

Mark Scheme (Results)

Summer 2013

GCE Statistics 1 (6683/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA036993 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

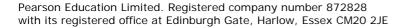
Ques		Scheme	Marks	
1.	(a)	$(S_{th}) = 64980 - \frac{7150 \times 110}{9} = -22408.9$ $-\underline{22400}$	M1 A1	
		$(S_{th}) = 64980 - \frac{7150 \times 110}{9} = -22408.9$ $-\underline{22400}$ $(S_{hh}) = 7171500 - \frac{7150^2}{9} = 1491222.2$ $\underline{1490000}$	A1	
		$r = \frac{-22408.9}{\sqrt{1491222 \times 371.56}} = -0.95200068 \text{awrt} - \underline{0.952}$	(3) M1A1	
	(c)	Yes as <i>r</i> is close to -1 (if $-1 < r < -0.5$) or Yes as <i>r</i> is close to 1 (if $1 > r > 0.5$) [If $-0.5 \le r \le 0.5$ allow "no since <i>r</i> is close to 0"] [If $ r > 1$ award B0]	(2) B1ft (1)	
	(d)	$b = \frac{-22408.9}{1491222.2} = -0.015027 \qquad (allow \frac{-56}{3725}) \qquad awrt - 0.015$	M1 A1	
		$a = \frac{110}{9}$ - "their b"× $\frac{7150}{9}$ = (12.2 - 0.015 × 794.4), = 24.1604 so t = 24.2 - 0.015h	M1, A1	
	(e)	0.015 is the <u>drop</u> in temp, (in ${}^{0}C$), for every 1(m) <u>increase</u> in height above sea level.	B1 (4)	
	(f)	Change = $(`'24.2 - 0.015'' \times 500) - (`'24.2 - 0.015'' \times 1000) \text{ or } 500 \times `'0.015''$ = ± 7.5 (awrt ± 7.5) (only ft a value < 100)	(1) M1 A1ft (2) (13 marks)	
		Notes		
	(a)			
	(b)	$2^{nd} A1 \text{ for } S_{th} = -22 \ 400 \ \text{and} \ S_{hh} = 1 \ 490 \ 000 \text{only. [This mark is assessing correct rounding]} (Allow no labels but mis-labelling S_{th} as S_{hh} etc loses the final A1)M1 for attempt at correct formula. Allow minor transcription errors of 2 or 3 digits.Must have their S_{hh}, S_{th} and given S_{tt} (3sf or better) in the correct places. Condone missing "-"Award M1A0 for awrt -0.95 with no expression seen. M0 for \frac{64980}{\sqrt{7171500 \times 7.864}}$		
	(c)	B1ft must comment on supporting and state: <u>high/strong/clear</u> (negative or positive) <u>correlation</u> "points lie close to a straight line" is B0 since there is no evidence of this.		
	(d)	1^{st} M1for a correct expression for b. Follow through their S_{hh} & S_{th} . Condone missing "-" 1^{st} A1for a wrt -0.015 or allow exact fraction from rounded values. 2^{nd} M1for a correct method for a. Follow through their value of b 2^{nd} A1for a correct equation for t and h with $a = awrt 24.2$ and $b = awrt -0.015$ No fraction		
	(e)	B1 Must mention h (or height) and t (or temperature) and their (1 sf) <u>value</u> of b in a correct	ct comment	
	(f)	M1 for a correct expression seen based on their equation. Allow transcription error of 1 digit. If answer is $500 \times$ their <i>b</i> to 2sf and < 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A0)		

Question	Scheme	Marks	
2. (a)	25 (allow any x where $24 < x < 26$)	B1	
(b)	Q_2 (or median or m) = 51 IQR = 63 - 46 ,= 17 (or $Q_3 - Q_1 = 17$)	(1) B1 M1, A1 (3)	
(c)	(c) Outliers given by $46 - 1.5 \times 17 = 20.5$ or $63 + 1.5 \times 17 = 88.5$ Outliers limits are 20.5 and 88.5		
	Females Females Allow lower because the second seco	M1 A1ft	
	Males $\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Mark	B1 (5)	
(d)	 Medians: Median for females lower than males IQR: IQR for females smaller than males. Allow "lower/higher" but not "wider" Range: Range of females is less than males Skewness: Male and female marks are both positively skew Ignore other statements about average, spread, mean, st. Dev, variation, outliers etc 	B1ft B1ft (2) (11 marks)	
	Notes		
(b)	Mark (b) and (c) together BUT must see clear statement that median (or m or Q_2) = 51 and M1 for 2 quartiles (at least one correct) and attempt to find the difference. Must see them A1 for 17 only. [Answer only of IQR= 17 scores M1A1]		
(c)	 (c) A fully correct box-plot (either version) with no supporting work scores 5/5. Otherwise 1st M1 for correct attempt to calc' at least one limit for outliers, ft their quartiles or IQR or award for sight of 20.5 or 88.5 1st A1 for identifying both limits of 20.5 and 88.5 2nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct values (or correct outlier and their scale. Follow through their 20.5 and 85 or their 88.5 in appropriate places and readate their scale. Follow through their 20.5 and their 88.5 only, other values need to be constrained. If there are 2 upper or 2 lower whiskers A0 B1 for only 2 outliers appropriately marked at 14 and 90 Do not award if whiskers go beyond these Apply ± 0.5 square accuracy for diagram A box plot not meta place in the graph paper can only score the 1st M1A1 		
(d)	In (d) ft from their diagrams (if no diagram then use their values)1st B1ft2nd B1ftfor one correct comment comparing median, IQR , range or skewnessfor a second correct comment comparing median, IQR, range or skewnessDo not allow contradictory statements		

Question	Scheme		Marks
3. (a)	$\frac{35+75}{200} = 0.55$		M1 A1
	200		(2)
(b)	$\frac{200-2}{200} = 0.99$		M1 A1
	200		(2)
(c)	$=$ $P(W \cap C) = \frac{30}{200} = 30$		(2)
	$\left[P(W \mid C)\right] = \frac{P(W \cap C)}{P(C)} = \frac{\frac{30}{200}}{\frac{80}{200}} = \frac{30}{80} = 0.375$		M1 A1
	/ 200	1	(2)
(d)	C 64 F	Allow diagrams with intersections between <i>F</i> ,	M1
		<i>C</i> and <i>H</i> provided these	B1 for 9, 1
		are marked with 0.	B1 for 77,33 B1 for 64,16
	$\left(\begin{array}{c} \underbrace{} \\ \underbrace{} \\ \\ \end{array}\right)$ (0)	If their diagram indicates	D 1 101 04,10
	77 H	extra empty regions do not treat a blank as 0.	
		•	- (-)
(e)	(e) $\frac{1+16+33}{200} = 0.25$		M1 A1 (2)
	200		(12 marks)
	Notes		
	Correct answers only score full If a probability is not in [0	-	
(a)			
	A1 for 0.55 or exact equivalent fraction e.g. $\frac{11}{20}$		
(b)	M1 for a fully correct expression (e.g. $1-0.01$)		
	A1 for 0.99 or an exact equivalent fraction		
(c)	M1 for a correct ratio or a correct formula and at least		ect num or
	denom). BUT award M0 if num is $P(W) \times P(C) =$	$\frac{67}{200} \times \frac{80}{200}$ or if num>denom	
	A1 for 0.375 or 3/8 or any exact equivalent.		
(d)	M1 for a box and the 3 regions F, C and H labelled or imp		There should
	be no intersections between <i>F</i> , <i>C</i> and <i>H</i> unless marked circles for <i>F</i> , <i>C</i> and <i>B</i> with $H = F' \cap C'$ etc. Condom		ram.
F	1^{st} B1 for the 9 and 1 or 0.045 and 0.005 (o.e.) in the correct regions May have B in 3		
H C	2^{nd} B1 for the 77 and 33 or 0.385 and 0.165 (o.e.) in the correct regions bits that are disconnected.		
(e)	M1 for a numerator made up of their 1 + their 16 + their 33 and a denom of 200 and num < 200 Also allow sum of their probabilities (provided sum < 1)		
	A1 for 0.25 or any exact equivalent	,	

Question	Scheme	Marl	KS
4. (a)	$\sum ft = 4837.5$ (allow 4838 or 4840)		
	Mean = $\frac{"4837.5"}{200}$ = 24.1875 awrt $\underline{24.2}$ or $\frac{387}{16}$	M1 A1	
	$\sigma = \sqrt{\frac{134281.25}{200} - \left(\frac{4837.5}{200}\right)^2}$	M1	
	= 9.293 (accept s =9.32) awrt <u>9.29</u>	A1	(5)
(b)	$Q_2 = [20.5] + \frac{(100/100.5 - 62)}{88} \times 5 = 22.659$ awrt <u>22.7</u>	M1 A1	
(c)	$Q_1 = 10.5 + \frac{(50/50.25)}{62} \times 10[=18.56]$ (*) (<i>n</i> + 1 gives 18.604)	B1 cso	(2)
(d)	$Q_3 = 25.5$ (Use of $n + 1$ gives 25.734) IQR = 6.9 (Use of $n + 1$ gives 7.1)	B1 B1 ft	(1)
(e)	The data is skewed (condone "negative skew")	B1	(2) (1)
(f)	Mean decreases and st. dev. remains the same. [Must mention mean and st. dev.] (from(a)) The median and quartiles would decrease. [Must refer to median <u>and</u> at least Q_1 .] ((b)(c)) The IQR would remain unchanged (from (d))	B1 B1 B1 (14 ma)	(3)
	Notes		10)
(a)	Correct answers only score full marks in each part except (c)B1for 4837.5 or 4838 or 4840 seen.If no $\sum ft$ seen (or attempt at $\sum ft$ seen), B1 can be implied by a correct mean of awrt 24.2		
	1 st M1 for attempt at their $\frac{\sum f_t}{\sum f}$ allow 1sf so $\sum f$ = awrt 200 and $\sum ft$ = awrt 5000.		
	<u>Or</u> award M1 for a clear attempt at mean where at least 4 correct products of $\sum ft$	are seen	
	 2nd M1 for correct expression including square root seen. Follow through their mean. Allow a transcription error in 134281.25 but not an incorrect re-calculation. M1 for a correct fraction ×5. Ignore end point but must be +. Allow use of (n + 1) giving 100.5 		
(b)			
(c)	B1cso for a fully correct expression including end point. NB Answer is given. Allow use of $(n + 1)$ giving 50.25but use of 50.5 scores B0		
(d)	$1^{\text{st}} \text{ B1} \qquad \text{for 25.5 (or awrt 25.7 using } n+1)$ $2^{\text{nd}} \text{ B1ft} \qquad \text{for their } Q_3 - \text{ their } Q_1 \text{ (or 18.6) (provided > 0) Accept awrt 2sf. Correct ans. on}$	ly scores 2	2/2
(e)	B1 Must mention that the data is skewed or not symmetrical. Do not award for "outliers"		
(f)	 1st B1 for one correct comment from the above. May refer to parts (a), (b), (c) or (d) 2nd B1 for two correct comments from the above 3rd B1 for all 3 correct comments from the above 		

Question	Scheme	Marks	
5. (a)	3a + 2b = 0.7	M1	
	a + 2a + 3a + 4b + 5b + 1.8 = 4.2 <u>or</u> $6a + 9b = 2.4$	M1	
	5b = 1 Attempt to solve	M1	
	$b = \underline{0.2}$ cao	B1	
	$a = \underline{0.1}$ cao	B1	
		(5)	
(b)	$E(X^{2}) = 1 \times 0.1 + 2^{2} \times 0.1 + 3^{2} \times 0.1 + 4^{2} \times 0.2 + 5^{2} \times 0.2 + 6^{2} \times 0.3 \ (= 20.4) (*)$	B1cso	
		(1)	
(c)	$[Var(X) =] 20.4 - 4.2^2 [= 2.76]$	M1	
	Var(5 - 3X) = 9 Var(X)	M1	
	$=$ <u>24.84</u> or <u>24.8</u> (allow $\frac{621}{25}$) cao	A1	
		(3)	
(d)	[5k = 1 so] k = 0.2	B1	
		(1)	
(e)	P(Y=1) = 0.1	B1	
	e.g. $P(Y = 2) = F(2) - F(1) = 0.1$	M1	
	y 1 2 3 4 5 Containing of $Y(x)$ instact of $Y(x)$		
	y12010Condone use of $X(x)$ instead of $Y(y)$ $P(Y = y)$ 0.10.10.40.20.2Ignore incorrect or no label if table fully correct	A1	
	$\Gamma(I - y) = 0.1 = 0.1 = 0.4 = 0.2 = 0.2$ Ignore incorrect of no laber if table fully correct		
		(3)	
(f)	$P(X = 1) \times P(Y = 1) = 0.01$ cao	M1, A1 (2)	
		(15 marks)	
	Notes		
	Probabilities outside [0, 1] should be awarded M0		
(a)	1^{st} M1 for an attempt at a linear equation in <i>a</i> and <i>b</i> based on sum of probs. = 1	1.	
	2^{nd} M1 for an attempt at a second linear equation in <i>a</i> and <i>b</i> based on E(X) = 4.2 Allow		
	3^{rd} M1 for an attempt to solve their 2 linear equations based on sum of probs and E(X). Ma linear equation in one variable. 1^{st} B1 for b and 2^{nd} B1 for a. Answers only score B1E		
	The 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 is scored and both correct answers are given by the 3^{rd} M1 may be implied if M2 may be implied i	•	
ALT	B1B1 for stating b and a.	CII.	
	1^{st}M1 for showing that sum of probs. = 1		
	2^{nd} M1 for showing that $E(X) = 4.2$		
	3^{rd} M1 for an overall comment "(therefore) $a = \dots$ and $b = \dots$ " No comment loses the	his mark.	
(b)	B1cso for a fully correct expression (no incorrect work seen). E.g. allow $14 \times 0.1 + 41 \times 0.1$	$0.2 + 36 \times 0.3$	
	Or $0.1+0.4+0.9+3.2+5+10.8$. Allow in a table (with 20.4) but without "+" ex		
(c)	1^{st} M1 for a correct expression for Var(X). Must see -4.2^2		
	2^{nd} M1 for $(-3)^2$ Var(X) or better, no need for a value. Accept -3^2 if it clearly is used	1 as +9 later.	
(e)	B1 for $P(Y = 1) = 0.1$		
(0)	M1 for correct use of $F(y)$ to find one other prob. Can ft their k if finding $P(Y = y)$	for $v > 2$	
	Can be implied by one other prob. correct or correct ft Look out for $P(3) = 3k - 0.2$ or F	•	
	A1 for a fully correct probability distribution. Correct table only is 3/3		
(f) M1 for a correct expression or answer ft their $P(Y = 1)$ and their $P(X = 1)$			
	A1 for 0.01 or exact equivalent only		
	Don't ISW here e.g. $0.1 \times 0.1 + 0.1 \times 0.1$ or $2 \times 0.1 \times 0.1$ are M0A0		


Ques	stion	Scheme		
6.	(a)			
		$\frac{200-\mu}{7.8} = -1.2816$ [calc gives 1.28155156]	M1 B1	
		$\mu = 209.996$ awrt 210	A1	
			(3)	
	(b)	$P(X > 225) = P\left(Z > \frac{225 - "210"}{7.8}\right)$	M1	
		$= P(Z > 1.92) \underline{\text{or}} 1 - P(Z < 1.92) $ (allow 1.93)	A1	
		= 1 - 0.9726 = 0.0274 (or better) [calc gives 0.0272037] = 0.0274		
		= awrt <u>2.7%</u> allow <u>0.027</u>	A1	
	(c)	[Let Y be the new amount of beans in a tin]	(3)	
	(0)	210-205 $200-205$		
		$\frac{100 - 200}{\sigma} = 2.3263$ or $\frac{200 - 200}{\sigma} = -2.3263$ [calc gives 2.3263478]	M1 B1	
		$\frac{210-205}{\sigma} = 2.3263 \text{or} \frac{200-205}{\sigma} = -2.3263 \text{[calc gives } 2.3263478]}{\sigma = \frac{5}{2.3263}}$	D.(1	
		$\sigma = \frac{1}{2.3263}$	dM1	
		$\sigma = 2.15$ (2.14933)	A1	
			(4)	
		Notes	(10 marks)	
		Condone poor handling of notation if answers are correct but A marks must have corre	ct working.	
	(a) M1 for an attempt to standardise (allow \pm) with 200 and 7.8 and set = \pm any z value (-	
		B1 for $z = \pm 1.2816$ (or better used as a z)[May be implied by 209.996(102) or	better seen]	
		A1 for awrt 210 (can be scored for using 1.28 but then they get M1B0A1) The 210 must follow from correct working sign scores A0		
		The 210 must follow from correct working – sign scores A0 If answer is awrt 210 and 209.996 or better seen then award M1B1A1		
		z = 1.28 gives 209.984 and $z = 1.282$ gives 209.9996 and both score M1B0A1		
		If answer is awrt 210 or awrt 209.996 then award M1B0A1 (unless of course $z = 1.2$	2816 is seen)	
	(b)	M_1 for attempting to standardize with 225 their mean and 7.8 Allow L		
	(b)) M1 for attempting to standardise with 225, their mean and 7.8. Allow <u>+</u> 1^{st} A1 for Z > awrt 1.92/3. Allow a diagram but must have 1.92/3 and correct area indicated.		
		Must have the Z so $P(X > 225)$ with or without a diagram is not sufficient.	indicate di	
		Award for $1 - 0.9726$ or $1 - 0.9732$		
		2 nd A1 for 2.7 % or better (calculator gives 2.72) Allow awrt 0.027. Correct ans s	cores 3/3	
	(c)	1 st M1 for an attempt to standardise with 200 or 210, 205 and σ and set = \pm any z val	ue $(z > 2)$	
	(0)	B1 for $z = 2.3263$ (or better) and compatible signs.	ue (4 > 2)	
		If B0 in (a) for using a value in [1.28, 1.29) but not using 1.2816: allow awrt 2.33 here		
		2 nd dM1 Dependent on the first M1 for correctly rearranging to make $\sigma =$ May be implied e.g. $\frac{5}{\sigma} = 2.32 \rightarrow \sigma = 2.16$ (M1A0) BUT must have $\sigma > 0$		
		A1 for awrt 2.15. Must follow from correct working but a range of possible z va NB $2.320 < z \le 2.331$ will give an answer of awrt 2.15	lues will do.	

www.yesterdaysmathsexam.com

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA036993 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Llywodraeth Cynulliad Cymru Welsh Assembly Government

