

Mark Scheme (FINAL)

Summer 2017

Pearson Edexcel GCE In Core Mathematics 4 (6666/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code xxxxxxx* All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- C or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

www.yesterdaysmathsexam.com

Question Number	Scheme www.ye	esterdaysmathsexam	n.convotes	Marks	
1.	$x = 3t - 4$, $y = 5 - \frac{6}{t}$, $t > 0$				
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3, \frac{\mathrm{d}y}{\mathrm{d}t} = 6t^{-2}$				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6t^{-2}}{3} \left\{ = \frac{6}{3t^2} = 2t^{-2} = \frac{2}{t^2} \right\}$	or their $\frac{dy}{dt}$ multiplie	their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ to give $\frac{dy}{dx}$ in terms of t or their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$ to give $\frac{dy}{dx}$ in terms of t		
		3	un-simplified, in terms of <i>t</i> . See note.	A1 isw	
	Award Special Case 1st M1 if	both $\frac{\mathrm{d}x}{\mathrm{d}t}$ and $\frac{\mathrm{d}y}{\mathrm{d}t}$ are s	stated correctly and explicitly .	[2]	
	Note: You can	recover the work for pa	rrt (a) in part (b).		
(a) Way 2	$y = 5 - \frac{18}{x+4} \Rightarrow \frac{dy}{dx} = \frac{18}{(x+4)^2} = \frac{18}{(3t)^2}$ Writes $\frac{dy}{dx}$ in the form $\frac{\pm \lambda}{(x+4)^2}$, and writes $\frac{dy}{dx}$ as a function of t.				
		Corre	ct un-simplified or simplified answer, in terms of <i>t</i> . See note.	A1 isw	
				[2]	
(b)	$\left\{t = \frac{1}{2} \Longrightarrow\right\} P\left(-\frac{5}{2}, -7\right)$	$x = -\frac{5}{2}, y =$	= -7 or $P\left(-\frac{5}{2}, -7\right)$ seen or implied.	B1	
	$\frac{dy}{dx} = \frac{2}{\left(\frac{1}{2}\right)^2}$ and either	Some attem	Some attempt to substitute $t = 0.5$ into their $\frac{dy}{dx}$		
	• $y - "-7" = "8"(x - "-\frac{5}{2}")$	which con	tains t in order to find $m_{\rm T}$ and either		
	• $y 7 = o(x\frac{1}{2})$	applies y -	applies y - (their y_p) = (their m_T)(x - their x_p)		
	• "-7" = ("8")("- $\frac{5}{2}$ ") + c		or finds c from (their y_p) = (their m_T)(their x_p) + c		
	So, $y = (\text{their } m_{T})x + "c"$		ir numerical c in $y = (\text{their } m_T)x + c$		
	T : $y = 8x + 13$		y = 8x + 13 or $y = 13 + 8x$	A1 cso	
	Note: their x_p , their y_p and the	eir m_T must be numeri	cal values in order to award M1	[3]	
(c)	$\left\{t = \frac{x+4}{3} \implies \right\} y = 5 - \frac{6}{\left(\frac{x+4}{3}\right)}$		An attempt to eliminate <i>t</i> . See notes.	M1	
Way 1			Achieves a correct equation in <i>x</i> and <i>y</i> only		
	$\Rightarrow y = 5 - \frac{18}{x+4} \Rightarrow y = \frac{5(x+4)}{x+4}$	-18			
	So, $y = \frac{5x+2}{x+4}$, $\{x > -4\}$		$y = \frac{5x+2}{x+4}$ (or implied equation)	A1 cso	
				[3]	
(c)	$\int_{t} \frac{6}{100} = \frac{18}{100} $		M1		
Way 2	$\left\{t = \frac{6}{5 - y} \Rightarrow\right\} x = \frac{18}{5 - y} - 4$	Achieves a correct equation in <i>x</i> and <i>y</i> only		A1 o.e.	
	(x + 4)(5 - y) = 18 > 5x - xy +				
	$\left\{ \vartriangleright 5x + 2 = y(x + 4) \right\}$ So, $y = \frac{5x + x}{x + x}$	$\frac{2}{4}, \left\{x > -4\right\}$	$y = \frac{5x+2}{x+4}$ (or implied equation)	A1 cso	
				[3]	
	Note: Some or all of the wo	rk for part (c) can be re	covered in part (a) or part (b)	8	

Question Number		Scheme.yesterdaysmathsexam	n.com Notes	Marks			
1. (c)	3at	4a+b $3at$ $4a-b$ $4a-b$	A full method leading to the value of <i>a</i> being found	M1			
Way 3	$y = \frac{1}{3t - t}$	$\frac{4a+b}{4+4} = \frac{3at}{3t} - \frac{4a-b}{3t} = a - \frac{4a-b}{3t} \Rightarrow a = 5$	$y = a - \frac{4a - b}{3t} \text{ and } a = 5$	A1			
	$\frac{4a-b}{3} = 6$	$b \Rightarrow b = 4(5) - 6(3) = 2$	Both $a=5$ and $b=2$	A1			
				[3]			
		Question 1 No	tes				
1. (a)	Note	ote Condone $\frac{dy}{dx} = \frac{\left(\frac{6}{t^2}\right)}{3}$ for A1					
	Note	You can ignore subsequent working following on from a correct expression for $\frac{dy}{dx}$ in terms of t.					
(b)	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$ or $-(\text{their } \frac{dy}{dx})$ is M0.				
	Note	Final A1: A correct solution is required from a correct $\frac{dy}{dx}$.					
	Note	Final A1: You can ignore subsequent working following on from a correct solution.					
(c)	Note						
	Note	Award M1A1 for $\frac{6}{5-y} = \frac{x+4}{3}$ or equivalent.					

Question Number			www.yesterdays Scheme	mathsexam.com		Notes	Marks	
2.	$\left\{(2+k)\right\}$	$(x)^{-3} = 2^{-3} \left(1 + \frac{1}{2} \right)^{-3}$	$\left(\frac{kx}{2}\right)^{-3} = \frac{1}{8} \left(1 + (-3)\left(\frac{kx}{2}\right)\right)$	$+\frac{(-3)(-3-1)}{2!}\left(\frac{kx}{2}\right)$	$\left\{\frac{1}{2}\right)^2 + \ldots \right\}, k$	> 0		
(a)	$\left\{A=\right\}$	$\frac{1}{8}$	$\frac{1}{8}$ or 2 ⁻³ or 0.125, clearly identified as <i>A</i> or as their answer to part (a) B					
							[1]	
		-	Uses	s the x^2 term of the l	binomial expa	ansion to giv	re	
			either $\frac{(-3)}{2}$	$\frac{k}{2!}$ or $\left(\frac{k}{2}\right)^2$ or $\left(\frac{k}{2}\right)^2$	$\left(\frac{kx}{2}\right)^2$ or $\frac{(-1)^2}{2}$	$\frac{-3)(-4)}{2}$ or	5 M1	
(b)	$\left(\frac{1}{8}\right)\frac{(-3)}{2}$	$\left(\frac{1}{8}\right)\frac{(-3)(-4)}{2!}\left(\frac{k}{2}\right)^{2} \text{either (their A)}\frac{(-3)(-4)}{2!}\left(\frac{k}{2}\right)^{2} \text{ or (their A)}\frac{(-3)(-4)}{2!}\left(\frac{kx}{2}\right)^{2}, \\ \text{where (their A)}^{-1} 1, M$						
			or $\frac{3}{16}k^2$ or $\frac{3}{16}k^2x^2$ or	or $(2^{-5})\frac{(-3)(-4)}{2!}(k)$		` '		
	$\left\{ \text{So,} \left(\frac{1}{8}\right) \frac{(-3)(-4)}{2!} \left(\frac{k}{2}\right)^2 = \frac{243}{16} \Rightarrow \frac{3}{16}k^2 = \frac{243}{16} \Rightarrow k^2 = 81 \right\}$							
	So, k					k = 9 ca	0 A1 cso [3]	
		Note: $k = \pm 9$ with no reference to $k = 9$ only is A0Uses the x term of the binomial expansion to give either						
(c)						-		
	$\left(\frac{1}{8}\right)^{n}$ (-	$-3)\left(\frac{k}{2}\right)$	(their A)(-3) $\left(\frac{\pi}{2}\right)$	or (their A)(-3)	$\left(\frac{n\pi}{2}\right)$; where	(their A) ¹	1, M1	
		<-/		or $(2)^{-4}(-3)(k)$ o	r $(2)^{-4}(-3)($	(kx) or $-\frac{3i}{10}$	5	
	$\begin{cases} \text{So, } B = \\ \end{cases}$	$= \left(\frac{1}{8}\right)(-3)\left(\frac{9}{2}\right)$	\Rightarrow $\left. \frac{B = -\frac{27}{16}}{16} \right.$	$-\frac{2}{1}$	$\frac{27}{6}$ or $-1\frac{11}{16}$	or -1.687	5 A1 cso	
							[2]	
			Oue	estion 2 Notes			6	
	NOTE	IN THIS QU	ESTION IGNORE LAP		ARK ALL PA	ARTS TOG	ETHER.	
	Note	$(2+kx)^{-3}=\frac{1}{8}$	$\left(1 - \frac{3}{2}kx + \frac{3}{2}k^2x^2 +\right)$	$=\frac{1}{8}-\frac{3}{16}kx+\frac{3}{16}k^2$	$x^{2} +$			
	Note	Writing down	$\left\{ \left(1 + \frac{kx}{2} \right)^{-3} \right\} = 1 + (-3)$	$\left(\frac{kx}{2}\right) + \frac{(-3)(-3-1)}{2!}$	$\frac{1}{2}\left(\frac{kx}{2}\right)^2 + \dots$			
		gets (b) 1 st M1	l .			<u></u>		
	Note	Writing down	$\left\{ (2+kx)^{-3} \right\} = \frac{1}{8} \left(1 + (-3)^{-3} \right) = \frac{1}{8} \left(1 +$	$(\frac{kx}{2}) + \frac{(-3)(-3-2)}{2!}$	$\frac{(kx)^2}{2} + \dots$)		
			1 2 nd M1 and (c) M1					
	Note	Writing down	$\left\{ (2+kx)^{-3} \right\} = 2^{-3} + (-3)^{-3} = 2^{-3} = 2^{-3} + (-3)^{-3} = 2^{-3$	$(2^{-4})(kx) + \frac{(-3)(-4)}{2}$	$\frac{4}{2}(2^{-5})(kx)^2$			
			1 2 nd M1 and (c) M1	2				
	Note		$\{(2+kx)^{-3}\} = (\text{their } A)$	$\left(1+(-3)\left(\frac{kx}{2}\right)+\frac{(-1)}{2}\right)$	$\frac{3)(-3-1)}{2!}\left(\frac{k}{2!}\right)$	$\left(\frac{x}{2}\right)^2 + \dots$		
			A) 1 1, gets (b) 1^{st} M1 2)		

		www.yesterdaysmathsexame.com						
2. (b), (c)	Note	(their A) is defined as either						
		• their answer to part (a)						
		• their stated $A = \dots$						
		• their "2 ⁻³ " in their stated $2^{-3}\left(1+\frac{kx}{2}\right)^{-3}$						
	Note	Give 2^{nd} M0 in part (b) if (their A) = 1						
	Note	Give M0 in part (c) if (their A) = 1						
2. (c)	Note Allow M1 for (their A)(-3) $\left(\frac{\text{their } k \text{ from (b)}}{2}\right)$							
	Note	Award A0 for $B = -\frac{27}{16}x$						
	Note	Allow A1 for $B = -\frac{27}{16}x$ followed by $B = -\frac{27}{16}$ or $-1\frac{11}{16}$ or -1.6875						
	Note	$k = -9$ leading to $B = \frac{27}{16}$ or $1\frac{11}{16}$ or 1.6875 is A0						
	Note	Give A0 for finding both $B = -\frac{27}{16}$ and $B = \frac{27}{16}$ (without rejecting $B = \frac{27}{16}$) as their final answer.						
	Note	The A1 mark in part (c) is for a correct solution only.						
	Note	Be careful! It is possible to award M0A0 in part (c) for a solution leading to $B = -\frac{27}{16}$. E.g.						
		$f(x) = (2+kx)^{-3} = 2^{-3}(1+kx)^{-3} = \frac{1}{8}\left(1+(-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \dots\right) = \frac{1}{8} - \frac{3k}{8}x + \frac{3k^2}{4}x^2 + \dots$						
		leading to (a) $A = \frac{1}{8}$, (b) $k = \frac{9}{2}$, (c) $B = -\frac{27}{16}$, gets (a) B1, (b) M1M0A0 (c) M0A0						
2. (b), (c)	Note	${}^{-3}C_0(2)^{-3} + {}^{-3}C_1(2)^{-4}(kx) + {}^{-3}C_2(2)^{-5}(kx)^2$ with the C terms not evaluated						
		gets (b) 1 st M0 2 nd M0 and (c) M0						

Question Number			Sche	www.yest eme	cerd	aysmaths	exam.com	No	tes		M	arks
	x	0	0.2	0.4	1	0.6	0.8	1	6			
3.	у	0	1.8625426.	1.718	330	1.56981	1.41994	1.27165	$y = \frac{6}{(2+e)}$	<i>x</i>)		
(a)	${\operatorname{At} x} =$	0.2,} y	= 1.86254 (5	dp)					1.	86254	B1	cao
		Note: Look for this value on the given table or in their working.							[1]			
								Outside	brackets $\frac{1}{2}$ ×	(0.2)		
(b)	$\frac{1}{2}(0.2)$	2+1.271	65 + 2 (their 1.8	36254 + 1.7	71830) + 1.56981 -	+ 1.41994)]		or $\frac{1}{10}$ or		B1	o.e.
								For stru	ucture of [.]	M1	
	$\left\{=\frac{1}{10}\right\}$	16.41283	$3) \bigg\} = 1.64128$	83 = 1.641	.3 (4	dp)		anything tha	t rounds to 1	.6413	A1	
(c)	$\int u = e^x$	or $r = 1$	$ n_{\mathcal{U}} \triangleright \rangle$									[3]
	$\frac{\left\{u = e^x \text{ or } x = \ln u \vartriangleright\right\}}{\frac{du}{dx} = e^x \text{ or } \frac{du}{dx} = u \text{ or } \frac{dx}{du} = \frac{1}{u} \text{ or } du = u dx \text{ etc., and } \overset{\circ}{0} \frac{6}{(e^x + 2)} dx = \overset{\circ}{0} \frac{6}{(u + 2)u} du \qquad \text{See notes}$						B1	*				
			$e^0 \triangleright \underline{a=1}$, .	and $b = e$ or		D1	
	$\{x = 1\} \triangleright b = e^1 \triangleright \underline{b} = e$ or evidence of $0 \rightarrow 1$ and $1 \rightarrow e$						B1					
	NOTE: 1 st B1 mark CANNOT be recovered for work in part (d) NOTE: 2 nd B1 mark CAN be recovered for work in part (d)							[2]				
(d) Way 1		$\frac{1}{x} \circ \frac{A}{u}$ A(u+2)	` <i>´</i>				thod for fin	te. or $\frac{1}{u(u+2)}$ ding the value their <i>B</i> (or t	e of at least of	one of	M1	
	<i>u</i> = 0 ⊨	A = 3	-	Both tl	heir	A = 3 and		- 3. (Or their				
	u = -2		- 3					of 6 in front of	-		A1	
	$\int \frac{6}{u(u+1)} dt$		$-du = \int \left(\frac{3}{2} - \frac{3}{2}\right) du$ Integrates $\frac{M}{u} \pm \frac{N}{u+k}$, $M, N, k^{-1} 0$;				M1					
			$3\ln u - 3\ln(u)$ $= 3\ln 2u - 3\ln(u)$	<i>`</i>	Int	egration of		is correctly from their <i>M</i>		0	A1	ft
	$\begin{cases} \operatorname{So} \left[3\ln u - 3\ln(u+2) \right]_{1}^{e} \\ = \left(3\ln(e) - 3\ln(e+2) \right) - \left(3\ln 1 - 3\ln 3 \right) \\ \\ \text{[Note: A proper consideration of the limit of } u = 1 \text{ is required for this mark]} \end{cases}$					and their <i>a</i> ,	where $b > 0$, of 1 and 0 in y	es limits of e $b^{-1} 1, a > 0$	and 1) in <i>u</i> cts the	dM	1	
	$= 3 - 3\ln(e+2) + 3\ln 3 \text{ or } 3(1 - \ln(e+2) + \ln 3) \text{ or } 3 + 3\ln\left(\frac{3}{e+2}\right)$ or $3\ln\left(\frac{e}{e+2}\right) - 3\ln\left(\frac{1}{3}\right) \text{ or } 3 - 3\ln\left(\frac{e+2}{3}\right) \text{ or } 3\ln\left(\frac{3e}{e+2}\right) \text{ or } \ln\left(\frac{27e^3}{(e+2)^3}\right)$ see notes					A1	cso					
							or the final A		· · · · · · · · · · · · · · · · · · ·			[6]
	Note: (Give fina	1 A0 for 3 - 3	$3\ln(e+2)$	+ 31n	n3 - 31n1, v	where 3ln1) unless recov has not been	simplified t			12
	Note: C	Give fina	1 A0 for 3lne	$e - 3\ln(e +$	2) +	3ln3, whe	re 31ne ha	s not been sin	nplified to $\overline{3}$			

		www.yesterdayomathsezam.com						
3. (b)		M1: Do not allow an extra y-value <i>or</i> a repeated y value in their [] Do not allow an omission of a y-ordinate in their [] for M1 unless they give the correct answer of awrt 1.6413, in which case both M1 and A1 can be scored.						
		A1: Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 1.64150274)						
	Note Full marks can be gained in part (b) for awrt 1.6413 even if B0 is given in part (a)							
	Note Award B1M1A1 for							
		$\frac{1}{10}(2+1.27165) + \frac{1}{5}(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) = \text{awrt } 1.6413$						
	Bracket	ting mistakes: Unless the final answer implies that the calculation has been done correctly						
	Award I	B1M0A0 for $\frac{1}{2}(0.2) + 2 + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=16.51283)						
		B1M0A0 for $\frac{1}{2}(0.2)(2 + 1.27165) + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) (=13.468345)						
	Award I	B1M0A0 for $\frac{1}{2}(0.2)(2) + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=14.61283)						
		tive method: Adding individual trapezia						
	Area ≈ 0	$0.2 \times \left[\frac{2 + "1.86254"}{2} + \frac{"1.86254" + 1.71830}{2} + \frac{1.71830 + 1.56981}{2} + \frac{1.56981 + 1.41994}{2} + \frac{1.41994 + 1.27165}{2}\right]$						
	= 1	.641283						
	B1	0.2 and a divisor of 2 on all terms inside brackets						
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2						
3. (c)	A1 1 st B1	anything that rounds to 1.6413 Must start from either						
J. (C)	I DI							
		• $\hat{0} y dx$, with integral sign and dx						
		• $\dot{0} \frac{6}{(e^x + 2)} dx$, with integral sign and dx						
		• $\hat{0} \frac{6}{(\mathbf{e}^x + 2)} \frac{dx}{du} du$, with integral sign and $\frac{dx}{du} du$						
		and state either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$						
		and end at $\hat{0}\frac{6}{u(u+2)}$ du, with integral sign and du, with no incorrect working.						
	Note	So, just writing $\frac{du}{dx} = e^x$ and $\grave{0}\frac{6}{(e^x + 2)}dx = \grave{0}\frac{6}{u(u + 2)}du$ is sufficient for 1 st B1						
	Note	Give 2^{nd} B0 for $b = 2.718$, without reference to $a = 1$ and $b = e$ or $b = e^{1}$						
	Note	You can also give the 1 st B1 mark for using a reverse process. i.e.						
		Proceeding from $\grave{0}\frac{6}{u(u+2)} du$ to $\grave{0}\frac{6}{(e^x+2)} dx$, with no incorrect working,						
		and stating either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$ Give final A0 for 3 - 3ln(e + 2) + 3ln3 simplifying to 1 - ln(e + 2) + ln3						
3. (d)	Note	Give final A0 for $3 - 3\ln(e+2) + 3\ln 3$ simplifying to $1 - \ln(e+2) + \ln 3$						
		(i.e. dividing their correct final answer by 3)						
		Otherwise, you can ignore incorrect working (isw) following on from a correct exact value.						
	Note	A decimal answer of 1.641502724 (without a correct exact answer) is final A0						
	Note	$\left[-3\ln(u+2)+3\ln u\right]_{1}^{e}$ followed by awrt 1.64 (without a correct exact answer) is final M1A0						

		Question 3 Notes Continued
3. (d)	Note	BE CAREFUL! Candidates will assign their own "A" and "B" for this question.
	Note	Writing down $\frac{6}{(u+2)u}$ in the form $\frac{A}{(u+2)} + \frac{B}{u}$ with at least one of A or B correct is 1 st M1
	Note	Writing down $\frac{6}{(u+2)u}$ as $\frac{-3}{(u+2)} + \frac{3}{u}$ is 1 st M1 1 st A1.
	Note	Condone $\int \left(\frac{3}{u} - \frac{3}{(u+2)}\right) du$ to give $3\ln u - 3\ln u + 2$ (poor bracketing) for 2^{nd} A1.
	Note	Award M0A0M1A1ft for a candidate who writes down
		e.g. $\int \frac{6}{u(u+2)} du = \int \left(\frac{6}{u} + \frac{6}{(u+2)}\right) du = 6\ln u + 6\ln(u+2)$
		AS EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ AS PARTIAL FRACTIONS.
	Note	Award M0A0M0A0 for a candidate who writes down
		$\hat{0}\frac{6}{u(u+2)}du = 6\ln u + 6\ln(u+2)$ or $\hat{0}\frac{6}{u(u+2)}du = \ln u + 6\ln(u+2)$
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.
	Note	Award M1A1M1A1 for a candidate who writes down
		$\dot{0} \frac{6}{u(u+2)} du = 3\ln u - 3\ln(u+2)$
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.
	Note	If they lose the "6" and find $\dot{D}_1^{e} \frac{1}{u(u+2)} du$ we can allow a maximum of M1A0M1A1ftM1A0

		Question	3 Notes Contin	nued		
3. (d) Way 2	$\left\{\int \frac{6}{u^2 + 2u} du = \int \frac{3(2u+2)}{u^2 + 2u} du\right\}$	$= \int \frac{3(2u+2)}{u^{2}+2u} du - \int \frac{6u}{u^{2}+2u} du \bigg\}$				
	$= \int \frac{3(2u+2)}{u^2+2u} du - \int \frac{6}{u+2} du$	i $\hat{0}^{\frac{\pm \hat{c}}{i}}$	$\frac{\partial(2u+2)}{u^2+2u}\left\{\mathrm{d}u\right\}=$	$\pm \mathbf{\dot{0}}\frac{d'}{u+2}\{\mathrm{d}u\},\$	$\alpha, \beta, \delta \neq 0$	M1
	$\int u + 2u$ $\int u + 2$			Correc	t expression	A1
,	$= 3\ln(u^2 + 2u) - 6\ln(u + 2)$	Integrates $\frac{\pm M(2u+2)}{u^2+2u} \pm \frac{N}{u\pm k}$, $M, N, k^{-1} 0$, to obtain any one of $\pm / \ln(u^2+2u)$ or $\pm M \ln(b(u\pm k))$; $/, m, b^{-1} 0$				M1
	Integration of both terms is correctly fol their				, ,	A1 ft
	$\begin{cases} \text{So}, \left[3\ln(u^2 + 2u) - 6\ln(u + 2u) \right] \\ = \left(3\ln(e^2 + 2e) - 6\ln(e + 2u) \right) \end{cases}$	<u> </u>	dependent on the 2^{nd} M markApplies limits of e and 1(or their b and their a, where $b > 0, b^{-1} 1, a > 0$) in uor applies limits of 1 and 0 in x and			dM1
	$= 3\ln(e^2 + 2e) - 6\ln(e + 2) +$	3ln3	subtracts the correct way round. $3\ln(e^2 + 2e) - 6\ln(e + 2) + 3\ln 3$			A1 o.e.
			- (,	[6]
3. (d)	Applying $u = q - 1$					
Way 3	$\left\{ \int_{1}^{e} \frac{6}{u(u+2)} du = \right\} \int_{2}^{1+e} \frac{6}{(\theta-1)(\theta+1)} d\theta = \int_{2}^{1+e} \frac{6}{\theta^2 - 1} du = \left[3\ln\left(\frac{\theta-1}{\theta+1}\right) \right]_{2}^{1+e}$					M1A1M1A1
	$= 3\ln\left(\frac{1+e-1}{e+1+1}\right) - 3\ln\left(\frac{2-2}{2+1}\right) + 3\ln\left(\frac{2-2}{2+1}\right)$	$\frac{1}{1} = 3\ln\left(\frac{e}{e+2}\right) -$	$3\ln\left(\frac{1}{3}\right)$	3 rd M mark i on	s dependent 2 nd M mark	dM1A1
						[6]

www.yesterdaysmathsexam.com	www.	yes	terday	rsmatl	nsexam.	com
-----------------------------	------	-----	--------	--------	---------	-----

Question	Scheme			Notes	Marks		
Number				notes	IVIALKS		
4.	$4x^2 - y^3 - 4xy + 2^y = 0$						
(a) Way 1	$\left\{\frac{\partial y}{\partial x}\times\right\} \underbrace{8x-3y^2 \frac{\mathrm{d}y}{\mathrm{d}x}}_{=} - 4y - 4x \frac{\mathrm{d}y}{\mathrm{d}x} + 2^y \ln x$	$\frac{1}{2} \times \left\{ \frac{8x - 3y^2 \frac{dy}{dx}}{dx} - \frac{4y - 4x \frac{dy}{dx}}{dx} + \frac{y + 2y \ln 2 \frac{dy}{dx}}{dx} = 0 \right\}$				<u>—</u> B1	
	$\frac{8(-2) - 3(4)^2 \frac{dy}{dx} - 4(4) - 4(-2) \frac{dy}{dx} + 2^4 \ln 2}{-16 - 48 \frac{dy}{dx} - 16 + 8 \frac{dy}{dx} + 16 \ln 2}$	$2\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	depen	dent on the first M mark	dM1		
	$-16 - 48\frac{dy}{dx} - 16 + 8\frac{dy}{dx} + 16\ln 2$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$					
	$\frac{dy}{dx} = \frac{32}{-40 + 16\ln 2}$ or $\frac{-32}{40 - 16\ln 2}$ or	$= \frac{32}{-40 + 16 \ln 2} \text{ or } \frac{-32}{40 - 16 \ln 2} \text{ or } \frac{4}{-5 + 2 \ln 2} \text{ or } \frac{4}{-5 + \ln 4} \text{ or exact equivalent}$					
	NOTE: You can recover v	work for pa	art (a) i	n part (b)		[6]	
(b)	e.g. $m_{\rm N} = \frac{-40 + 16\ln 2}{-32}$ or $\frac{40 - 16\ln 2}{32}$	Applying	$m_{\rm N} = \frac{-}{n}$	$\frac{1}{n_{\rm T}}$ to find a numerical $m_{\rm N}$	M1		
			C an be i	implied by later working			
	• $y - 4 = \left(\frac{40 - 16\ln 2}{32}\right)(x - 2)$	• $y - 4 = \left(\frac{40 - 16\ln 2}{32}\right)(x - 2)$ Using a numerical $m_{\rm N}$ (¹ $m_{\rm T}$), either					
		Cuts y-axis $\Rightarrow x = 0 \Rightarrow y - 4 = \left(\frac{40 - 16\ln 2}{32}\right)(2)$ $y - 4 = m_N(x - 2)$ and sets $x = 0$ in their normal equation					
	• $4 = \left(\frac{40 - 16\ln 2}{32}\right)\left(-2\right) + c$			$4 = (\text{their } m_{N})(-2) + c$			
	$\left\{ \Rightarrow \ c = 4 + \frac{40 - 16\ln 2}{16}, \text{ so } y = \frac{104 - 161}{16} \right\}$	$\frac{n2}{\Rightarrow}$					
	$y (\text{or } c) = \frac{13}{2} - \ln 2$			$\frac{13}{2} - \ln 2$ or $-\ln 2 + \frac{13}{2}$	A1 cso isw		
	Note: Allow exact equivalents in the	ne form p -	ln2 fo	r the final A mark		[3]	
						9	
(a) Way 2	$\left\{\underbrace{\underbrace{dx}}_{dy}\times\right\}\underbrace{8x\frac{dx}{dy}-3y^2}_{w} = 4y\frac{dx}{dy}-4x+\overline{2^y\ln x}$	<u>=</u> <u>= 0</u>			M1 <u>A1</u> <u>M1</u>	<u>—</u> B1	
	$8(-2)\frac{dx}{dy} - 3(4)^2 - 4(4)\frac{dx}{dy} - 4(-2) + 2^4\ln 2$	= 0	depen	dent on the first M mark	dM1		
	$8(-2)\frac{dx}{dy} - 3(4)^2 - 4(4)\frac{dx}{dy} - 4(-2) + 2^4 \ln 2$ $\frac{dy}{dx} = \frac{32}{-40 + 16 \ln 2} \text{ or } \frac{-32}{40 - 16 \ln 2} \text{ or } \frac{-32}{40 - 16 \ln 2}$	A1 cso					
	Note: You must be clear that Way 2	is being ap	plied be	efore you use this scheme		[6]	
		Question	4 Notes				
4. (a)	Note For the first four marks Writing down from no working • $\frac{dy}{dx} = \frac{4y - 8x}{-3y^2 - 4x + 2^y \ln 2}$ • $\frac{dy}{dx} = \frac{8x - 4y}{-3y^2 - 4x + 2^y \ln 2}$	•					
	Writing $8x dx - 3y^2 dy - 4y dx -$	$4x dy + 2^y l$	n2dy =	0 scores M1A1M1B1			

		Question 4 Notes Continued
4. (a)	1 st M1	Differentiates implicitly to include <i>either</i> $\pm 4x \frac{dy}{dx}$ or $-y^3 \rightarrow \pm \lambda y^2 \frac{dy}{dx}$ or $2^y \rightarrow \pm m 2^y \frac{dy}{dx}$
		(Ignore $\left(\frac{dy}{dx}\right)$). /, <i>m</i> are constants which can be 1
	1 st <u>A1</u>	Both $4x^2 - y^3 \rightarrow 8x - 3y^2 \frac{dy}{dx}$ and $= 0 \rightarrow = 0$
	Note	e.g. $8x - 3y^2 \frac{dy}{dx} - 4y - 4x \frac{dy}{dx} + 2^y \ln 2 \frac{dy}{dx} \rightarrow -3y^2 \frac{dy}{dx} - 4x \frac{dy}{dx} + 2^y \ln 2 \frac{dy}{dx} = 4y - 8x$
		or e.g. $-16 - 48\frac{dy}{dx} - 16 + 8\frac{dy}{dx} + 16\ln 2\frac{dy}{dx} \rightarrow -48\frac{dy}{dx} + 8\frac{dy}{dx} + 16\ln 2\frac{dy}{dx} = 32$
		will get 1^{st} A1 (implied) as the " = 0" can be implied by the rearrangement of their equation.
	2 nd <u>M1</u>	$-4xy \rightarrow -4y - 4x \frac{dy}{dx}$ or $4y - 4x \frac{dy}{dx}$ or $-4y + 4x \frac{dy}{dx}$ or $4y + 4x \frac{dy}{dx}$
	B 1	$2^{y} \rightarrow 2^{y} \ln 2 \frac{dy}{dx}$ or $2^{y} \rightarrow e^{y \ln 2} \ln 2 \frac{dy}{dx}$
	Note	If an extra term appears then award 1 st A0
	3 rd dM1	dependent on the first M mark
		For substituting $x = -2$ and $y = 4$ into an equation involving $\frac{dy}{dx}$
	Note	M1 can be gained by seeing at least one example of substituting $x = -2$ and at least one
	1,000	example of substituting $y = 4$ unless it is clear that they are instead applying $x = 4$ and $y = -2$
		Otherwise, you will NEED to check (with your calculator) that $x = -2$, $y = 4$ that has been
		substituted into their equation involving $\frac{dy}{dx}$
	Note	A1 cso: If the candidate's solution is not completely correct, then do not give this mark.
	Note	isw: You can, however, ignore subsequent working following on from correct solution.
(b)	Note	The 2 nd M1 mark can be implied by later working.
		Eg. Award 1 st M1 and 2 nd M1 for $\frac{y-4}{2} = \frac{-1}{\text{their } m_{\text{T}} \text{ evaluated at } x = -2 \text{ and } y = 4}$
	Note	A1: Allow the alternative answer $\left\{y = \right\} \ln\left(\frac{1}{2}\right) + \frac{13}{2\ln 2}(\ln 2)$ which is in the form $p + q \ln 2$
4. (a) Way 2	1 st M1	Differentiates implicitly to include <i>either</i> $\pm 4y \frac{dx}{dy}$ or $4x^2 \rightarrow \pm /x \frac{dx}{dy}$
		(Ignore $\left(\frac{dx}{dy}\right)$ =). / is a constant which can be 1
	1 st <u>A1</u>	Both $4x^2 - y^3 \rightarrow 8x \frac{dx}{dy} - 3y^2$ and $= 0 \rightarrow = 0$
	2 nd <u>M1</u>	$-4xy \rightarrow -4y \frac{dx}{dy} - 4x \text{ or } 4y \frac{dx}{dy} - 4x \text{ or } -4y \frac{dx}{dy} + 4x \text{ or } 4y \frac{dx}{dy} + 4x$
	B1	$2^{y} \rightarrow 2^{y} \ln 2$
	3 rd dM1	dependent on the first M mark
		For substituting $x = -2$ and $y = 4$ into an equation involving $\frac{dx}{dy}$

Question Number		Scheme		Notes	Marks	
5.	$y = e^{y}$	$x^{x} + 2e^{-x}, x^{3} 0$				
Way 1	${V = } p$	$p \dot{0}_{0}^{\ln 4} \left(e^{x} + 2e^{-x} \right)^{2} dx$	Ig	For $\pi \int (e^x + 2e^{-x})^2$ nore limits and dx. Can be implied.	B1	
	$= \{\pi$	$\int_{0}^{\ln 4} \left(e^{2x} + 4e^{-2x} + 4 \right) dx$	Expands $(e^x +$	$2e^{-x}\Big)^2 \rightarrow \pm \partial e^{2x} \pm \partial e^{-2x} \pm \partial$ where nore π , integral sign, limits and dx . This can be implied by later work.	M1	
		۲ 1 J ^{ln4}		t one of either $\pm \partial e^{2x}$ to give $\pm \frac{\partial}{2}e^{2x}$ or $\pm be^{-2x}$ to give $\pm \frac{b}{2}e^{-2x}\partial_{x}b^{-1}\partial_{x}$	M1	
	= { <i>p</i>	$\left[\frac{1}{2}e^{2x} - 2e^{-2x} + 4x\right]^{114}$		dependent on the 2 nd M mark		
				$e^{2x} + 4e^{-2x} \rightarrow \frac{1}{2}e^{2x} - 2e^{-2x}$,	A1 丿	
			whic	ch can be simplified or un-simplified		
				$4 \rightarrow 4x \text{ or } 4e^0 x$	B1 cao	
	= {p}{($\left(\frac{1}{2}e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2}e^{2(\ln 4)}\right)$	$e^{0} - 2e^{0} + 4(0) \bigg) \bigg)$	 dependent on the previous method mark. Some evidence of applying limits of ln 4 o.e. and 0 to a changed function in <i>x</i> and subtracts the correct way round. Note: A proper consideration of the limit of 0 is required. 	dM1	
	$= \{\pi\} \left(\left(8 - \frac{1}{8} + 4\ln 4 \right) - \left(\frac{1}{2} - 2 \right) \right)$					
	($= \frac{75}{8}\rho + 4\rho \ln 4 \text{ or } \frac{75}{8}\rho + 8\rho$ or $\frac{75}{8}\rho + \ln 2^{8\rho}$ or $\frac{75}{8}\rho + \rho \ln 2^{8\rho}$			A1 isw	
					[7] 7	
			Question 5 N	lotes	/	
5.	Note	π is only required for the 1 st B	1 mark and the fina	al A1 mark.		
	Note	Give 1 st B0 for writing $p i y^2 d$				
	Note	Give 1 st M1 for $\left(e^x + 2e^{-x}\right)^2 \rightarrow \frac{1}{2}$				
	Note	A decimal answer of 46.8731	. or <i>p</i> (14.9201)	(without a correct exact answer) is A	.0	
	Note	Note $p\left[\frac{1}{2}e^{2x} - 2e^{-2x} + 4x\right]_{0}^{\ln 4}$ followed by awrt 46.9 (without a correct exact answer) is final dM1A0				
	Note	Allow exact equivalents which	should be in the fo	form $a\rho + b\rho \ln c$ or $\rho(a + b \ln c)$,		
		where $a = \frac{75}{8}$ or $9\frac{3}{8}$ or 9.375	5. Do not allow $a =$	$=\frac{150}{16}$ or $9\frac{6}{16}$		
	Note	Give B1M0M1A1B0M1A0 for	r the common respo	onse		
		$\int_{0}^{\ln 4} \left(e^x + 2e^{-x} \right)^2 dx \rightarrow \rho \int_{0}^{\ln 4} \left(e^x + 2e^{-x} \right)^2 dx$	$e^{2x} + 4e^{-2x} dx = \rho \left[$	$\left[\frac{1}{2}e^{2x} - 2e^{-2x}\right]_{0}^{\ln 4} = \frac{75}{8}p$		

Question Number	www.yes Scheme	sterdaysmath	sexam.com	Notes	Marks	
5.	$y = e^x + 2e^{-x}, x^3 0$					
Way 2	$\{V = \} \mathcal{P} \dot{0}_{0}^{\ln 4} \left(e^{x} + 2e^{-x} \right)^{2} dx$		Ignore limit	For $\pi \int (e^x + 2e^{-x})^2$ is and dx . Can be implied.	B1	
	$u = e^x \vartriangleright \frac{du}{dx} = e^x = u$ and $x = \ln 4 \vartriangleright u = 4, x = 0 \vartriangleright u = e^0 = 1$					
	$V = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ p \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = $	$\left(u^2 + \frac{4}{u^2} + 4\right)\frac{1}{u}$	du			
	• 4 ($\left(e^{x}+2e^{-x}\right)$	$\left(x\right)^{2} \rightarrow \pm au \pm bu^{-3} \pm du^{-1}$		
	$= \left\{ \rho \right\} \int_{1}^{4} \left(u + \frac{4}{u^3} + \frac{4}{u} \right) \mathrm{d}u$		Ignore π , in	where $u = e^x$, α , β , $\delta \neq 0$. tegral sign, limits and du . the implied by later work.	<u>M1</u>	
		Integrates at least one of either $\pm \partial u$ to give $\pm \frac{\partial}{2}u^2$		M1		
	Γ 74	or $\pm bu^{-3}$ to give $\pm \frac{b}{2}u^{-2}a$, $b \ge 0$, where $u = e^x$				
	$= \left\{ \rho \right\} \left[\frac{1}{2}u^2 - \frac{2}{u^2} + 4\ln u \right]_1^4$		depe	ndent on the 2 nd M mark		
		$u + 4u^{-3} \rightarrow \frac{1}{2}u^2 - 2u^{-2},$			A1	
		simplified or un-simplified, where $u = e^x$ $4u^{-1} \rightarrow 4\ln u$, where $u = e^x$			B1 cao	
	$= \left\{ \rho \right\} \left[\left(\frac{1}{2} (4)^2 - \frac{2}{(4)^2} + 4 \ln 4 \right) - \left(\frac{1}{2} (1)^2 + 4 \ln 4 \right) \right]$	$(1)^{2} - \frac{2}{(1)^{2}} + 4\ln 1$	dependen mark. S limi function in	t on the previous method Some evidence of applying ts of 4 and 1 to a changed in u [or ln 4 o.e. and 0 to an function in x] and subtracts the correct way round.	dM1	
	$= \{\pi\} \left(\left(8 - \frac{1}{8} + 4\ln 4 \right) - \left(\frac{1}{2} - 2 \right) \right)$					
	$=\frac{75}{8}\rho + 4\rho\ln 4$ or $\frac{75}{8}\rho$ -		、 <i>′</i>	· · · · · ·	A1 isw	
	or $\frac{75}{8}\rho + \ln 2^{8\rho}$ or $\frac{75}{8}\rho + \rho$	$\ln 256$ or $\ln \left(\frac{1}{2} \right)$	$2^{8\rho} e^{\frac{75}{8}\rho}$ or $\frac{1}{8}\rho$	$D(75 + 32\ln 4)$, etc	4 11 15W	
					[7]	

Question Number	Schemgesterdaysmathsexam.com Notes	Marks
	$l_{1}: \mathbf{r} = \begin{pmatrix} 4\\28\\4 \end{pmatrix} + \lambda \begin{pmatrix} -1\\-5\\1 \end{pmatrix}, l_{2}: \mathbf{r} = \begin{pmatrix} 5\\3\\1 \end{pmatrix} + \mu \begin{pmatrix} 3\\0\\-4 \end{pmatrix}; \overrightarrow{OA} = \begin{pmatrix} 2\\18\\6 \end{pmatrix} \text{ lies on } l_{1} \text{Let } q_{\text{Acute}} \text{ be the acute angle between } l_{1} \text{ and } l_{2}$	
(a)	$ \{l_1 = l_2 \Rightarrow\} 28 - 5\lambda = 3 \{\Rightarrow \lambda = 5\} $ or $4 - \lambda = 5 + 3\mu$ and $4 + \lambda = 1 - 4\mu \{\Rightarrow \mu = -2\} $ or $\lambda = 5$ or $\mu = -2$ (Can be implied).	B1
	$\left\{\overline{OX} = \right\} \begin{pmatrix} 4\\28\\4 \end{pmatrix} + 5 \begin{pmatrix} -1\\-5\\1 \end{pmatrix} \text{ or } \begin{pmatrix} 5\\3\\1 \end{pmatrix} - 2 \begin{pmatrix} 3\\0\\-4 \end{pmatrix} \qquad \text{Puts } l_1 = l_2 \text{ and solves to find / and/or } m \\ \text{and substitutes their value for } \lambda \text{ into } l_1 \\ \text{ or their value for } \mu \text{ into } l_2 \end{pmatrix}$	M1
	So, $X(-1, 3, 9)$ $(-1, 3, 9)$ or $\begin{pmatrix} -1\\3\\9 \end{pmatrix}$ or $-\mathbf{i} + 3\mathbf{j} + 9\mathbf{k}$ or condone $\begin{pmatrix} -1\\3\\9 \end{pmatrix}$	A1 cao
		[3]
(b) Way 1	$\mathbf{d}_{1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \mathbf{d}_{2} = \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$ Realisation that the dot product is required between \mathbf{d}_{1} and \mathbf{d}_{2} or a multiple of \mathbf{d}_{1} and \mathbf{d}_{2}	M1
	$\cos \theta = \frac{\pm \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}} \begin{cases} = \frac{-7}{\sqrt{27} \cdot \sqrt{25}} \end{cases} $ $dependent on the 1st M mark. Applies dot product formula between d1 and d2 or a multiple of d1 and d1 and d2 or a multiple of d1 and $	dM1
	$\{q = 105.6303588 \triangleright\} \theta_{Acute} = 74.36964117 = 74.37 (2 dp)$ awrt 74.37 seen in (b) only	A1
		[3]
(c)	$\overrightarrow{AX} = "\overrightarrow{OX}" - \overrightarrow{OA} = \begin{pmatrix} -1\\ 3\\ 9 \end{pmatrix} - \begin{pmatrix} 2\\ 18\\ 6 \end{pmatrix} = \begin{pmatrix} -3\\ -15\\ 3 \end{pmatrix} \text{ or } A_{/_{=2}}, X_{/_{=5}} \bowtie AX = 3 \mathbf{d}_1 , \{ \mathbf{d}_1 = \sqrt{27}\}$	
	$AX = \sqrt{(-3)^2 + (-15)^2 + (3)^2}$ or $3\sqrt{27} \left\{ = \sqrt{243} \right\} = 9\sqrt{3}$ Full method for finding AX or XA	M1
	$AX = \sqrt{(-3)^2 + (-13)^2 + (3)^2}$ or $3\sqrt{27} = \sqrt{243} = 9\sqrt{3}$ seen in (c) only	A1 cao
	Note: You cannot recover work for part (c) in either part (d) or part (e).	[2]
(d) Way 1	$\frac{YA}{"9\sqrt{3}"} = \tan("74.36964") \qquad \qquad \frac{YA}{\text{their } \overline{AX} } = \tan\theta \text{ or } YA = \left(\text{their } \overline{AX} \right)\tan\theta, \text{ where } \theta \text{ is } \theta$	M1
	their acute or obtuse angle between l_1 and l_2 $YA = 55.71758 = 55.7 (1 dp)$ anything that rounds to 55.7	A1
	anything that founds to 55.7	[2]
(e)	$\{A_{\lambda=2}, X_{\lambda=5} \Rightarrow \text{So } AX = 2AB \Rightarrow \text{So at } B, \ \lambda = 3.5 \text{ or } \lambda = 0.5)\}$	
	$\overrightarrow{OB} = \begin{pmatrix} 4\\28\\4 \end{pmatrix} + 3.5 \begin{pmatrix} -1\\-5\\1 \end{pmatrix}; = \begin{pmatrix} 0.5\\10.5\\7.5 \end{pmatrix}$ Substitutes either $/ = \frac{(\text{their } /_x \text{ found in } (a)) + 2}{2}$ or $/_b = 3 - \frac{(\text{their } /_x \text{ found in } (a))}{2}$ into l_1	M1;
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 0.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$ At least one position vector is correct. (Also allow coordinates). Both position vectors are correct.	A1
	$OB = \begin{bmatrix} 28 \\ 4 \end{bmatrix} + 0.5 \begin{bmatrix} -5 \\ 1 \end{bmatrix}; = \begin{bmatrix} 25.5 \\ 4.5 \end{bmatrix}$ Both position vectors are correct. (Also allow coordinates).	AI
		[3]
		13

Question Number	Scheme	Notes	Marks
6. (e)	$\begin{cases} AX = 2AB \implies AB = \frac{1}{2}AX. \text{ So, } \overrightarrow{OB} = \overrightarrow{OA} \pm \overrightarrow{A}. \end{cases}$	$\overrightarrow{AB} \Rightarrow \overrightarrow{OB} = \overrightarrow{OA} \pm \frac{1}{2}\overrightarrow{AX}$	
Way 2	$\overrightarrow{OB} = \begin{pmatrix} 2\\18\\6 \end{pmatrix} + 0.5 \begin{pmatrix} -3\\-15\\3 \end{pmatrix}; = \begin{pmatrix} 0.5\\10.5\\7.5 \end{pmatrix}$	Applies either $\overrightarrow{OA} + 0.5\overrightarrow{AX}$ or $\overrightarrow{OA} - 0.5\overrightarrow{AX}$ where (their \overrightarrow{AX}) = ± [(their \overrightarrow{OX}) - \overrightarrow{OA}]	M1;
	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1
	$OB = \left(\begin{array}{c} 18 \\ 6 \end{array}\right) - 0.5 \left(\begin{array}{c} -15 \\ 3 \end{array}\right) = \left(\begin{array}{c} 25.5 \\ 4.5 \end{array}\right)$	Both position vectors are correct (Also allow coordinates)	A1
			[3]
6. (e) Way 3	$\begin{vmatrix} \overrightarrow{AB} = \begin{pmatrix} 4-\lambda \\ 28-5\lambda \\ 4+\lambda \end{pmatrix} - \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} = \begin{pmatrix} 2-\lambda \\ 10-5\lambda \\ -2+\lambda \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $	$ \begin{array}{c} A(2-\lambda) \\ 5(2-\lambda) \\ A(2-\lambda) \end{array} \end{array} ; \overrightarrow{AX} = \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix} \qquad AX^2 = 243 \vartriangleright \\ AB^2 = 27(2-1)^2 \end{array} $	
		$(2 - 1)^2 \vdash (2 - 1)^2 = \frac{9}{4}$ or $(27)^2 - 108 + \frac{189}{4} = 0$	
	or $108/^2 - 432/ + 189 = 0$ or $4/^2 - 16/ + 7$		
	$\overrightarrow{OB} = \begin{pmatrix} 4\\28\\4 \end{pmatrix} + 3.5 \begin{pmatrix} -1\\-5\\1 \end{pmatrix}; = \begin{pmatrix} 0.5\\10.5\\7.5 \end{pmatrix}$	Full method of solving for / the equation $AX^2 = 4AB^2$ using (their \overrightarrow{AX}) and \overrightarrow{AB} and substitutes at least one of their values for / into l_1	M1;
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 0.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1
	$\left(\begin{array}{c} 1\\ 4\end{array}\right) \left(\begin{array}{c} 1\\ 1\end{array}\right), \left(\begin{array}{c} 1\\ 4.5\end{array}\right)$	Both position vectors are correct (Also allow coordinates)	A1
		= 3.5 or / = 0.5 can be found from solving either $\pm 2(10 - 5/)$ or z: -3 = $\pm 2(-2 + /)$	[3]
6. (e) Way 4	$\overrightarrow{OB} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + 0.5 \begin{pmatrix} 3 \\ 15 \\ -3 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies either (their \overrightarrow{OX})+0.5 \overrightarrow{XA} or (their \overrightarrow{OX})+1.5 \overrightarrow{XA} where (their \overrightarrow{XA})= \overrightarrow{OA} – (their \overrightarrow{OX})	M1;
	$\overrightarrow{OB} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + 1.5 \begin{pmatrix} 3 \\ 15 \\ -3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1
	$\begin{array}{c} 0D = \left(\begin{array}{c} 0 \\ 9 \end{array}\right)^{-1} \left(\begin{array}{c} 10 \\ -3 \end{array}\right)^{-1} \left(\begin{array}{c} 20.0 \\ 4.5 \end{array}\right)$	Both position vectors are correct (Also allow coordinates)	A1
			[3]
6. (e) Way 5	$\overrightarrow{OB} = 0.5 \left(\left(\begin{array}{c} -1\\ 3\\ 9 \end{array} \right) + \left(\begin{array}{c} 2\\ 18\\ 6 \end{array} \right) \right); = \left(\begin{array}{c} 0.5\\ 10.5\\ 7.5 \end{array} \right)$	Applies $\frac{1}{2} \left[(\text{their } \overrightarrow{OX}) + \overrightarrow{OA} \right]$	M1;
	$\begin{array}{c} \hline \\ \hline $	At least one position vector is correct (Also allow coordinates)	A1
	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	Both position vectors are correct (Also allow coordinates)	A1
			[3]

www.yesterdaysmathsexam.com

Question Number		Scheme		Notes	Marks	
6. (e) Way 6	$\left\{ \left \overrightarrow{AX} \right \right.$	$=9\sqrt{3}, d_1 = 3\sqrt{3} \implies K = \frac{9\sqrt{3}}{3\sqrt{3}} = 3 \implies \overline{AX}$	$= 3\mathbf{d}_1;$ So, $\overline{OB} =$	$\overrightarrow{OA} \pm \frac{1}{2}\overrightarrow{AX} = \overrightarrow{OA} \pm \frac{1}{2}(\mathbf{3d_1})$		
		$ \begin{pmatrix} 2\\18\\6 \end{pmatrix} + 0.5 \begin{pmatrix} 3\begin{pmatrix}-1\\-5\\1 \end{pmatrix} \end{pmatrix}; = \begin{pmatrix} 0.5\\10.5\\7.5 \end{pmatrix} $	$\overline{OA} + 0$	Applies either $0.5(K\mathbf{d}_1)$ or $\overrightarrow{OA} - 0.5(K\mathbf{d}_1)$, where $K = \frac{\text{their } \overrightarrow{AX} }{3\sqrt{3}}$	M1;	
	$\overrightarrow{OB} =$	$ \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{vmatrix} 3 \\ -5 \\ 1 \end{vmatrix} ; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{vmatrix} $		one position vector is correct (Also allow coordinates) a position vectors are correct	A1	
				(Also allow coordinates)	A1	
		Quos	tion 6 Notes		[3]	
6. (a)	Note	M1 can be implied by at least two correct		coordinates from their / or fr	om their <i>m</i>	
(b)	Note	Evaluating the dot product (i.e. $(-1)(3) +$				
(0)	Note	for the M1, dM1 marks.		()) is not required		
	Note	For M1 dM1: Allow one slip in writing	down their direc	tion vectors, d and d		
	Note	Allow M1 dM1 for		u u u u u u u u u u		
	11010		(() ()		
			-) .	-1 3		
		$\left(\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}\right)$	$\left \cos q = \pm\right $ -	-5 0		
		,	' (1) (-4)		
	Note	$q = 1.297995^{\circ}$, (without evidence of aw	vert 74 37) is A0	, , ,		
			(IT 74.37) IS AU			
6. (b) Way 2		ative Method: Vector Cross Product pply this scheme if it is clear that a vector	cross product	method is being applied		
Way 2		$= \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & -5 & 1 \\ 3 & 0 & -4 \end{cases} =$)	Dealised and had the second and	M1	
	sin q	$= \frac{\sqrt{(20)^2 + (-1)^2 + (15)^2}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}}$		Applies the vector product formula between \mathbf{d}_1 and \mathbf{d}_2	dM1	
	$\frac{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}}{\sin q} = \frac{\sqrt{626}}{\sqrt{27} \sqrt{25}} \Rightarrow q = 74.36964117 = 74.37 (2 dp)$ awrt 74.37 seen in (b) only					
					[3]	
6. (c)						
	M1 Finds the difference between their <i>OX</i> and <i>OA</i> and applies Pythagoras to the result to find <i>AX</i> or <i>XA</i> OR applies $ (\text{their } /_X \text{ found in } (a)) - 2 \sqrt{(-1)^2 + (-5)^2 + (1)^2}$					
	Note	For M1: Allow one slip in writing down the	heir \overrightarrow{OX} and \overrightarrow{OA}			
	Note Allow M1A1 for $\begin{pmatrix} 3 \\ 15 \\ 3 \end{pmatrix}$ leading to $AX = \sqrt{(3)^2 + (15)^2 + (3)^2} = \sqrt{243} = 9\sqrt{3}$					
(e)	Note	Imply M1 for no working leading to any tw	o components o	f one of the \overrightarrow{OB} which are co	rrect.	

Question Number	Scheme			Notes	Ma	ırks
6. (d) Way 2	$\frac{"9\sqrt{3}"}{YA} = \tan(90 - "74.36964")$		$\frac{\text{their } \overline{ AX }}{YA} = \tan(90 - \theta) \text{ or } AY = \frac{\text{their } \overline{ AX }}{\tan(90 - \theta)},$ where θ is the acute or obtuse angle between l_1 and l_2		M1	
	<i>YA</i> = 55.71758 = 55.7 (1 dp)			anything that rounds to 55.7	A1	
						[2]
6. (d) Way 3	$\frac{YA}{\sin("74.36964")} = \frac{"9\sqrt{3}"}{\sin(90 - "74.36964")}$	")		$= \frac{\text{their } AX }{\sin(90-\theta)} \text{ o.e., where } \theta \text{ is the}$ or obtuse angle between l_1 and l_2	M1	
	$YA = \frac{9\sqrt{3}\sin(74.36964)}{\sin(15.63036)} = 55.71758$	= 55.7 (1 dp)		anything that rounds to 55.7	A1	[2]
						[2]
6. (d) Way 4	$\mathbf{d}_{1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \overrightarrow{OY} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$	$ = \left(\begin{array}{c} 5+3\mu\\ 3\\ 1-4\mu \end{array}\right) $				
	$\overrightarrow{YA} = \begin{pmatrix} 2\\18\\6 \end{pmatrix} - \begin{pmatrix} 5+3\mu\\3\\1-4\mu \end{pmatrix} = \begin{pmatrix} -3-3\mu\\15\\5+4\mu \end{pmatrix}$					
	$\overrightarrow{YA} \bullet \mathbf{d}_1 = 0 \implies \begin{pmatrix} -3 - 3\mu \\ 15 \\ 5 + 4\mu \end{pmatrix} \bullet \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} =$	= 0		(Allow a sign slip in copying \mathbf{d}_1) blies $\overrightarrow{YA} \bullet \mathbf{d}_1 = 0$ or $\overrightarrow{AY} \bullet \mathbf{d}_1 = 0$	M1	
	$\Rightarrow 3 + 3m - 75 + 5 + 4m = 0 \Rightarrow m = \frac{67}{7}$	to	or \overrightarrow{YA}	• $(K\mathbf{d}_1) = 0$ or $\overline{AY} \bullet (K\mathbf{d}_1) = 0$ and applies Pythagoras to find a		
	$YA^{2} = \left(-3 - 3\left(\frac{67}{7}\right)\right)^{2} + \left(15\right)^{2} + \left(5 + 4\left(-\frac{67}{7}\right)^{2}\right)^{2} + \left(-3 - 3\left(\frac{67}{7}\right)^{2}\right)^{2} + \left(-3 - 3\left(6$			cal expression for AY^2 or for the distance AY		
	So, $YA = \sqrt{\left(-\frac{222}{7}\right)^2 + \left(15\right)^2 + \left(\frac{303}{7}\right)^2}$	l				
	= 55.71758 = 55.7 (1 dp)			anything that rounds to 55.7	A1	
	Note: $\overrightarrow{OY} = \frac{236}{7}\mathbf{i} + 3\mathbf{j} - \frac{261}{7}\mathbf{k}$, $\overrightarrow{AY} = -$	$\frac{222}{7}$ i + 15 j + $\frac{30}{7}$	³ -k			[2]

Question Number	Scheme		Notes	Marks
7.	$\frac{dh}{dt} = k \sqrt{(h-9)}, 9 < h \le 200; h = 130, \frac{dh}{dt} = -1.1$			
(a)	$-1.1 = k \sqrt{(130 - 9)} \bowtie k =$	Substitutes $h = 1$	30 and either $\frac{dh}{dt} = -1.1$ or $\frac{dh}{dt} = 1.1$ d equation and rearranges to give $k =$	M1
	so, $k = -\frac{1}{10}$ or -0.1		$k = -\frac{1}{10}$ or -0.1	A1
(b) Way 1	$\int \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int k \mathrm{d}t$	the wrong position	s correctly. dh and dt should not be in as, although this mark can be implied by later working. Ignore the integral signs.	[2] B1
	$\int (h-9)^{-\frac{1}{2}} \mathrm{d}h = \int k \mathrm{d}t$			
	1	Integrates $-$	$\frac{\pm\lambda}{(h-9)}$ to give $\pm m\sqrt{(h-9)}$; /, m^{-1} 0	M1
	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt(+c)$	(2)	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{with/without } + c,$	A1
	${t = 0, h = 200 \triangleright} 2\sqrt{(200 - 9)} =$	<i>k</i> (0) + <i>c</i>	nt, which can be un-simplified or simplified. Some evidence of applying both $t = 0$ and $h = 200$ to changed equation	M1
	$ \begin{array}{c} \triangleright \ c = 2\sqrt{191} \ \triangleright \ 2(h-9)^{\frac{1}{2}} = -0.1t \\ \left\{h = 50 \Longrightarrow\right\} \ 2\sqrt{(50-9)} = -0.1t + \\ t = \dots \end{array} $	$+ 2\sqrt{191}$	hing a constant of integration, e.g. c or A dependent on the previous M mark Applies $h = 50$ and their value of c to their changed equation and rearranges to find the value of $t =$	dM1
	$t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (minut	tes) (nearest minute)	$t = 20\sqrt{191} - 20\sqrt{41}$ isw or awrt 148	A1 cso
(b) Way 2	$\int_{200}^{50} \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int_{0}^{T} k \mathrm{d}t$ $\int_{200}^{50} (h-9)^{-\frac{1}{2}} \mathrm{d}h = \int_{0}^{T} k \mathrm{d}t$	in the wrong posi	bles correctly. dh and dt should not be tions, although this mark can be implied Integral signs and limits not necessary.	[6] B1
	$\int_{200}^{50} (h-9)^{-\frac{1}{2}} dh = \int_{0}^{T} k dt$			
		Integrates $-$	$\frac{\pm\lambda}{(h-9)}$ to give $\pm m\sqrt{(h-9)}$; /, m^{-1} 0	M1
	$\left[\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}\right]_{200}^{50} = \left[kt\right]_{0}^{T}$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \text{ or } \frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{with/without limits,}$		
	$2\sqrt{41} - 2\sqrt{191} = kt$ or kT	Atter	ht, which can be un-simplified or simplified. mpts to apply limits of $h = 200, h = 50$	
	$t = \frac{2\sqrt{41} - 2\sqrt{191}}{-0.1}$		mplied) $t = 0$ to their changed equation dependent on the previous M mark	M1 dM1
	$\frac{t - 0.1}{t = 20\sqrt{191} - 20\sqrt{41}}$	Then rearranges to find the value of $t =$ $t = 20\sqrt{191} - 20\sqrt{41}$ or awrt 148		
	or $t = 148.3430145 = 148$ (minut	tes) (nearest minute)	or 2 hours and awrt 28 minutes	A1 cso [6]
				8

www.yesterdaysmathsexam.com

		Question 7 Notes					
7. (b)	Note	Allow first B1 for writing $\frac{dt}{dh} = \frac{1}{k\sqrt{(h-9)}}$ or $\frac{dt}{dh} = \frac{1}{(\text{their } k)\sqrt{(h-9)}}$ or equivalent					
	Note	$\frac{\mathrm{d}t}{\mathrm{d}h} = \frac{1}{k\sqrt{(h-9)}} \text{ leading to } t = \frac{2}{k}\sqrt{(h-9)} (+c) \text{ with/without } +c \text{ is B1M1A1}$					
	Note	After finding $k = 0.1$ in part (a), it is only possible to gain full marks in part (b) by initially writing					
		$\frac{\mathrm{d}h}{\mathrm{d}t} = -k\sqrt{(h-9)} \text{ or } \grave{0}\frac{\mathrm{d}h}{\sqrt{(h-9)}} = \grave{0}-k\mathrm{d}t \text{ or } \frac{\mathrm{d}h}{\mathrm{d}t} = -0.1\sqrt{(h-9)} \text{ or } \grave{0}\frac{\mathrm{d}h}{\sqrt{(h-9)}} = \grave{0}-0.1\mathrm{d}t$					
		Otherwise, those candidates who find $k = 0.1$ in part (a), should lose at least the final A1 mark in					
		part (b).					

Question Number	S	chemgester	daysmath	sexam.com	Notes	Marks
8.	$x = 3q\sin q, y = \sec^3 q, 0 \notin q < \frac{p}{2}$					
(a)	{When $y = 8$,} $8 = \sec^3 \theta \Rightarrow \cos^3 \theta = \frac{1}{8} \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$ $k \text{ (or } x) = 3\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{3}\right)$			Sets $y = 8$ to find θ and attempts to substitute their θ into $x = 3q\sin q$	M1	
	so k (or x) = $\frac{\sqrt{3}\pi}{2}$				$\frac{\sqrt{3}\rho}{2} \text{ or } \frac{3\rho}{2\sqrt{3}}$	A1
		vo value for	k without a	ccepting the o	correct value is final A0	[2]
(b)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sin\theta + 3\theta\cos\theta$				$3\theta \sin \theta \rightarrow 3\sin \theta + 3\theta \cos \theta$ Can be implied by later working	B1
	$\left\{\int y \frac{\mathrm{d}x}{\mathrm{d}q} \left\{\mathrm{d}q\right\}\right\} = \int (\sec^3 q) (3s)$	in <i>q</i> + 3qcos	q) $\left\{ dq \right\}$		Applies $(\pm K \sec^3 q) (\tanh \frac{dx}{dq})$ Ignore integral sign and dq ; $K^{-1} = 0$	M1
			Achieves		esult no errors in their working, e.g.	
	$= 3 \hat{0} q \sec^2 q + \tan q \sec^2 q \mathrm{d}q$				bracketing or manipulation errors. I sign and $d\theta$ in their final answer.	A1 *
	$x=0$ and $x=k \implies \underline{\alpha=0}$ and	d $\beta = \frac{\pi}{3}$	$\alpha = 0$	and $\beta = \frac{\pi}{3}$	or evidence of $0 \rightarrow 0$ and $k \rightarrow \frac{\pi}{3}$	B1
	Note: The w	ork for the fi	inal B1 mar	k must be see	en in part (b) only.	[4]
				$q \sec^2 q$	$\rightarrow Aqg(q) - B \int g(q), A > 0, B > 0,$	
	$\left\{ \mathbf{\hat{0}} q \sec^2 q \mathrm{d} q \right\} = q \tan q - \mathbf{\hat{0}} \tan q \left\{ \mathrm{d} q \right\}$		where $g(q)$ is a trigonometric function in q and		M1	
(c)			$g(q) = \text{their } \hat{g} \sec^2 q dq. \text{ [Note: } g(q)^{-1} \sec^2 q \text{]}$			
Way 1	$\left(\bigcup_{q} \operatorname{sec} q \operatorname{uq} \right)^{q} = q \operatorname{tan} q - \bigcup_{q} q$	anglad	dependent on the previous M mark			
			Either $/q \sec^2 q \rightarrow Aq \tan q - B \int \tan q, A > 0, B > 0$		dM1	
					or $q \sec^2 q \to q \tan q - \int \tan q$	
	$= q \tan q - \ln(\sec q)$		qse	$c^2 q \rightarrow q \tan q$	$q - \ln(\sec q)$ or $q \tan q + \ln(\cos q)$ or	
	or = $q \tan q$	$+\ln(\cos q)$	$1 q \sec^2 q$	$y \rightarrow /q \tan q$	$/\ln(\sec q)$ or $/q\tan q + /\ln(\cos q)$	A1
	Note: Condone	$\partial \sec^2 \partial \rightarrow$			anq + ln(cos x) for A1	
	()	<i>,,</i>			$q \sec^2 q \rightarrow \pm C \tan^2 q \text{ or } \pm C \sec^2 q$	
	$\left\{ \hat{0} \tan q \sec^2 q \mathrm{d} q \right\}$				or $\pm Cu^{-2}$, where $u = \cos q$	M1
	$= \frac{1}{2}\tan^2 q \text{ or } \frac{1}{2}\sec^2 q$	tan q see	$c^2 q \rightarrow \frac{1}{2} tar$	$n^2 q$ or $\frac{1}{2}$ sec	2q or $\frac{1}{2\cos^2 q}$ or $\tan^2 q - \frac{1}{2}\sec^2 q$	
	or $\frac{1}{2u^2}$ where $u = \cos q$				$u = \cos q$ or $0.5u^2$, where $u = \tan q$	A1
	or $\frac{1}{2}u^2$ where $u = \tan q$				$\rightarrow \frac{\lambda}{2} \tan^2 \theta \text{ or } \frac{\lambda}{2} \sec^2 \theta \text{ or } \frac{\lambda}{2 \cos^2 \theta}$ = cos q or 0.5/u ² , where u = tan q	
		_p			0	
	$\left\{\operatorname{Area}(R)\right\} = \left[3q\tan q - 3\ln(\sec q)\right]$	$+\frac{3}{2}\tan^2 q \bigg]_0^{\overline{3}}$	or $\begin{bmatrix} 3q \tan q \end{bmatrix}$	$r - 3\ln(\sec q) +$	$\frac{3}{2}\sec^2 q \bigg]_0^3$	
	$= \left(3\left(\frac{\pi}{3}\right)\sqrt{3} - 3\ln 2 + \right)$	$\left(\frac{3}{2}(3)\right) - (0)$	or $\left(3\left(\frac{\pi}{3}\right)\right)$	$\left(\sqrt{3}-3\ln 2+\frac{3}{2}\right)$	$(4)) - \left(\frac{3}{2}\right)$	
	$=\frac{9}{2}+\sqrt{3}\rho-3\ln 2$	or $\frac{9}{2} + \sqrt{3}$	$\rho + 3\ln\left(\frac{1}{2}\right)$	or $\frac{9}{2} + \sqrt{3}$	$\pi - \ln 8$ or $\ln \left(\frac{1}{8}e^{\frac{9}{2}+\sqrt{3}\rho}\right)$	A1 o.e.
						[6]
						12

Question Number		Scheme		Notes	Marks	
8. (c)	Way 2 fo	Way 2 for the first 5 marks: Applying integration by parts on $\hat{0}(q + \tan q)\sec^2 q dq$				
Way 2	$\hat{0}^{(q \sec^2 q)}$	$\operatorname{sec}^{2} q + \tan q \operatorname{sec}^{2} q) dq = \check{0} (q + \tan q) \operatorname{sec}^{2} q dq, \qquad \begin{cases} u = q + \tan q \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}q} = 1 + \operatorname{sec}^{2} q \\ \frac{\mathrm{d}v}{\mathrm{d}q} = \operatorname{sec}^{2} q \Rightarrow v = \tan q = g(q) \end{cases}$				
	h(q) and	g(q) are trigonometric functions in	q and g	$g(q) = \text{their } \hat{\mathbf{j}} \sec^2 q \mathrm{d} q. $ [Note: $g(q)^{-1} \sec^2 q$]		
			A(q	+ $\tan q$)g(q) - B)(1 + h(q))g(q), $A > 0, B > 0$	M1	
				dependent on the previous M mark		
	= (q + ta)	$= (q + \tan q) \tan q - \dot{0} (1 + \sec^2 q) \tan q \left\{ dq \right\}$		Either $\left \left[(q + \tan q) \sec^2 q \right] \right \rightarrow$		
		$A(q + \tan q)\tan q - B \hat{\mathfrak{g}}(1 + \mathfrak{h}(q))\tan q, A^{-1}(0), B > 0$			dM1	
				or $(q + \tan q)\tan q - \dot{0}(1 + h(q))\tan q$		
	= (q + ta)	$(\tan q)\tan q - \dot{0}(\tan q + \tan q \sec^2 q) \{ \mathbf{d} \}$				
	= (q + ta)	$(an q) \tan q - \ln(\sec q) - \hat{0} \tan q \sec^2 q$	$\left\{ \mathrm{d}q\right\}$	$(q + \tan q)\tan q - \ln(\sec q) \text{ o.e.}$ or $\left \left[(q + \tan q)\tan q - \ln(\sec q) \right] \text{ o.e.} \right $	A1	
				$\tan q \sec^2 q \to \pm C \tan^2 q \text{ or } \pm C \sec^2 q$	M1	
	= (q + ta)	$(\operatorname{an} q) \tan q - \ln(\sec q) - \frac{1}{2} \tan^2 q$		$(q + \tan q)\tan q - \frac{1}{2}\tan^2 q$		
	or = (<i>q</i> +	$\tan q$ $\tan q$ $-\ln(\sec q) - \frac{1}{2}\sec^2 q$ etc	с.	or $(q + \tan q)\tan q - \frac{1}{2}\sec^2 q$	A1	
	Note	Allow the first two marks in part (c) for $q \tan q - \hat{0} \tan q$ embedded in their working				
	Note	Allow the first three marks in part	(c) for	$q \tan q - \ln(\sec q)$ embedded in their working		
	Note	Allow 3 rd M1 2 nd A1 marks for eit	her tan ²	$q - \frac{1}{2}\tan^2 q$ or $\tan^2 q - \frac{1}{2}\sec^2 q$		
	<u> </u>	embedded in their working	0 (0 N 4		
8. (a)	Note	Question 8 NotesAllow M1 for an answer of $k = awrt 2.72$ without reference to $\frac{\sqrt{3}p}{2}$ or $\frac{3p}{2\sqrt{3}}$				
	Note	te Allow M1 for an answer of $k = 3\left(\arccos(\frac{1}{2})\right)\sin\left(\arccos(\frac{1}{2})\right)$ without reference to $\frac{\sqrt{3}\rho}{2}$ or				
	Note	E.g. allow M1 for $q = 60^\circ$, leadin	g to $k =$	$= 3(60)\sin(60)$ or $k = 90\sqrt{3}$		

		www.yest Question & Notes	Continued					
8. (b)	Note	To gain A1, dq does not need to appear until the	ey obtain $3\hat{0}(q \sec^2 q + \tan q \sec^2 q)dq$					
	Note	For M1, their $\frac{dx}{dq}$, where their $\frac{dx}{dq} \stackrel{1}{} 3q \sin q$, needs to be a trigonometric function in q						
	Note	Writing $\hat{0}(\sec^3 q)(3\sin q + 3q\cos q) = 3\hat{0}(q\sec^2 q + \tan q\sec^2 q)dq$ is sufficient for B1M1A1						
	Note	Writing $\frac{dx}{d\theta} = 3\sin\theta + 3\theta\cos\theta$ followed by writing is sufficient for B1M1A1	iting $\oint y \frac{dx}{dq} dq = 3 \oint (q \sec^2 q + \tan q \sec^2 q)$)d <i>q</i>				
	Note	The final A mark would be lost for $\hat{0} \frac{1}{\cos^3 q} 3\sin^3 \theta$	$aq + 3q\cos q = 3 igg(q \sec^2 q + \tan q \sec^2 q) d$	q				
	Note	[lack of brackets in this particular case]. Give 2^{nd} B0 for $a = 0$ and $b = 60^{\circ}$, without refer	erence to $b = \frac{p}{3}$					
(c)	Note	A decimal answer of 7.861956551 (without a d	correct exact answer) is A0.					
	Note	First three marks are for integrating $\theta \sec^2 \theta$ with						
	Note	Fourth and fifth marks are for integrating $\tan\theta$ s						
	Note	Candidates are not penalised for writing $\ln \sec q$						
	Note	$q \sec^2 q \rightarrow q \tan q + \ln(\sec q)$ WITH NO INTEL	RMEDIATE WORKING is M0M0A0					
	Note	$q \sec^2 q \rightarrow q \tan q + \ln(\sec q)$ WITH NO INTEL $q \sec^2 q \rightarrow q \tan q - \ln(\cos q)$ WITH NO INTEL	RMEDIATE WORKING is M0M0A0					
	Note							
	Note	$q \sec^2 q \rightarrow q \tan q - \ln(\sec q)$ WITH NO INTERMEDIATE WORKING is M1M1A1 $q \sec^2 q \rightarrow q \tan q + \ln(\cos q)$ WITH NO INTERMEDIATE WORKING is M1M1A1						
	Note	Writing a correct $uv - \partial v \frac{du}{dx}$ with $u = q$, $\frac{dv}{dq} =$ one error in the direct application of this formula	$\tan q$, $\frac{\mathrm{d}u}{\mathrm{d}q} = 1$ and $v = \text{their } g(q)$ and making	ng				
8. (c)	Alternativ	we method for finding $\hat{0} \tan q \sec^2 q \mathrm{d} q$						
		$q \implies \frac{\mathrm{d}u}{\mathrm{d}q} = \sec^2 q$ $c^2 q \implies v = \tan q$						
		$aq\sec^2 q dq = \tan^2 q - \hat{0} \tan q \sec^2 q dq$						
	Þ 2òtan	$aq \sec^2 q dq = \tan^2 q$						
		1	$\tan\theta \sec^2\theta \text{ or } \rightarrow \pm C\tan^2q$	M1				
	$\hat{0} \tan q \sec^2 q \mathrm{d}q = \frac{1}{2} \tan^2 q$		$\tan q \sec^2 q \to \frac{1}{2} \tan^2 q$	A1				
	UI {	$\Rightarrow \sec q \qquad \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}q} = \sec q \tan q$ $= \sec q \tan q \qquad \Rightarrow v = \sec q$						
	⊳òtan¢	$q \sec^2 q dq = \sec^2 q - \dot{q} \sec^2 q \tan q dq$						
	Þ 2∂tan	$q \sec^2 q dq = \sec^2 q$						
		. 1.	$\tan\theta\sec^2\theta \text{ or } \to \pm C\sec^2q$	M1				
) tanqsec	$c^2 q \mathrm{d}q = \frac{1}{2} \sec^2 q$	$\tan q \sec^2 q \to \frac{1}{2} \sec^2 q$	A1				

www.yesterdaysmathsexam.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom