b
		(3)	
			(3 marks)
Notes:			

M1: Takes logs of both sides and uses the power law on each side.

Condone a missing bracket on lhs and slips.

Award for any base including ln but the logs must be the same base.

dM1: A full method leading to a value for *p*.

It is dependent upon the previous M mark and there must be an attempt to change the subject of the equation in the correct order.

Look for $(3p-1)\log 4 = 210\log 5 \Rightarrow 3p = \frac{210\log 5}{\log 4} \pm 1 \Rightarrow p = \dots$ condoning slips.

You may see numerical versions E.g. $(3p-1) \times 0.60 = 210 \times 0.7 \Rightarrow 1.8p - 0.6 = 147 \Rightarrow p = 82$

Use of incorrect log laws would be dM0. E.g $(3p-1)\log 4 = 210\log 5 \Rightarrow 3p = 210\log \frac{5}{4} \pm 1$

A1: awrt 81.6 following a correct method. Bracketing errors can be recovered for full marks A correct answer with no working scores 0 marks. The demand in the question is clear.

.....

There are alternatives:

E.g. A starting point could be $4^{3p-1} = 5^{210} \Longrightarrow \frac{4^{3p}}{4} = 5^{210}$

but the first M mark is still for using the power law correctly on each side

In such a method the dM1 mark is for using **all** log rules correctly and proceeding to a value for *p*.

.....

Using base 4 or 5 E.g. $4^{3p-1} = 5^{210} \Rightarrow (3p-1) = \log_4 5^{210}$

The M mark is not scored until $(3p-1) = 210 \log_4 5$

.....

3(a)	$2\log(4-x) = \log(4-x)^2$	B1	1.2
	$2\log(4-x) = \log(x+8) \Longrightarrow \log(4-x)^2 = \log(x+8)$		
	$\left(4-x\right)^2 = (x+8)$		
	or $2\log(4-x) = \log(x+8) \Rightarrow \log(4-x)^2 - \log(x+8) = 0$	M1	1.1b
	$\frac{\left(4-x\right)^2}{\left(x+8\right)} = 1$		
	$16-8x+x^2 = x+8 \Longrightarrow x^2-9x+8 = 0 *$	A1*	2.1
		(3)	
	(a) Alternative - working backwards:		
	(a) Alternative working backwards.		
	$x^{2} - 9x + 8 = 0 \Longrightarrow (4 - x)^{2} - x - 8 = 0$	B1	1.2
		B1 M1	1.2 1.1b
	$x^{2} - 9x + 8 = 0 \Longrightarrow (4 - x)^{2} - x - 8 = 0$ $\implies (4 - x)^{2} = x + 8$		
(b)	$x^{2}-9x+8=0 \Rightarrow (4-x)^{2}-x-8=0$ $\Rightarrow (4-x)^{2}=x+8$ $\Rightarrow \log (4-x)^{2}=\log (x+8)$	M1	1.1b
(b)	$x^{2} - 9x + 8 = 0 \Longrightarrow (4 - x)^{2} - x - 8 = 0$ $\Rightarrow (4 - x)^{2} = x + 8$ $\Rightarrow \log (4 - x)^{2} = \log (x + 8)$ $\Rightarrow 2\log (4 - x) = \log (x + 8) * \text{Hence proved.}$	M1 A1	1.1b 2.1
(b)	$x^{2} - 9x + 8 = 0 \Rightarrow (4 - x)^{2} - x - 8 = 0$ $\Rightarrow (4 - x)^{2} = x + 8$ $\Rightarrow \log (4 - x)^{2} = \log (x + 8)$ $\Rightarrow 2\log (4 - x) = \log (x + 8) * \text{Hence proved.}$ (i) (x =) 1, 8	M1 A1 B1	1.1b 2.1 1.1b

Notes:

(a)

B1: States or uses $2\log(4-x) = \log(4-x)^2$

M1: Correct attempt at eliminating the logs to form a quadratic equation in x.

Note that this may be implied by e.g. $\log \frac{(4-x)^2}{(x+8)} = 0 \Longrightarrow (4-x)^2 = x+8$

A1*: Proceeds to the given answer with at least one line where the $(4 - x)^2$ has been multiplied out. There must be no errors or omissions but condone invisible brackets around the arguments of the logs e.g. allow $\log 16 - 8x + x^2$ for $\log(16 - 8x + x^2)$ and $\log x + 8$ for $\log(x + 8)$

Note we will allow a start of $(4-x)^2 = x+8$ with no previous work for full marks.

Some examples of how to mark (a) in particular cases:

$$2\log(4-x) = \log(x+8) \Longrightarrow \log(4-x)^2 = \log(x+8) \Longrightarrow \frac{\log(4-x)^2}{\log(x+8)} = 1$$

Question	Scheme	Marks	AOs
5	$15 - 2^{x+1} = 3 \times 2^x$	B1	1.1b
	$\Rightarrow 15 - 2 \times 2^{x} = 3 \times 2^{x} \Rightarrow 2^{x} = 3$ or e.g. $\Rightarrow \frac{15}{2^{x}} - 2 = 3 \Rightarrow 2^{x} = 3$	M1	1.1b
	$2^x = 3 \Longrightarrow x = \dots$	dM1	1.1b
	$x = \log_2 3$	A1cso	1.1b
		(4)	
	Alternative		
	$y = 3 \times 2^{x} \Longrightarrow 2^{x} = \frac{y}{3} \Longrightarrow y = 15 - 2 \times \frac{y}{3}$	B1	1.1b
	$3y + 2y = 45 \Rightarrow y = 9 \Rightarrow 3 \times 2^x = 9 \Rightarrow 2^x = 3$	M1	1.1b
	$2^x = 3 \Longrightarrow x = \dots$	dM1	1.1b
	$x = \log_2 3$	Alcso	1.1b
			(4 marks)

Question	Scheme	Morka
Number		Marks
6.	$\log_4 \frac{a}{b} = 3 \text{ or } \log_4 a + \log_4 b = \log_4 25 \text{ or } \log_4 \frac{a}{\frac{25}{a}} = 3 \text{ or } \log_4 \frac{\frac{25}{b}}{b} = 3$ (If this is preceded by wrong algebra (e.g. b = 25 -a) M1 can still be given if their b is used	M1
	$\log_4 64 = 3$ or $4^3 = 64$ (may be implied by the use of 64) or see $\log a = \frac{1}{2}(\log 25 + 3)$ become $a = 4^{\frac{1}{2}(\log 25 + 3)}$ or see $\log b = \frac{1}{2}(\log 25 - 3)$ become $b = 4^{\frac{1}{2}(\log 25 - 3)}$ (these latter two statements will be implied by correct answers)	B1
	Correct algebraic elimination of a variable to obtain expression in a or b without logs	dM1
	$a = 40$ or $b = \frac{5}{8}$	A1
	Substitutes to give second variable or solves again from start	dM1
	$a = 40$ and $b = \frac{5}{8}$ and no other answers.	
		A1
		211
		[6]
		6 marks
	Notes	
	M1 : Uses addition or subtraction law correctly for logs (N.B. $\log_4 a + \log_4 b = 25$ is M0)	
	B1 : See number 64 used (independent of M mark) or $\frac{1}{2}(\log 25 + 3)$	
	or see $\log a = \frac{1}{2}(\log 25 + 3)$ become $a = 4^{\frac{1}{2}(\log 25 + 3)}$	
	or see $\log b = \frac{1}{2}(\log 25 - 3)$ become $b = 4^{\frac{1}{2}(\log 25 - 3)}$	
	dM1 : Dependent on first M mark. Eliminates <i>a</i> or <i>b</i> (with appropriate algebra) and eliminates logs	
	A1: Either a or b correct	
	dM1 : Dependent on first M mark . Attempts to find second variable	
	A1: Both <i>a</i> and <i>b</i> correct – allow $b = 0.625$	
	If $a = -40$ and $b = -5/8$ are also given as answers lose the last A mark.	
	NB Log $a + \log b = 2.3219$ will not yield exact answers	
	If they round their answers to 40 and 0.625 after decimal work, do not give final A mark. NB: Some will change the base of the log and use $\log a - \log b = 3\log 4$	
1		

Question Number	Scheme	Marks
3 (a)	$4^a = 20 \Longrightarrow a \log 4 = \log 20 \Longrightarrow a = \dots$	M1
	$=\frac{\log 20}{\log 4} = \text{awrt } 2.16$	A1
(b)	$3+2\log_2 b = \log_2 30b \Longrightarrow 3+\log_2 b^2 = \log_2 30b$	(2) M1
	$\Rightarrow 3 = \log_2 30b - \log_2 b^2$	
	$\Rightarrow 3 = \log_2\left(\frac{30b}{b^2}\right)$	M1A1
	$\Rightarrow 2^3 = \frac{30b}{b^2} \Rightarrow b =$	dM1
	<i>b</i> = 3.75	A1
		(5) (7 marks)
Alt (b)	$3 + 2\log_2 b = \log_2(30b) \Longrightarrow 3 + 2\log_2 b = \log_2 30 + \log_2 b$	2nd M1
	\Rightarrow 3 + log ₂ b = log ₂ 30	
	$\Rightarrow \log_2 8 + \log_2 b = \log_2 30$	1st M1
	$\Rightarrow \log_2 8b = \log_2 30$	A1
	$\Rightarrow 8b = 30 \Rightarrow b =$	dM1
	$\Rightarrow b = 3.75$	A1 (5)
		(5)

(a) M1

Takes logs of both sides leading to a = ...

Accept for this mark $\log_4 20$, $\frac{\log 20}{\log 4}$ or $a \log 4 = \log 20 \Rightarrow a = ...$

- A1 awrt 2.16. Just the answer with no incorrect working scores both marks. Do not accept answers from trial and error.
- (b) Note that this part is B1M1M1dM1A1 on e pen. We are scoring it M1M1A1dM1A1
- M1 Score for a correct use of the power law for logs Accept either $2\log_2 b = \log_2 b^2$, $2\log b = \log b^2$ or $3 = \log_2 8$
- M1 Score for a use of the addition or subtraction law of logs.

Examples of this would be $\log(30b) = \log 30 + \log b$ and $\log(30b) - \log(b^2) = \log\left(\frac{30b}{b^2}\right)$ Do not accept attempts such as $\log(30b) - 2\log(b) = \log\left(\frac{30b}{2b}\right)$

A1 Achieving a correct intermediate line of the form $\log_2(...) = ...$ or $\log_2 ... = \log_2 ...$

Accept exact equivalents of $3 = \log_2\left(\frac{30b}{b^2}\right)$, $\log_2 8b = \log_2 30$ and $\log_2 8b^2 = \log_2 30b$, $b = 2^{\log_2(30)-3}$

- dM1 Dependent upon both previous M's it is for correctly undoing the logs and solving to get a value for b
- A1 b = 3.75 or exact equivalent. Ignore any reference to b = 0

Question Number	Scheme	Marks
6.	(a) Use or state $2\log_4(2x+3) = \log_4(2x+3)^2$	M1
	Use or state $\log_4 4 = 1$ or $4^1 = 4$	M1
	Use or state $\log_4 x + \log_4 (2x-1) = \log_4 x(2x-1)$ or $\log_4 (2x+3)^2 - \log_4 x = \log_4 \frac{(2x+3)^2}{x}$ etc	M1
	$(2x+3)^2 = 4x(2x-1)$ or equivalent including correct rational equations	A1
	Then $4x^2 + 12x + 9 = 8x^2 - 4x$ and so $4x^2 - 16x - 9 = 0$ *	A1*
		[5
	(b) $(2x + 1)(2x - 9) = 0$ so $x =$ (or use other method e.g formula or completion of square) $x = (-\frac{1}{2} \text{ or }) \frac{9}{2}$	M1 A1
		[2 7 mark
	Notes	/ mark
	$\int_{a}^{a} x + \log_{4}(2x-1) = \log_{4} x(2x-1) \text{ or } \log_{4}(2x+3)^{2} - \log_{4} x = \log_{4} \frac{(2x+3)^{2}}{x} \text{ or}$ $\int_{a}^{b} -\log_{4} x - \log_{4}(2x-1) = \log_{4} \frac{(2x+3)^{2}}{x(2x-1)} \text{ or even } \log_{4} x + \log_{4} 4 = \log_{4} 4x \text{ or}$	
$\log_4(2x-1)$	$1 + \log_4 4 = \log_4 4(2x-1)$ or $\log_4 (2x-1) + \log_4 4 + \log_4 x = \log_4 4x(2x-1)$ etc	
A1: Cor	rect equation (unsimplified) after correct work. e.g. $\frac{(2x+3)^2}{x(2x-1)} = 4$	
	ains printed answer correctly (This is a given answer so needs previous A mark to have been ad needs correct expansion) case :	en
$\log_4(2x +$	$-3)^{2} = 1 + \log_{4} x(2x-1) so \frac{\log_{4} (2x+3)^{2}}{\log_{4} x(2x-1)} = 1 so \frac{4x^{2} + 12x + 9}{2x^{2} - x} = 4$	
This can (b) Some ca here. Mark	have M1, M1, M1, A0, A0 so 3/5 losing accuracy because of the error in the second step. andidates who did not achieve marks in part (a) begin the log work again and make more p the better work. So credit for (a) may be given in (b). Credit for (b) should not be given in es solution of their quadratic or of printed quadratic (see notes). This must be in part (b)	rogress

M1: Uses solution of their quadratic or of printed quadratic (see notes). This must be in part (b) A1: x = 4.5 and discards x = -0.5 (any equivalent form) Giving $x = -\frac{1}{2}$, $\frac{9}{2}$ is A0 This must be in part (b)

Question Number	Scheme	Marks
14(i)	$\log_a x + \log_a 3 = \log_a 27 - 1 \text{so} \log_a \frac{3x}{27} = -1$ Or $\log_a x + \log_a 3 = \log_a 27 - \log_a a \text{so} \log_a 3x = \log_a \frac{27}{a}$ Or $\log_a x + 1 = \log_a 27 - \log_a 3 = \log_a 9 \text{so} \log_a ax = \log_a 9$	M1 A1
	$\frac{3x}{27} = a^{-1}$	M1
	$x = 9a^{-1}$ or $\frac{9}{a}$	A1
(ii)	$x^2 - 7x + 12 = 0$ and attempt to solve to give $x =$ or $\log_5 y =$ (implied by correct answers)	[4] M1
	$x (or \log_5 y) = -3$ and 4	A1
	$y = 5^3$ or 5^4	dM1
	<i>y</i> = 125 and 625	A1
		4 8 marks
	Notes	0 marks
(i)	M1: Uses sum or difference of logs correctly e.g. $\log x + \log 3 = \log 3x$ or $\log 27 - \log 3 = \log 9$ or $\log 27 - \log x = \log \frac{27}{x}$ etc. or writes 1 as $\log_a a$ A1: Uses two rules correctly to obtain correct log equation M1: Demouse logs correctly to obtain an equation	
	M1: Removes logs correctly to obtain an equation connecting <i>x</i> and <i>a</i> A1: Correct simplified answer	
	Note that some candidates interpret $\log_a 27 - 1$ as $\log_a (27 - 1)$. This can score a maximum of	1 out of 4 if
	they have $\log x + \log 3 = \log 3x$	
	Note that $\log_a x + \log_a 3 = \log_a 27 - 1$ so $\frac{\log_a 3x}{\log_a 27} = -1 \Rightarrow \frac{3x}{27} = a^{-1}$ etc. scores M1A0M0A0	
	Note that $\log_a x + \log_a 3 = \log_a 27 - 1$ so $\frac{\log_a x \log_a 3}{\log_a 27} = -1 \Longrightarrow \frac{3x}{27} = a^{-1}$ etc. scores no man	·ks
(ii)	 M1: Recognise and attempt to solve quadratic A1: Obtain both 3 and 4 (Both correct implies M1A1) dM1: Uses powers correctly to find a value for y (Dependent on first method mark) A1: Both values correct 	

Question Number	Scheme	Marks
3 (i)	Either $4^{2x+1} = 2^{2(2x+1)}$ and $8^{4x} = 2^{3 \times 4x}$ or $8^{4x} = 4^{\frac{3}{2} \times 4x}$	M1
	$2(2x+1) = 12x \Longrightarrow x = \frac{1}{4}$	dM1A1
(ii)(a)	$3\sqrt{18} - \sqrt{32} = 9\sqrt{2} - 4\sqrt{2} = 5\sqrt{2}$	(3) M1A1
(b)	$\sqrt{n} = 5\sqrt{2} \Longrightarrow n = (5\sqrt{2})^2 = 25 \times 2 = 50$	(2) M1A1
		(2) (7 marks)
Alt 3 (i)	Taking logs of both sides and proceeding to $(2x+1)\log 4 = 4x\log 8$	M1
	$\Rightarrow x = \frac{\log 4}{4\log 8 - 2\log 4}$	
	$\implies x = \frac{\log 4}{\log 256} = \frac{1}{4}$	dM1A1
		(3)

(i)

Writes both sides as powers of 2 or equivalent Eg $2^{2(2x+1)} = 2^{3\times 4x}$ M1

> Alternatively writes both sides as powers of 4 or 8 or 64. Eg $8^{4x} = 4^{\frac{3}{2} \times 4x}$ Note that expressions such as $2^{2+(2x+1)} = 2^{3+4x}$ would be M0

Condone poor (or missing) brackets $2^{2 \times 2x+1} = 2^3$ but not incorrect index work eg $4^{2x+1} = 8^{\frac{1}{2}(2x+1)}$ It is possible to use logs. most commonly with base 2 or 4. Using logs it is for reaching a linear form of the equation, again condoning poor bracketing. 4^{2}

$$4^{2x+1} = 8^{4x} \Longrightarrow \log 4^{2x+1} = \log 8^{4x} \Longrightarrow (2x+1)\log 4 = 4x\log 8$$

dM1 Dependent upon the previous M. It is for equating the indices and proceeding to x = ...Condone sign/bracketing errors when manipulating the equation but not processing errors If logs are used they must be evaluated without a calculator. Lengthy decimals would be evidence of this and would be dM0

$$(2x+1)\log_2 4 = 4x\log_2 8 \Longrightarrow (2x+1) \times 2 = 4x \times 3 \Longrightarrow x = ..$$
$$4^{2x+1} = 8^{4x} \Longrightarrow 2x+1 = 4x\log_4 8 \Longrightarrow 2x+1 = \frac{3}{2} \times 4x \Longrightarrow x = ..$$
 is fine

 $x = \frac{1}{4}$ or equivalent A1

(ii)(a) Mark part (ii) as one complete question. Marks in (a) can be gained from (b) Writes either $\sqrt{18} = 3\sqrt{2}$ or $3\sqrt{18} = 9\sqrt{2}$ or $\sqrt{32} = 4\sqrt{2}$ M1

If the candidate writes $3\sqrt{18} - \sqrt{32} = k\sqrt{2}$ it can be scored for $\frac{3\sqrt{18}}{\sqrt{2}} = 9$ or $\frac{\sqrt{32}}{\sqrt{2}} = 4$

- $5\sqrt{2}$ or states k = 5A1 The answer without working (the M1) would be 0 marks (ii)(b)
- Moves from $\sqrt{n} = k\sqrt{2}$ to $n = 2k^2$ M1 Also accept for this mark $\sqrt{n} = \sqrt{50}$ or indeed $\sqrt{50}$ on its own

(n =) 50A1

Question Number	Scheme	Marks
13 (a)	$2\log_2 y = 5 - \log_2 x \Longrightarrow \log_2 y^2 = 5 - \log_2 x$	M1
	$\Rightarrow \log_2 y^2 = \log_2 32 - \log_2 x \Rightarrow \log_2 y^2 = \log_2 \left(\frac{32}{x}\right)$ $\Rightarrow y^2 = \frac{32}{x}$	M1A1
(b)	$\log_x y = -3 \Longrightarrow y = x^{-3}$	(3) M1
	Sub $y = x^{-3}$ into $y^2 = \frac{32}{x} \Rightarrow x^{-6} = \frac{32}{x} \Rightarrow x^5 = \frac{1}{32} \Rightarrow x = \frac{1}{2}$	M1A1
	Sub $x = \frac{1}{2}$ into either eqn $\Rightarrow y = 8$	M1A1
		(5) (8 marks)
Alt (b)	Sub $y^2 = \frac{32}{x}$ into $\log_x y = -3 \Rightarrow \log_x \sqrt{\frac{32}{x}} = -3$	2nd M1
	$\Rightarrow \sqrt{\frac{32}{x}} = x^{-3}$	1st M1
	$\Rightarrow x^5 = \frac{1}{32} \Rightarrow x = \frac{1}{2}$	A1
Eg Alt No M1 Uso Aw or	es one correct log law. Uses the index law and writes $2\log_2 y = \log_2 y^2$. ernatively writes 5 as $\log_2 32$. This may well come from $\log_2 = 5 \Rightarrow = 32$ the that $2\log_2 y + \log_2 x = 2\log_2 xy$ is M0 es two correct log laws and for $\log_2 y^2 = \log_2 (32) - \log_2 x$ $\log_2 x + \log_2 y^2 = 5 \Rightarrow \log_2 xy^2 = 5$	
	ceeds correctly to $y^2 = \frac{32}{x}$	
Thi M1 Cor	does the log in the second equation $\log_x y = -3 \Rightarrow y = x^{-3}$ s may well appear later in the solution mbines both equations to form a single equation in one variable. $\frac{1}{2}$ or $y = 8$. Condone a solution $y = \pm 8$ for this mark	
	postitutes their $x = \frac{1}{2}$ into an equation to find y.	
	ernatively substitutes their $y=8$ into an equation to find x $\frac{1}{2}$ and $y=8$ only. Note $x = \frac{1}{2}$ and $y = \pm 8$ is A0	
SC. If a ca	ndidate uses $y = \frac{k}{r}$ with $\log_x y = -3$ this can potentially score M1: Undoing log	s, M0: as
combining	the equations has been made easier, A0: M1: If they substitute their x to find y y A0: scoring 10010	

	Question Number	Scheme	Marks
	2.(a)	$e^{3x-9} = 8 \Longrightarrow 3x-9 = \ln 8$	M1
		$\Rightarrow x = \frac{\ln 8 + 9}{3}, = \ln 2 + 3$	A1, A1
			(3)
	(b)	$\ln(2y+5) = 2 + \ln(4-y)$	
		$\ln\left(\frac{2y+5}{4-y}\right) = 2$	M1
		$\left(\frac{2y+5}{4-y}\right) = e^2$	M1
		$2y+5 = e^2(4-y) \Longrightarrow 2y + e^2y = 4e^2 - 5 \Longrightarrow y = \frac{4e^2 - 5}{2+e^2}$	dM1, A1
			(4)
			7 marks
A1 A1		ct unsimplified answer $\frac{\ln 8 + 9}{3}$ or equivalent such as $\frac{\ln 8e^9}{3}$, $3 + \ln(\sqrt[3]{8})$, $\frac{\log 8}{3\log e}$ 2+3. Accept $\ln 2e^3$	+ 3 or even 3.69
Alt I	$=8 \Longrightarrow \frac{e^{3x}}{e^9}$ I (a)	$e^{-1} = 8 \Rightarrow e^{3x} = 8e^9 \Rightarrow 3x = \ln(8e^9)$ for M1 (Condone slips on index work and lack of	fbracket)
e ^x 5	$=\sqrt[3]{8} \Rightarrow x$	$-3 = \ln(\sqrt[3]{8})$ for M1 (Condone slips on the 9. Eg $e^{x-9} = 2 \Longrightarrow x-9 = \ln 2$)	
(b) M1	Uses a	correct method to combine two terms to create a single ln term.	
	Eg. Sco	ore for $2 + \ln(4-y) = \ln(e^2(4-y))$ or $\ln(2y+5) - \ln(4-y) = \ln\left(\frac{2y+5}{4-y}\right)$	
M1	Condor Scored the ln te	the slips on the signs and coefficients of the terms, but not on the e^2 for an attempt to undo the ln's to get an equation in y This must be awarded after an a terms. Award for $\ln(g(y)) = 2 \Rightarrow g(y) = e^2$ and can be scored eg where $g(y) = 2y$ - bot be awarded for just $2y+5 = e^2+4-y$ where the candidate attempts to undo term	+5-(4-y)
dM1	Depend	lent upon both previous M's. It is for making y the subject. Expect to see both terms i ed (may be implied) before reaching $y =$. Condone slips, for eg, on signs. $y = 2.615$	in y collected and
A1		$\frac{e^2-5}{+e^2}$ or equivalent such as $y = 4 - \frac{13}{2+e^2}$ ISW after you see the correct answ	
Spec	ial Case: 1	$n(2y+5) - \ln(4-y) = 2 \Longrightarrow \frac{\ln(2y+5)}{\ln(4-y)} = 2 \Longrightarrow \frac{2y+5}{4-y} = e^2 \Longrightarrow \text{Correct answer scor}$	e M0 M1 M1 A0

Question	Scheme	Marks
9(a)	Subs $D = 15$ and $t = 4$ $x = 15e^{-0.2 \times 4} = 6.740 \ (mg)$	M1A1
(b)	$15e^{-0.2\times7} + 15e^{-0.2\times2} = 13.754(mg)$	(2) M1A1* (2)
(c)	$15e^{-0.2 \times T} + 15e^{-0.2 \times (T+5)} = 7.5$	(2) M1
	$15e^{-0.2\times7} + 15e^{-0.2\times2} = 13.754(mg)$ $15e^{-0.2\times7} + 15e^{-0.2\times(T+5)} = 7.5$ $15e^{-0.2\times7} + 15e^{-0.2\times7}e^{-1} = 7.5$ $15e^{-0.2\times7} (1+e^{-1}) = 7.5 \implies e^{-0.2\times7} = \frac{7.5}{15(1+e^{-1})}$	dM1
	$T = -5\ln\left(\frac{7.5}{15(1+e^{-1})}\right) = 5\ln\left(2+\frac{2}{e}\right)$	A1, A1
		(4) (8 marks)

(a)

M1 Attempts to substitute both D = 15 and t = 4 in $x = De^{-0.2t}$ It can be implied by sight of $15e^{-0.8}$, $15e^{-0.2\times4}$ or awrt 6.7 Condone slips on the power. Eg you may see -0.02

A1 CAO 6.740 (mg) Note that 6.74 (mg) is A0

(b)

M1 Attempt to find the sum of two expressions with D = 15 in both terms with t values of 2 and 7 Evidence would be $15e^{-0.2\times7} + 15e^{-0.2\times2}$ or similar expressions such as $(15e^{-1} + 15)e^{-0.2\times2}$

Award for the sight of the two numbers awrt **3.70** and awrt **10.05**, followed by their total awrt **13.75** Alternatively finds the amount after 5 hours, $15e^{-1} = awrt 5.52$ adds the second dose = **15** to get a total of awrt **20.52** then multiplies this by $e^{-0.4}$ to get awrt **13.75**. Sight of $5.52+15=20.52 \rightarrow 13.75$ is fine.

- A1* cso so both the expression $15e^{-0.2\times7} + 15e^{-0.2\times2}$ and 13.754(mg) are required Alternatively both the expression $(15e^{-0.2\times5} + 15) \times e^{-0.2\times2}$ and 13.754(mg) are required. Sight of just the numbers is not enough for the A1*
- (c)
- M1 Attempts to write down a correct equation involving *T* or *t*. Accept with or without correct bracketing Eg. accept $15e^{-0.2\times T} + 15e^{-0.2\times (T\pm 5)} = 7.5$ or similar equations $(15e^{-1} + 15)e^{-0.2\times T} = 7.5$

dM1 Attempts to solve their equation, dependent upon the previous mark, by proceeding to $e^{-0.2 \times T} = ...$ An attempt should involve an attempt at the index law $x^{m+n} = x^m \times x^n$ and taking out a factor of $e^{-0.2 \times T}$ Also score for candidates who make $e^{+0.2 \times T}$ the subject using the same criteria

A1 Any correct form of the answer, for example,
$$-5 \ln \left(\frac{7.5}{15(1+e^{-1})} \right)$$

A1 CSO T =
$$5\ln\left(2+\frac{2}{e}\right)$$
 Condone *t* appearing for *T* throughout this question.

Question Number	Scheme	Marks
2.(a)	$2\ln(2x+1) - 10 = 0 \Longrightarrow \ln(2x+1) = 5 \implies 2x+1 = e^5 \Longrightarrow x =$ $\implies x = \frac{e^5 - 1}{2}$	M1 A1 (2)
(b)	$3^{x} e^{4x} = e^{7} \Longrightarrow \ln(3^{x} e^{4x}) = \ln e^{7}$ $\ln 3^{x} + \ln e^{4x} = \ln e^{7} \Longrightarrow x \ln 3 + 4x \ln e = 7 \ln e$ $x(\ln 3 + 4) = 7 \Longrightarrow x = \dots$	(2) M1,M1 dM1
	$x = \frac{7}{(\ln 3 + 4)}$ oe	A1 (4) 6 marks
Alt 1 2(b)	$3^{x} e^{4x} = e^{7} \Longrightarrow 3^{x} = \frac{e^{7}}{e^{4x}}$ $3^{x} = e^{7-4x} \Longrightarrow x \ln 3 = (7-4x) \ln e$ $x(\ln 3 + 4) = 7 \Longrightarrow x = \dots$ $x = \frac{7}{(\ln 3 + 4)}$	M1,M1 dM1 A1 (4)
Alt 2 2(b) Using logs	$3^{x}e^{4x} = e^{7} \Rightarrow \log(3^{x}e^{4x}) = \log e^{7}$ $\log 3^{x} + \log e^{4x} = \log e^{7} \Rightarrow x \log 3 + 4x \log e = 7 \log e$ $x(\log 3 + 4\log e) = 7 \log e \Rightarrow x = \dots$ $x = \frac{7 \log e}{(\log 3 + 4\log e)}$	M1, M1 dM1 A1 (4)
Alt 3 2(b) Using log ₃	$3^{x} e^{4x} = e^{7} \Longrightarrow 3^{x} = \frac{e^{7}}{e^{4x}}$ $3^{x} = e^{7-4x} \Longrightarrow x = (7-4x)\log_{3} e$ $x(1+4\log_{3} e) = 7\log_{3} e \Longrightarrow x = \dots$ $x = \frac{7\log_{3} e}{(1+4\log_{3} e)}$	M1,M1 dM1 A1 (4)
Alt 4 2(b) Using $3^{x} = e^{x \ln 3}$	$3^{x} e^{4x} = e^{7} \Rightarrow e^{x \ln 3} e^{4x} = e^{7}$ $\Rightarrow e^{x \ln 3 + 4x} = e^{7}, \Rightarrow x \ln 3 + 4x = 7$ $x(\ln 3 + 4) = 7 \Rightarrow x = \dots \qquad x = \frac{7}{(\ln 3 + 4)}$	M1,M1 dM1 A1 (4)

Question Number	Scheme	Marks
6(a)	$\ln(4-2x)(9-3x) = \ln(x+1)^2$	M1, M1
	So $36-30x+6x^2 = x^2+2x+1$ and $5x^2-32x+35 = 0$	A1
	Solve $5x^2 - 32x + 35 = 0$ to give $x = \frac{7}{5}$ or (Ignore the solution $x = 5$)	M1A1
(b)	Take \log_e 's to give $\ln 2^x + \ln e^{3x+1} = \ln 10$	(5) M1
	$x\ln 2 + (3x+1)\ln e = \ln 10$	M1
	$x(\ln 2 + 3\ln e) = \ln 10 - \ln e \Longrightarrow x =$	dM1
	and uses $lne = 1$	M1
	$x = \frac{-1 + \ln 10}{3 + \ln 2}$	A1
		(5)
	Note that the 4 th M mark may occur on line 2	(10 marks)
	Notes for Question 6	
(a)		
M1 U	ses addition law on lhs of equation. Accept slips on the signs. If one of the terms is tak	en over to the rhs
it	would be for the subtraction law.	
M1 U	ses power rule for logs write the $2\ln(x+1)$ term as $\ln(x+1)^2$. Condone invisible brack	ekets
A1 U	Undoes the logs to obtain the 3TQ =0. $5x^2 - 32x + 35 = 0$. Accept equivalences. The equals zero may	
b	e implied by a subsequent solution of the equation.	
	olves a quadratic by any allowable method. he quadratic cannot be a version of $(4-2x)(9-3x) = 0$ however.	
	educes $x = 1.4$ or equivalent. Accept both $x=1.4$ and $x=5$. Candidates do not have to el ou may ignore any other solution as long as it is not in the range $-1 < x < 2$. Extra s	

(i) (i) (i) (i) (i) (i) (i) (i)	of power rule so $\log(x+a)^2 = \log 16a^6$ or $2\log(x+a) = 2\log 4a^3$ or $(x+a) = \log(16a^6)^{\frac{1}{2}}$ es logs and square roots, or halves then removes logs to give $(x+a) = 4a^3$ $(x+a)^2 - 16a^6 = 0$ followed by factorisation or formula to give $x = \sqrt{16a^6} - a$ (depends on previous M's and must be this expression or equivalent) $g_3 \frac{(9y+b)}{(2y-b)} = 2$ $g_{2y+b} = 3^2$ $(9y+b) = 9(2y-b) \Rightarrow y =$ $y = \frac{10}{9}b$ $g_3(9y+b) = \log_3 9 + \log_3(2y-b)$ $y = 10g_3 + \log_3(2y-b)$ y = 10g	M1 M1 A1cao (3) M1 M1 A1cso (4) M1 M1 M1 A1cso (4)
(i) (i) (i) (i) (i) (i) (i) (i)	es logs and square roots, or halves then removes logs to give $(x+a) = 4a^3$ $-2ax + a^2 - 16a^6 = 0$ followed by factorisation or formula to give $x = \sqrt{16a^6} - a$ (depends on previous M's and must be this expression or equivalent) $a_3 \frac{(9y+b)}{(2y-b)} = 2$ Applies quotient law of logarithms $a_{2y+b} = 3^2$ Uses $\log_3 3^2 = 2$ (9y+b) = 9(2y-b) \Rightarrow y = y = $\frac{10}{9}b$ $a_3(9y+b) = \log_3 9 + \log_3(2y-b)$ y = $\log_3 9(2y-b)$ $y = \log_3 9(2y-b)$ Multiplies across and makes y the subject y = $\frac{10}{9}b$ $a_3(9y+b) = \log_3 9 + \log_3(2y-b)$ y = $10g_3 9(2y-b)$ (1st M mark	A1cao (3) M1 M1 M1 A1cso (4) M1 M1 M1 A1cso
(i) (i) (i) (i) (i) (i) (i) (i)	$-2ax + a^{2} - 16a^{6} = 0$ followed by factorisation or formula to give $x = \sqrt{16a^{6}} - a$ (depends on previous M's and must be this expression or equivalent) $g_{3} \frac{(9y+b)}{(2y-b)} = 2$ Applies quotient law of logarithms $\frac{0y+b}{2y-b} = 3^{2}$ Uses $\log_{3} 3^{2} = 2$ (9y+b) = 9(2y-b) \Rightarrow y = $y = \frac{10}{9}b$ $g_{3}(9y+b) = \log_{3} 9 + \log_{3}(2y-b)$ $y = b + \log_{3} 9(2y-b)$ $y = \log_{3} 9(2y-b)$	A1cao (3) M1 M1 M1 A1cso (4) M1 M1 M1 A1cso
(ii) Way 1 Way 1 (i) (i) 1^{st} M1: M1: Co correct x + a = May set by the	$g_{3} \frac{(9y+b)}{(2y-b)} = 2$ $g_{3} \frac{(9y+b)}{(2y-b)} = 3^{2}$ $(9y+b) = 9(2y-b) \Rightarrow y =$ $y = \frac{10}{9}b$ $g_{3}(9y+b) = \log_{3}9 + \log_{3}(2y-b)$ $y = \log_{3}9(2y-b)$ $y $	(3) M1 M1 M1 A1cso (4) M1 M1 M1 A1cso
Way 1logWay 1 (9) Way 2Or : loglog_3 (9)(9) $(9y+a)$ (i) 1^{st} M1: M1: Co correct $x+a =$ May set by the set	$\frac{\partial y + b}{\partial y - b} = 3^{2}$ Uses $\log_{3} 3^{2} = 2$ $(9y+b) = 9(2y-b) \Rightarrow y =$ Multiplies across and makes y the subject $y = \frac{10}{9}b$ $g_{3}(9y+b) = \log_{3} 9 + \log_{3}(2y-b)$ $2^{nd} M mark$ $y+b) = \log_{3} 9(2y-b)$ 1 st M mark	M1 M1 A1cso (4) M1 M1 M1 A1cso
Way 2 Or : log log ₃ (9 (9 $y+d$ (i) 1 st M1: M1: Co correct x+a = May se by the	$(9y+b) = 9(2y-b) \Rightarrow y =$ $y = \frac{10}{9}b$ $g_3(9y+b) = \log_3 9 + \log_3(2y-b)$ $y = \frac{10}{9}b$ $2^{nd} M mark$ $y+b) = \log_3 9(2y-b)$ $1^{st} M mark$	M1 A1cso (4) M1 M1 M1 A1cso
Way 2 Or : log log ₃ (9 (9 y + i) (i) 1 st M1: M1: Co correct x + a = May se by the i	$y = \frac{10}{9}b$ $y_{3}(9y+b) = \log_{3}9 + \log_{3}(2y-b)$ $y = \frac{10}{9}b$ $y_{3}(9y+b) = \log_{3}9 + \log_{3}(2y-b)$ $y = \frac{10}{9}b$ y	A1cso (4) M1 M1 M1 A1cso
Way 2Or : log log_3(9)(i) 1^{st} M1: M1: Co correct $x + a =$ May se by the se	$g_3(9y+b) = \log_3 9 + \log_3(2y-b)$ 2 nd M mark $y+b) = \log_3 9(2y-b)$ 1 st M mark	(4) M1 M1 M1 A1cso
(i) $1^{st} M1: Constraints M$	$y+b) = \log_3 9(2y-b)$ 1 st M mark	M1 M1 M1 A1cso
(i) $1^{st} M1$: M1: Co correct x + a = May se by the		M1 A1cso
(i) 1^{st}M1: M1: Co correct x + a = May se by the	$(b) = 9(2y-b) \Rightarrow y = \frac{10}{9}b$ Multiplies across and makes y the subject	Alcso
M1: Co correct x + a = May see by the		
M1: Co correct x + a = May see by the	Notes	[7]
x + a = May see by the	Applies power law of logarithms correctly to one side of the equation prrect log work in correct order. If they square and obtain a quadratic the algebra should	l be
May see by the	. The marks is for $x + a = \sqrt{16a^6}$ is wso allow $x + a = \pm 4a^3$ for Method mark. Also	o allow
by the	= $4a^4$ or $x + a = \pm 4a^{5.5}$ or even $x + a = 16a^3$ as there is evidence of attempted square	e root.
	e the correct $x + a = 10^{(\log 4 + 3\log a)}$ so $x = -a + 10^{(\log 4 + 3\log a)}$ which gains M1A0 unless	followed
AI: Do	answer in the scheme. $1 - \frac{3}{2}$	1)
	o not allow $x = \pm 4a^3 - a$ for accuracy mark. You may see the factorised $a(2a + 1)(2a + a)$ oplying the subtraction or addition law of logarithms correctly to make two log terms is a log term in y	– 1) o.e.
	$\log_{3} 3^{2} = 2$	
	Obtains correct linear equation in y usually the one in the scheme and attempts $y =$	
A1cso:	$y = \frac{10}{9}b$ or correct equivalent after completely correct work.	
$\frac{\text{Specia}}{\log_3(2)}$	Lease: $\frac{(y+b)}{(y-b)} = 2$ is M0 unless clearly crossed out and replaced by the correct $\log_3 \frac{(9y+b)}{(2y-b)}$	= 2
	ates may then write $\frac{(9y+b)}{(2y-b)} = 3^2$ and proceed to the <i>correct</i> answer – allow M0M1M	
the ans		

Question Number	Scheme	Marks
8(i)	Two Ways of answering the question are given in part (i)	
Way 1	$\log_3\left(\frac{3b+1}{a-2}\right) = -1$ or $\log_3\left(\frac{a-2}{3b+1}\right) = 1$ Applying the subtraction law of logarithms	M1
	$\frac{3b+1}{a-2} = 3^{-1} \left\{ = \frac{1}{3} \right\} \text{ or } \left(\frac{a-2}{3b+1} \right) = 3$ Making a correct connection between log base 3 and 3 to a power.	M1
	$\{9b+3=a-2 \Rightarrow\} \ b=\frac{1}{9}a-\frac{5}{9}$ $b=\frac{1}{9}a-\frac{5}{9}$ or $b=\frac{a-5}{9}$	A1 oe
	In Way 2 a correct connection between log base 3 and "3 to a power" is used before applying the subtraction or addition law of logs	[3]
(i) Way 2	Either $\log_3(3b+1) - \log_3(a-2) = -\log_3 3$ or $\log_3(3b+1) + \log_3 3 = \log_3(a-2)$	2 nd M1
	$\log_3(3b+1) = \log_3(a-2) - \log_3 3 = \log_3\left(\frac{a-2}{3}\right) \text{ or } \log_3 3(3b+1) = \log_3(a-2)$	1 st M1
	${3b+1=\frac{a-2}{3}} b = \frac{1}{9}a - \frac{5}{9}$	A1
		[3]
	Five Ways of answering the question are given in part (ii)	
(ii)	$32(2^{2x}) - 7(2^x) = 0$ Deals with power 5 correctly giving ×32	M1
Way 1 See also common approach below in notes	So, $2^x = \frac{7}{32}$ or $y = \frac{7}{32}$ or $awrt 0.219$	A1 oe dM1
	$x \log 2 = \log\left(\frac{7}{32}\right)$ or $x = \frac{\log\left(\frac{7}{32}\right)}{\log 2}$ or $x = \log_2\left(\frac{7}{32}\right)$ A valid method for solving $2^x = \frac{7}{32}$ Or $2^x = k$ to achieve $x = \dots$	
	x = -2.192645 awrt -2.19	A1 [4]
	Begins with $2^{2x+5} = 7(2^x)$ (for Way 2 and Way 3) (see notes below)	
(ii) Way 2	Correct application of $(2x + 5)\log 2 = \log 7 + x \log 2$ either the power law or addition law of logarithms.	M1
	the power and addition laws of logarithms.	A1
	$2x \log 2 + 5 \log 2 = \log 7 + x \log 2$ $\Rightarrow x = \frac{\log 7 - 5 \log 2}{\log 2}$ Multiplies out, collects x terms to achieve $x =$	dM1
	x = -2.192645 awrt -2.19	A1 [4]
	Evidence of \log_2 and either $2^{2x+5} \rightarrow 2x+5$	
(ii) Way 3	$2x + 5 = \log_2 7 + x$ or $7(2^x) \to \log_2 7 + \log_2(2^x)$	M1
-	$2x + 5 = \log_2 7 + x \text{ oe.}$	A1
	$2x - x = \log_2 7 - 5$ Collects x terms to achieve $x =$	dM1
	$\Rightarrow x = \log_2 7 - 5$	