

Mark Scheme (Result)

November 2021

Pearson Edexcel GCE Further Mathematics Advanced Level in Core Pure Mathematics Paper 2 9FM0/02

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2021 Publications Code 9FM0_02_2111_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[4]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- **4.** All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

Question	Scheme	Marks	AOs
1(a) (i)	$ z_1 z_2 = 3\sqrt{2}$	B1	1.1b
(ii)	$\arg(z_1 z_2) = \frac{\pi}{3} + \left(-\frac{\pi}{12}\right) = \frac{\pi}{4}$ o.e.	B1	1.1b
		(2)	
(b) (i)	n = 8	B1ft	2.2a
(ii)	$\left w^{n}\right = \left(\text{'their}\left z_{1}z_{2}\right '\right)^{\text{their }n}$	M1	1.1b
	$ w^n = 104976$	A1	1.1b
		(3)	
		(5 n	narks)
Notes:			
 (a) (i) B1: Deduce (ii) B1: Deduce These marks 	s $ z_1 z_2 = 3\sqrt{2}$ s $\arg(z_1 z_2) = \frac{\pi}{4}$ o.e s may be awarded for $z_1 z_2 = 3\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$		
 (b) (i) B1ft: 2π div Alternativel (ii) M1: Their a 	vided by their $\arg(z_1z_2)$ found in part (a) (ii) to give an integer y smallest positive integer multiple required to make their argument a masser to (a) (i) to the power of their <i>n</i> .	ultiple of 2	2π

Question	Sch	eme	Marks	AOs
2	$ \begin{pmatrix} 4 & -2 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ mx+c \end{pmatrix} = \begin{pmatrix} X \\ mX+c \end{pmatrix} $ leadi	ng to an equation in x , m , c and X	M1	3.1a
	4x - 2(mx + c) = X and $5x + 3(mx + c) = X$	(+c) = mX + c	A1	1.1b
	5x+3(mx+c) = m(4x-2(mx+c)) leading to $5+3m = 4m-2m^2$	(3c = -2mc + c)	M1	2.1
	$2m^{2} - m + 5 = 0 \Longrightarrow b^{2} - 4ac =$ $(-1)^{2} - 4(2)(5) = \dots$	Solves $3c = -2mc + c \Longrightarrow m =$	dM1	1.1b
	Correct expression for the discriminant = $\{-39\} < 0$ therefore there are no invariant lines.	m = -1 and shows a contradiction in $5+3m = 4m-2m^2$ therefore there are no invariant lines.	A1	2.4
	$ \begin{pmatrix} 4 & -2 \\ 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ mx \end{pmatrix} = \begin{pmatrix} X \\ mX \end{pmatrix} leading to a $	native n equation in <i>x</i> , <i>m</i> and <i>X</i>	M1	3.1a
	4x - 2(mx) = X and $5x + 3(mx) = n$	nX	A1	1.1b
	5x+3(mx) = m(4x-2(mx)) leading to $5+3m = 4m-2m^2$		M1	2.1
	$2m^{2} - m + 5 = 0 \Longrightarrow b^{2} - 4ac = (-1)^{2} - 4(2)(5) = \dots$		dM1	1.1b
	Correct expression for the discrimi are no invariant lines that pass thro	nant = $\{-39\}$ < 0 therefore there ugh the origin no invariant lines.	A1	2.4
			(5)	
		(5 n	narks)	

Notes:

M1: Sets up a matrix equation in an attempt to find a fixed line and extract at least one equation. A1: Correct equations.

M1: Eliminates X from the simultaneous equations and equates the coefficients of x leading to a quadratic equation in terms of m.

dM1: Dependent on the previous method, finds the value of the discriminant, this can be seen in an attempt to solve the quadratic using the formula.

Alternatively solves 3c = -2mc + c and finds a value for m

Note: If the quadratic equation in *m* is solved on a calculator and complex roots given this is M0 as they are not showing why there are no real roots.

A1: Correct expression for the discriminant, states < 0 and draws the required conclusion. Alternatively, correct value for *m*, shows a contradiction in $5+3m = 4m-2m^2$ and draws the required conclusion.

Alternative

M1: Sets up a matrix equation in an attempt to find a fixed line and extract at least one equation. A1: Correct equations.

M1: Eliminates X from the simultaneous equations and equates the coefficients of x leading to a quadratic equation in terms of m.

dM1: Dependent on the previous method, finds the value of the discriminant.

A1: Correct expression for the discriminant, states < 0 and draws the required conclusion.

Question	Scheme	Marks	AOs
3(a)	$f'(x) = A(1-x^2)^{-\frac{1}{2}}$ $f''(x) = Bx(1-x^2)^{-\frac{3}{2}}$ and		
	f'''(x) = $C(1-x^2)^{-\frac{3}{2}} + Dx^2(1-x^2)^{-\frac{5}{2}}$ or $\frac{C(1-x^2)^{\frac{3}{2}} + Dx^2(1-x^2)^{\frac{1}{2}}}{(1-x^2)^3}$	M1	2.1
	$f'(x) = (1 - x^{2})^{-\frac{1}{2}} \text{ or } \frac{1}{\sqrt{1 - x^{2}}} f''(x) = x(1 - x^{2})^{-\frac{3}{2}} \text{ or } \frac{x}{(1 - x^{2})^{\frac{3}{2}}} \text{ and}$ $f'''(x) = (1 - x^{2})^{-\frac{3}{2}} + 3x^{2}(1 - x^{2})^{-\frac{5}{2}} \text{ or } \frac{1}{(1 - x^{2})^{\frac{3}{2}}} + \frac{3x^{2}}{(1 - x^{2})^{\frac{3}{2}}}$		
	from quotient rule $\frac{\left(1-x^2\right)^{\frac{3}{2}} + 3x^2\left(1-x^2\right)^{\frac{1}{2}}}{\left(1-x^2\right)^{\frac{3}{2}}}$	A1	1.1b
	Finds f(0), f'(0), f''(0) and f'''(0) and applies the formula $f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2} + f'''(0)\frac{x^3}{6}$ {f(0) = 0, f'(0) = 1, f''(0) = 0, f'''(0) = 1}	M1	1.1b
	$f(x) = x + \frac{x^3}{6} cso$	A1	1.1b
		(4)	
(b)	$\arcsin\left(\frac{1}{2}\right) = \frac{1}{2} + \frac{\left(\frac{1}{2}\right)^3}{6} = \frac{\pi}{6} \Longrightarrow \pi = \dots$	M1	1.1b
	$\pi = \frac{25}{8} \text{ o.e.}$	Alft	2.2b
		(2)	
	·	(6 n	narks)
Notes:			

(a)

M1: Finds the correct form of the first three derivatives, may be unsimplified – the third may come later.

A1: Correct first three derivatives, may be unsimplified – the third may come later.

M1: Finds f(0), f'(0), f''(0) and f'''(0) and applies to the correct formula, needs to go up to x^3 .

A1: $x + \frac{x^3}{6}$ cso ignore any higher terms whether correct or not

Special case: If they think that their $f''(0) \neq 0$ then maximum score M1 A0 M1 A0

M1 for correct form of the first two derivatives

M1 Correctly uses their f(0), f'(0), f''(0) and applies to the correct formula

Note: If candidates do not find the first three derivatives but use f(O) = O, f'(O) = 1, f''(O) = O, f'''(O) = 1 and use these correctly in the formula this can score M0 A0 M1 A0 (b) M1: Substitutes $x = \frac{1}{2}$ into both sides and rearranges to find $\pi = \dots$ A1ft: Infers that $\pi = \frac{25}{8}$ o.e. Follow through their $6f\left(\frac{1}{2}\right)$

Question	Scheme	Marks	AOs
4(a)	A complete attempt to find the sum of the cubes of the first <i>n</i> odd numbers using three of the standard summation formulae. Attempts to find $\sum (2r+1)^3$ or $\sum (2r-1)^3$ by expanding and using summation formulae	M1	3.1a
	$\sum_{r=1}^{n} (2r-1)^{3} = \sum_{r=1}^{n} (8r^{3}-12r^{2}+6r-1) = 8\sum_{r=1}^{n} r^{3}-12\sum_{r=1}^{n} r^{2}+6\sum_{r=1}^{n} r-\sum_{r=1}^{n} 1$ or $\sum_{r=0}^{n-1} (2r+1)^{3} = \sum_{r=0}^{n-1} (8r^{3}+12r^{2}+6r+1) = 8\sum_{r=0}^{n-1} r^{3}+12\sum_{r=0}^{n-1} r^{2}+6\sum_{r=0}^{n-1} r+\sum_{r=0}^{n-1} 1$	M1	1.1b
	$=8\frac{n^{2}}{4}(n+1)^{2}-12\frac{n}{6}(n+1)(2n+1)+6\frac{n}{2}(n+1)-n$ or $=8\frac{(n-1)^{2}}{4}(n)^{2}+12\frac{(n-1)}{6}(n)(2n-1)+6\frac{(n-1)}{2}(n)+n$	M1 A1	1.1b 1.1b
	Multiplies out to achieve a correct intermediate line for example $n n+1 2n^2 - 2n+1 - n = 2n^4 - 2n^3 + n^2 + 2n^3 - 2n^2 + n - n$ $2n^4 + 4n^3 + 2n^2 - 4n^3 - 6n^2 - 2n + 3n^2 + 3n - n$ leading to $= n^2(2n^2 - 1) \cos^*$	A1 *	2.1
		(5)	
(b)	$\sum_{r=n}^{n+9} (2r-1)^{3} = \sum_{r=1}^{n+9} (2r-1)^{3} - \sum_{r=1}^{n-1} (2r-1)^{3}$ $= (n+9)^{2} (2(n+9)^{2}-1) - (n-1)^{2} (2(n-1)^{2}-1) = 99800$ or $\sum_{r=n+1}^{n+10} (2r-1)^{3} = \sum_{r=1}^{n+10} (2r-1)^{3} - \sum_{r=1}^{n} (2r-1)^{3}$ $= (n+10)^{2} (2(n+10)^{2}-1) - (n)^{2} (2n^{2}-1) = 99800$ or $\sum_{r=n-9}^{n} (2r-1)^{3} = \sum_{r=1}^{n} (2r-1)^{3} - \sum_{r=1}^{n-10} (2r-1)^{3}$ $= (n)^{2} (2(n)^{2}-1) - (n-10)^{2} (2(n-10)^{2}-1) = 99800$	M1	3.1a
	$80n^{3} + 960n^{2} + 5820n - 86760 = 0$ or $80n^{3} + 1200n^{2} + 7980n - 79900 = 0$ or $80n^{3} - 1200n^{2} + 7980n - 119700 = 0$ Solves cubic equation	A1 dM1	1.1b 1.1b

	(9 ו	narks)
	(4)	
Achieves $n = 15$ and the smallest number as 11		
or		
Achieves $n = 5$ and the smallest number as 11	A1	2.3
or		
Achieves $n = 6$ and the smallest number as 11		

Notes:

(a)

M1: A complete attempt to find the sum of the cubes of *n* odd numbers using three of the standard summation formulae.

M1: Expands
$$\sum_{r=1}^{n} (2r-1)^3$$
 or $\sum_{r=0}^{n-1} (2r+1)^3$ and splits into fours appropriate sums.

M1: Applies the result for at least three summations $\sum_{r=0}^{n-1} r^3$, $\sum_{r=0}^{n-1} r^2$, $\sum_{r=0}^{n-1} r$ and $\sum_{r=0}^{n-1} 1$ or

 $\sum_{r=1}^{n} r^{3}, \sum_{r=1}^{n} r^{2}, \sum_{r=1}^{n} r \text{ and } \sum_{r=1}^{n} 1 \text{ as appropriate to their expansion provided that there is an attempt at authors across using a set of the se$

cubing some values.

A1: Correct unsimplified expression.

A1 *: Multiplies out to achieve a correct intermediate expression which clearly leads to the correct expression. cso

Special case: If uses
$$\sum_{r=1}^{n} (2r+1)^3$$
 leading to $= 8\frac{n^2}{4}(n+1)^2 + 12\frac{n}{6}(n+1)(2n+1) + 6\frac{n}{2}(n+1) + n \max$

score is M1 M0 M1 A1 A0

(b)

M1: Uses the answer to part (a) to find the sum of the cubes of the first N + 10 odd numbers minus the sum of the first N odd numbers and sets equal to 99800 or equivalent.

A1: Correct simplified cubic equation.

dM1: Uses their calculator to solve their cubic equation, dependent on previous method mark. **A1:** cao

Question	Scheme	Marks	AOs
5(a)	$\frac{dy}{dx} = \frac{-\lambda}{\sqrt{1 - \beta x^2}} \text{ where } \lambda > 0 \text{ and } \beta > 0 \text{ and } \beta \neq 1$ Alternatively $2\cos y = x \Rightarrow \frac{dx}{dy} = \alpha \sin y \Rightarrow \frac{dy}{dx} = \frac{1}{\alpha \sin y}$	M1	1.1b
	$\frac{dy}{dx} = \frac{-\frac{1}{2}}{\sqrt{1 - \frac{1}{4}x^2}} \text{ or } \frac{dy}{dx} = \frac{-1}{2\sqrt{1 - \frac{1}{4}x^2}} \text{ o.e.}$ or $\frac{dy}{dx} = -\frac{1}{2\sin y} \text{ or}$	A1	1.1b
	States that $\frac{dy}{dx} \neq 0$ therefore <i>C</i> has no stationary points. Tries to solve $\frac{dy}{dx} = 0$ and ends up with a contradiction e.g. $-1 = 0$ therefore <i>C</i> has no stationary points. As cosec $y > 1$ therefore <i>C</i> has no stationary points.	A1	2.4
		(3)	
(b)	$\frac{dy}{dx} = \frac{-1}{2\sqrt{1 - \frac{1}{4} \times 1^2}} = \left\{ -\frac{1}{\sqrt{3}} \right\}$	M1	1.1b
	Normal gradient = $-\frac{1}{m}$ and $y - \frac{\pi}{3} = m_n(x-1)$ Alternatively $\frac{\pi}{3} = m_n(1) + c \Longrightarrow c = \dots \left\{\frac{\pi}{3} - \sqrt{3}\right\}$ and then $y = m_n x + c$	M1	1.1b
	$y = 0 \Longrightarrow 0 - \frac{\pi}{3} = \sqrt{3} \left(x_A - 1 \right) \Longrightarrow x_A = \dots \left\{ 1 - \frac{\pi}{3\sqrt{3}} \text{ or } 1 - \frac{\pi\sqrt{3}}{9} \right\}$ and $x = 0 \Longrightarrow y_B - \frac{\pi}{3} = \sqrt{3} \left(0 - 1 \right) \Longrightarrow y_B = \dots \left\{ \frac{\pi}{3} - \sqrt{3} \right\}$	M1	3.1a
	Area $=\frac{1}{2} \times x_A \times -y_B = \frac{1}{2} \left(1 - \frac{\pi}{3\sqrt{3}}\right) \left(\sqrt{3} - \frac{\pi}{3}\right)$	M1	1.1b
	Area $\frac{1}{54} \left(27\sqrt{3} - 18\pi + \sqrt{3}\pi^2 \right) \left(p = 27, q = -18, r = 1 \right)$	A1	2.1
		(5)	
		(8 n	narks)
Notes:			
(a)			
MII: Finds the	he correct form for $\frac{-y}{dx}$		

A1: Correct $\frac{dy}{dx}$

A1: States or shows that $\frac{dy}{dx} \neq 0$ and draws the required conclusion. This mark can be scored as long as the M mark has been awarded.

(b)

M1: Substitutes x = 1 into their $\frac{dy}{dx}$

M1: Finds the normal gradient and finds the equation of the normal using $y - \frac{\pi}{3} = m_n (x-1)$

M1: Finds where their normal cuts the *x*-axis and the *y*-axis.

M1: Finds the area of the triangle $OAB = \frac{1}{2} \times x_A \times -y_B$.

A1: Correct area

Special case: If finds the tangent to the curve, the *x* and *y* intercepts and the area of the triangle max score M1 M0 M1 M0 A0

Note common error

$$\frac{dy}{dx} = \frac{-1}{\sqrt{1 - \frac{1}{4}x^2}}$$
 In part (b) this leads to $\frac{dy}{dx} = \frac{-2}{\sqrt{3}}$ leading to normal gradient $\frac{\sqrt{3}}{2}$ and

$$y = \frac{\sqrt{3}}{2}x - \frac{\sqrt{3}}{2} + \frac{\pi}{3} \text{ and } \left(0, \frac{\pi}{3} - \frac{\sqrt{3}}{2}\right) \text{ and } \left(1 - \frac{2\pi}{3\sqrt{3}}, 0\right) \text{ therefore area} = \frac{1}{2} \left(\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right) \left(\frac{2\pi}{3\sqrt{3}} - 1\right)$$
This can score M1 M1 M1 M1 A0

Question	Scheme	Mark s	AOs
6(a)	$x = r \cos \theta = a (p + 2 \cos \theta) \cos \theta$ Leading to $\frac{dx}{d\theta} = \alpha \sin \theta \cos \theta + \beta \sin \theta (p + 2 \cos \theta)$ or $\frac{dx}{d\theta} = \alpha \sin \theta \cos \theta + \beta \sin \theta$ or $x = a (p \cos \theta + 2 \cos^2 \theta) = a (\cos 2\theta + p \cos \theta + 1)$ leading to $\frac{dx}{d\theta} = \alpha \sin 2\theta + \beta \sin \theta$	M1	3.1a
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = a \Big[-2\sin\theta\cos\theta - \sin\theta \big(p + 2\cos\theta \big) \Big]$ or $\frac{\mathrm{d}x}{\mathrm{d}\theta} = -4a\sin\theta\cos\theta - ap\sin\theta \text{ or } \frac{\mathrm{d}x}{\mathrm{d}\theta} = -2a\sin2\theta - ap\sin\theta$	A1	1.1b
	$a\left[-2\sin\theta\cos\theta - \sin\theta\left(p + 2\cos\theta\right)\right] = 0$ $\pm a\left(4\sin\theta\cos\theta + p\sin\theta\right) = 0$ $a\sin\theta\left(4\cos\theta + p\right) = 0$ Either $\sin\theta = 0$ or $\cos\theta = -\frac{p}{4}$	M1	3.1a
	$\sin \theta = 0$ implies 2 solutions (tangents which are perpendicular to the initial line) e.g. $\theta = 0, \pi$	B1	2.2a
	Therefore two solutions to $\cos \theta = -\frac{p}{4}$ are required $-\frac{p}{4} > -1 \Rightarrow p < 4 \text{ as } p \text{ is a positive constant } 2 < p < 4^*$	A1*	2.4
		(5)	
(b)	Correct shape and position. Condone cusp	B1	2.2a
		(1)	
(c)	Area = $2 \times \frac{1}{2} \int_{0}^{\pi} \left[20(3 + 2\cos\theta) \right]^{2} d\theta = 400 \int_{0}^{\pi} \left(9 + 12\cos\theta + 4\cos^{2}\theta\right) d\theta$ or $= \int_{0}^{\pi} \left(3600 + 4800\cos\theta + 1600\cos^{2}\theta\right) d\theta$	M1	3.4

	or		
	$\frac{1}{2}\int_{0}^{2\pi} \left[20(3+2\cos\theta)\right]^2 d\theta = 200\int_{0}^{2\pi} \left(9+12\cos\theta+4\cos^2\theta\right) d\theta$		
	or = $\int_{0}^{2\pi} (1800 + 2400\cos\theta + 800\cos^2\theta) d\theta$		
	$\cos^2 \theta = \frac{1}{2} + \frac{1}{2} \cos 2\theta \Longrightarrow$	M1	3 1a
	$A = \dots \int (9 + 12\cos\theta + 2 + 2\cos 2\theta) d\theta = \alpha\theta \pm \beta\sin\theta \pm \lambda\sin 2\theta$		5.14
	$= 400 [11\theta + 12\sin\theta + \sin 2\theta] \text{ or } = 200 [11\theta + 12\sin\theta + \sin 2\theta]$	A1	1.1b
	Using limits $\theta = 0$ and $\theta = \pi$ or $\theta = 0$ and $\theta = 2\pi$ as appropriate and subtracts the correct way round provided there is an attempt at integration		
	$= 400[11\pi - 0] = 4400\pi = 13823.0 (cm2)$	M 1	1.1b
	or = $200 [11(2\pi) - 0] = 4400\pi = 13823.0 (cm^2)$		
	Volume = area $\times 90 = 396\ 000\ \pi = 1\ 244\ 070.691\ (cm^3)$	M1	3.4
	time = $\frac{1244070.691}{50000}$ =	M1	2.2b
	or volume = 1244 litres therefore time = $\frac{1}{50}$ =		
	25 (minutes)	A1	3.2a
		(7)	
(d)	For example Polar equation is not likely to be accurate. Some comment that the sides will not be smooth and draws an appropriate conclusion. The hole may not be uniform depth The pond may leak/ ground may absorb some water	B1	3.5b
		(1)	
		(14	marks)
Notes:			
(a)			
M1: Comple	ete method to find the correct form for $\frac{dx}{d\theta}$		
A1: Correct	$\frac{\mathrm{d}x}{\mathrm{d}\theta}$		
M1 : Sets $\frac{dz}{dt}$	$\frac{\alpha}{\theta} = 0$ and factorises to find values for either $\sin \theta$ or $\cos \theta$.		
B1: Deduces	s that as $\sin \theta = 0$ this provides two tangents. This can be implied by 2 values of $\theta = 0$ the the tangent of tan and tangent of tangent of tangent of tangent o	alues for	θ
A1*: Conclu	ides that as $\cos \theta = -\frac{p}{4} > -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < 4$ and p is a positive constant $\therefore 0 < -1 \Longrightarrow p < -1$	<i>p</i> < 4	

(b) B1: Correct shape and position.

(c)

M1: Uses the model to find the area of the cross section $2 \times \frac{1}{2} \int_{0}^{\pi} \left[20(3 + 2\cos\theta) \right]^2 d\theta$ or

$$\frac{1}{2}\int_{0}^{2\pi} \left[20(3+2\cos\theta)\right]^2 d\theta$$

M1: Uses the identity $\cos 2\theta = 2\cos^2 \theta - 1$ to integrate to the required form.

A1: Correct integration.

M1: Uses limits $\theta = 0$ and $\theta = \pi$ or $\theta = 0$ and $\theta = 2\pi$ as appropriate and subtracts the correct way around provided there is an attempt at integration.

Note if first M1 is not awarded for incorrect limits then award this mark for their limits used.

M1: Multiplies their area by 90 (cm).

M1: Divides their volume by 50000

A1: 25 (minutes)

(**d**)

B1: See scheme for examples. Any reference to the flow of water is B0

Question	Sch	eme	Marks	AOs		
7(a)	Using $\operatorname{arsinh} \alpha = \frac{1}{2} \ln 3$ $\alpha = \frac{e^{\frac{1}{2}\ln 3} - e^{-\frac{1}{2}\ln 3}}{2}$	$\ln\left(\alpha+\sqrt{\alpha^2+1}\right) = \frac{1}{2}\ln 3$	B1	1.2		
	$\alpha = \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{2} \Longrightarrow \alpha = \dots$	$\alpha + \sqrt{\alpha^2 + 1} = \sqrt{3}$ $\sqrt{\alpha^2 + 1} = \sqrt{3} - \alpha$ $\alpha^2 + 1 = 3 - 2\sqrt{3}\alpha + \alpha^2 \Rightarrow \alpha = \dots$	M1	1.1b		
	$\alpha = \frac{\sqrt{3}}{3}$ or $\frac{1}{\sqrt{3}}$		A1	2.2a		
			(3)			
(b)	Volume = $\pi \int_0^{\frac{1}{2}\ln 3} \sinh^2 y dy$		B1	2.5		
	$\{\pi\} \int \left(\frac{e^{y} - e^{-y}}{2}\right)^{2} dy = \{$ $\{\pi\} \int \frac{1}{2} \cos \theta$	$\{\pi\} \int \left(\frac{e^{2y} - 2 + e^{-2y}}{4}\right) dy$ or $h 2y - \frac{1}{2} dy$	M1	3.1a		
	$\frac{1}{4}\left(\frac{1}{2}e^{2y}-2\right)$	$2y - \frac{1}{2}e^{-2y}$ or $2y - \frac{1}{2}y$	dM1 A1	1.1b 1.1b		
	Use limits $y = 0$ and $y = \frac{1}{2} \ln 3$ and	d subtracts the correct way round	M1	1.1b		
	$\frac{\pi}{4}\left(\frac{4}{3} - \ln 3\right)$ or exact equivalent		A1	1.1b		
			(6)			
			(9 n	narks)		
Notes:	Notes:					
B1: Recalls the definition for $\sinh\left(\frac{1}{2}\ln 3\right)$ or forms an equation for arcsinh x M1: Uses logarithms to find a value for α or forms and solves a correct equation without log A1: Deduces the correct exact value for α Note using the result						
$\left \ln \left(\frac{1}{\sqrt{3}} + \sqrt{1} \right) \right $	$\ln\left(\frac{1}{\sqrt{3}} + \sqrt{\left(\frac{1}{\sqrt{3}}\right)} + 1\right) = \ln\left(\frac{1}{\sqrt{3}} + \sqrt{\frac{4}{3}}\right) = \ln\sqrt{3} = \frac{1}{2}\ln 3 \text{ therefore arsinh}\left(\frac{1}{\sqrt{3}}\right) = \frac{1}{2}\ln 3$					

B1 for substituting in α into arcsinhx, M1 for rearranging to show $\frac{1}{2}\ln 3$, A1 for conclusion

(b)

B1: Correct expression for the volume $\pi \int_0^{\frac{1}{2}\ln 3} \sinh^2 y \, dy$ requires integration signs, dy and correct limits.

M1: Uses the exponential formula for sinh y or the identity $\cosh 2y = \pm 1 \pm 2\sinh^2 y$ to write in a form which can be integrated at least one term

dM1: Dependent of previous method mark, integrates.

A1: Correct integration.

M1: Correct use of the limits y = 0 and $y = \frac{1}{2} \ln 3$

A1: Correct exact volume.

Question	Scheme	Marks	AOs
8(i)	$ z = \sqrt{6^2 + 6^2} = \dots 6\sqrt{2} \text{ or } \sqrt{72} \text{ and arg } z = \tan^{-1}\left(\frac{6}{6}\right) = \dots \left\{\frac{\pi}{4}\right\}$ Can be implied by $r = 6\sqrt{2}e^{\frac{\pi}{4}i}$	M1 A1	3.1a 1.1b
	Adding multiplies of $\frac{2\pi}{\pi}$ to their argument		
	$z = 6\sqrt{2}e^{\frac{\pi}{4}i} \times e^{\frac{2\pi k}{5}i} \text{ or } z = 6\sqrt{2}\left[\cos\left(\frac{\pi}{4} + \frac{2\pi k}{5}\right) + i\sin\left(\frac{\pi}{4} + \frac{2\pi k}{5}\right)\right]$	M1	1.1b
	$z = r e^{\left(\theta + \frac{2\pi}{5}\right)i}, r e^{\left(\theta + \frac{4\pi}{5}\right)i}, r e^{\left(\theta + \frac{6\pi}{5}\right)i}, r e^{\left(\theta + \frac{8\pi}{5}\right)i} \text{ o.e.}$ or $z = r e^{\left(\theta + \frac{2\pi}{5}\right)i}, r e^{\left(\theta - \frac{2\pi}{5}\right)i}, r e^{\left(\theta - \frac{6\pi}{5}\right)i}, r e^{\left(\theta - \frac{8\pi}{5}\right)i} \text{ o.e.}$	A1ft	1.1b
	$z = 6\sqrt{2}e^{\frac{13\pi}{20}i}, 6\sqrt{2}e^{\frac{21\pi}{20}i}, 6\sqrt{2}e^{\frac{29\pi}{20}i}, 6\sqrt{2}e^{\frac{37\pi}{20}i} \text{ o.e.}$ or $z = 6\sqrt{2}e^{\frac{13\pi}{20}i}, 6\sqrt{2}e^{-\frac{19\pi}{20}i}, 6\sqrt{2}e^{-\frac{11\pi}{20}i}, 6\sqrt{2}e^{-\frac{3\pi}{20}i} \text{ o.e.}$	A1	1.1b
		(5)	
(ii)(a)	Circle centre (0, 2) and radius 2 or with the point on the origin	B1	1.1b
	Fully correct	B1	1.1b
		(2)	
(ii)(b)	area $=\frac{1}{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} 4\sin\theta^2 d\theta$ or area $=\frac{1}{2}\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \alpha\sin\theta^2 d\theta$	M1	3.1a
	Uses $\sin^2 \theta = \frac{1}{2} - \frac{1}{2} \cos 2\theta$ and integrates to the form $A\theta + B \sin 2\theta$ area $= 8 \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sin^2 \theta d\theta = 4 \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} 1 - \cos 2\theta d\theta = 4\theta - 2\sin 2\theta$	M1	3.1a
	Uses the limits of $\frac{\pi}{4}$ and $\frac{\pi}{3}$ and subtracts the correct way around $\left[4\left(\frac{\pi}{3}\right)-2\sin\left(\frac{2\pi}{3}\right)\right]-\left[4\left(\frac{\pi}{4}\right)-2\sin\left(\frac{2\pi}{4}\right)\right]$	M1	1.1b

M1: Finds the modulus and argument of z

A1: Correct modulus and argument of z

(i)

M1: Uses a correct method to find to all the other 4 vertices of the pentagon. Must be doing the equivalent of adding/ subtracting multiplies of $\frac{2\pi}{5}$ to the argument. A1ft: All 4 vertices following through on their modulus and argument. Does not need to be simplified for this mark. A1: All 4 vertices correct in the required form (ii)(a)with the vertex on the origin. **B1:** Circle centre (0, 2) and radius 2 or B1: Fully correct region shaded. (ii) (b) M1: Writes the required area using polar coordinates **M1:** Uses $\sin^2 \theta = \frac{1}{2} - \frac{1}{2} \cos 2\theta$ and integrates to the form $A\theta + B \sin 2\theta$ M1: Uses the limits of $\frac{\pi}{4}$ and $\frac{\pi}{3}$ and subtracts the correct way around. Must be some attempt at area $=\frac{1}{2}\int \alpha \sin \theta^2 d\theta$ and integration. A1: Correct exact area $=\frac{\pi}{3} - \sqrt{3} + 2$ Alternative M1: Finds either area 1 or area 2 M1: A complete method to find the area 3 M1: A complete method to find the required area = Area of semi circle – area 1 - area 2 - area 3 or = Area of sector – area 1 – area 3 A1: Correct exact area = $\frac{\pi}{3} - \sqrt{3} + 2$

Question	Scheme	Marks	AOs
9(a)	$\frac{1}{1-z}$	B1	2.2a
		(1)	
(b)(i)	$1+z+z^{2}+z^{3}+$ =1+ $\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)$ + $\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)^{2}$ + $\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)^{3}$ + =1+ $\frac{1}{2}(\cos\theta+i\sin\theta)$ + $\frac{1}{4}(\cos 2\theta+i\sin 2\theta)$ + $\frac{1}{8}(\cos 3\theta+i\sin 3\theta)$ +	M1	3.1a
	$\frac{1}{1-z} = \frac{1}{1-\frac{1}{2}(\cos\theta + i\sin\theta)} \times \frac{1-\frac{1}{2}\cos\theta + \frac{1}{2}i\sin\theta}{1-\frac{1}{2}\cos\theta + \frac{1}{2}i\sin\theta}$ or $\frac{1}{1-z} = \frac{2}{2-(\cos\theta + i\sin\theta)} \times \frac{2-(\cos\theta - i\sin\theta)}{2-(\cos\theta - i\sin\theta)}$	M1	3.1a
	$\left\{\frac{1}{2}(\sin\theta) + \frac{1}{4}(\sin 2\theta) + \frac{1}{8}(\sin 3\theta) + \ldots\right\} = \frac{\frac{1}{2}\sin\theta}{\left(1 - \frac{1}{2}\cos\theta\right)^2 + \left(\frac{1}{2}\sin\theta\right)^2}$ or $\left\{\frac{1}{2}(\sin\theta) + \frac{1}{4}(\sin 2\theta) + \frac{1}{8}(\sin 3\theta) + \ldots\right\} = \frac{2\sin\theta}{\left(2 - \cos\theta\right)^2 + \left(\sin\theta\right)^2}$	M1	2.1
	$\left(1 - \frac{1}{2}\cos\theta\right)^2 + \left(\frac{1}{2}\sin\theta\right)^2 = 1 - \cos\theta + \frac{1}{4}\cos^2\theta + \frac{1}{4}\sin^2\theta$ $= \frac{5}{4} - \cos\theta$ or $(2 - \cos\theta)^2 + (\sin\theta)^2 = 4 - 4\cos\theta + \cos^2\theta + \sin^2\theta$ $= 5 - 4\cos\theta$	M1	1.1b
	$\frac{1}{2}\sin\theta + \frac{1}{4}\sin 2\theta + \frac{1}{8}\sin 3\theta + \dots = \frac{\frac{1}{2}\sin\theta}{\frac{5}{4} - \cos\theta} = \frac{2\sin\theta}{5 - 4\cos\theta} *$	A1*	1.1b
	Alternative $1+z+z^{2}+z^{3}+$ $=1+\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)+\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)^{2}+\left(\frac{1}{2}(\cos\theta+i\sin\theta)\right)^{3}+$ $=1+\frac{1}{2}(\cos\theta+i\sin\theta)+\frac{1}{4}(\cos2\theta+i\sin2\theta)+\frac{1}{8}(\cos3\theta+i\sin3\theta)+$	M1	3.1a

	$\frac{1}{1-z} = \frac{1}{1-\frac{1}{2}e^{i\theta}} \times \frac{1-\frac{1}{2}e^{-i\theta}}{1-\frac{1}{2}e^{-i\theta}}$	M1	3.1a	
	$\frac{1 - \frac{1}{2}e^{-i\theta}}{1 - \frac{1}{4}e^{i\theta} - \frac{1}{4}e^{-i\theta} + \frac{1}{4}} = \frac{4 - 2e^{-i\theta}}{5 - 2(e^{i\theta} + e^{-i\theta})} = \frac{4 - 2(\cos\theta - i\sin\theta)}{5 - 2(2\cos\theta)}$	M1	2.1	
	Select the imaginary part $\frac{2\sin\theta}{5-4\cos\theta}$	M1	1.1b	
	$\frac{1}{2}\sin\theta + \frac{1}{4}\sin 2\theta + \frac{1}{8}\sin 3\theta + \dots = \frac{2\sin\theta}{5 - 4\cos\theta} *$	A1*	1.1b	
		(5)		
(b)(ii)	$\frac{1 - \frac{1}{2}\cos\theta}{\frac{5}{4} - \cos\theta} = 0 \Longrightarrow \cos\theta = 2$	M1	3.1a	
	As $(-1 \le)\cos\theta \le 1$ therefore there is no solution to $\cos\theta = 2$ so there will also be a real part, hence the sum cannot be purely imaginary.	A1	2.4	
	Alternative 1 Imaginary part is $\frac{4-2\cos\theta}{5-4\cos\theta} = \frac{1}{2} + \frac{3}{2(5-4\cos\theta)}$	M1	3.1a	
	$-1 \le \cos \theta \le 1$ therefore $\frac{1}{6} < \frac{3}{2(5-4\cos \theta)} < \frac{3}{2}$ so sum must contain	A1	2.4	
	Alternative 2			
	$\frac{1}{1-z} = k\mathbf{i} \Rightarrow z = 1 + \frac{\mathbf{i}}{k}$	M1	3.1a	
	mod $z > 1$ contradiction hence cannot be purely imaginary	A1	2.4	
		(2)		
		(8 n	narks)	
Notes:				
(a) B1: See sch	eme			
(b)(i)				
M1: Substitutes $z = \frac{1}{2} (\cos \theta + i \sin \theta)$ into at least 3 terms of the series and applies de Moivre's				
theorem.				
M1: Substitutes $z = \frac{1}{2} (\cos \theta + i \sin \theta)$ into their answer to part (a) and rationalises the denominator.				
M1: Equate	s the imaginary terms.			
M1: Multiplies out the denominator and simplifies by using the identity $\cos^2 \theta + \sin^2 \theta = 1$				

A1*: cso. Achieves the printed answer having substituted $z = \frac{1}{2} (\cos \theta + i \sin \theta)$ into 4 terms of the series. Alternative M1: Substitutes $z = \frac{1}{2} (\cos \theta + i \sin \theta)$ into at least 3 terms of the series and applies de Moivre's theorem. M1: Substitutes $z = \frac{1}{2}e^{i\theta}$ into their answer to part (a) and rationalises the denominator. **M1:** Uses $e^{-i\theta} = \cos\theta - i\sin\theta$ and $e^{i\theta} + e^{-i\theta} = 2\cos\theta$ to express in terms of $\sin\theta$ and $\cos\theta$ M1: Select the imaginary terms. A1*: cso Achieves the printed answer having substituted $z = \frac{1}{2} (\cos \theta + i \sin \theta)$ into 4 terms of the series. (b)(ii) M1: Setting the real part of the series = 0 and rearranges to find $\cos \theta = \dots$ A1: See scheme Alternative 1 M1: Rearranges imaginary part so that $\cos\theta$ only appears once A1: Uses $-1 \le \cos \theta \le 1$ to show that the sum must always be positive so must contain a real part Alternative 2

M1: Sets sum as purely imaginary and rearranges to make z the subject

A1: Shows a contradiction and draws an appropriate conclusion