

Mark Scheme (FINAL)

Summer 2017

Pearson Edexcel GCE In Core Mathematics 4 (6666/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code xxxxxxxx*

All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$, where $|pq|=|c|$ and $|mn|=|a|$, leading to $x=...$

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

www.yesterdaysmathsexam.com

Question Number	Scheme www.yest	terdaysmathsexam.coMotes	Marks	
1.	$x = 3t - 4$, $y = 5 - \frac{6}{t}$, $t > 0$			
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3, \frac{\mathrm{d}y}{\mathrm{d}t} = 6t^{-2}$			
	$\frac{dy}{dx} = \frac{6t^{-2}}{3} \left\{ = \frac{6}{3t^2} = 2t^{-2} = \frac{2}{t^2} \right\}$	their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ to give $\frac{dy}{dx}$ in terms of t or their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$ to give $\frac{dy}{dx}$ in terms of t		
		$\frac{6t^{-2}}{3}$, simplified or un-simplified, in terms of <i>t</i> . See note.	A1 isw	
		oth $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are stated correctly and explicitly.	[2]	
	Note: You can rec	over the work for part (a) in part (b).		
(a) Way 2	$y = 5 - \frac{18}{x+4} \Rightarrow \frac{dy}{dx} = \frac{18}{(x+4)^2} = \frac{18}{(3t)^2}$	Writes $\frac{dy}{dx}$ in the form $\frac{\pm \lambda}{(x+4)^2}$, and writes $\frac{dy}{dx}$ as a function of t.	M1	
		Correct un-simplified or simplified answer, in terms of <i>t</i> . See note.	A1 isw	
(b)	$\left\{t = \frac{1}{2} \Rightarrow\right\} P\left(-\frac{5}{2}, -7\right)$	$x = -\frac{5}{2}$, $y = -7$ or $P(-\frac{5}{2}, -7)$ seen or implied.	B1	
	$\begin{cases} t = \frac{1}{2} \Rightarrow P\left(-\frac{5}{2}, -7\right) \\ \frac{dy}{dx} = \frac{2}{\left(\frac{1}{2}\right)^2} \text{and either} \end{cases}$	Some attempt to substitute $t = 0.5$ into their $\frac{dy}{dx}$		
	• $y - "-7" = "8" \left(x - "-\frac{5}{2}"\right)$	which contains t in order to find $m_{\rm T}$ and either		
	• $y 7 = 8 \left(x\frac{2}{2} \right)$	applies y - (their y_p) = (their m_T)(x - their x_p)	M1	
	• "-7" = ("8")("- $\frac{5}{2}$ ") + c	or finds c from (their y_p) = (their m_T)(their x_p) + c		
	So, $y = (\text{their } m_{\text{T}})x + \text{"}c\text{"}$	and uses their numerical c in $y = (\text{their } m_T)x + c$		
	T: $y = 8x + 13$	y = 8x + 13 or $y = 13 + 8x$	A1 cso	
	Note: their x_p , their y_p and their	m_T must be numerical values in order to award M1	[3]	
	$\begin{bmatrix} x+4 \end{bmatrix}$ $\begin{bmatrix} 5 & 6 \end{bmatrix}$	An attempt to eliminate t. See notes.	M1	
(c) Way 1	$\left\{t = \frac{x+4}{3} \implies \right\} \ y = 5 - \frac{6}{\left(\frac{x+4}{3}\right)}$	Achieves a correct equation in x and y only	A1 o.e.	
	$\Rightarrow y = 5 - \frac{18}{x+4} \Rightarrow y = \frac{5(x+4)-1}{x+4}$	8		
	So, $y = \frac{5x+2}{x+4}$, $\{x > -4\}$	$y = \frac{5x + 2}{x + 4}$ (or implied equation)	A1 cso	
			[3]	
(c)	$\int_{t-}^{} \frac{6}{} \rightarrow \left(\begin{array}{c} 18 \\ \end{array} \right)$	An attempt to eliminate t . See notes.	M1	
Way 2	$\left\{t = \frac{6}{5 - y} \implies \right\} x = \frac{18}{5 - y} - 4$	Achieves a correct equation in x and y only		
	$(x + 4)(5 - y) = 18 \implies 5x - xy + 20$	0 - 4 <i>y</i> = 18		
	$\{ \triangleright 5x + 2 = y(x+4) \}$ So, $y = \frac{5x+2}{x+4}$	So, $y = \frac{5x+2}{x+4}$, $\{x > -4\}$ $y = \frac{5x+2}{x+4}$ (or implied equation)		
			[3]	
	Note: Some or all of the work	for part (c) can be recovered in part (a) or part (b)	8	

Question Number		Scheme.yesterdaysmathsexar	n.com Notes	Marks		
1. (c)	$y = \frac{3at - 4a + b}{3t - 4 + 4} = \frac{3at}{3t} - \frac{4a - b}{3t} = a - \frac{4a - b}{3t} \Rightarrow a = 5$		A full method leading to the value of <i>a</i> being found	M1		
Way 3	3t - 6	4+4 $3t$ $3t$ $3t$ $3t$	$y = a - \frac{4a - b}{3t} \text{and} a = 5$	A1		
	$\frac{4a-b}{3} = 6$	$b \Rightarrow b = 4(5) - 6(3) = 2$	Both $a = 5$ and $b = 2$	A1		
				[3]		
		Question 1 No	otes			
1. (a)	Note	Condone $\frac{dy}{dx} = \frac{\left(\frac{6}{t^2}\right)}{3}$ for A1				
	Note	You can ignore subsequent working following on from a correct expression for $\frac{dy}{dx}$ in terms of t.				
(b)	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$	or $\frac{1}{\text{their } \frac{dy}{dx}}$ or $-\left(\text{their } \frac{dy}{dx}\right)$ is M0.			
	Note	Note Final A1: A correct solution is required from a correct $\frac{dy}{dx}$.				
	Note	Final A1: You can ignore subsequent working				
(c)	Note					
	Note	Award M1A1 for $\frac{6}{5-y} = \frac{x+4}{3}$ or equivalent.				

Question Number			www.yesterdays Scheme	mathsexam.com		Notes	Marks
2.	$\left\{ (2+kx)^{\frac{1}{2}}\right\}$	$e^{-3} = 2^{-3} \left(1 + \frac{k}{2} \right)$	$\left(\frac{kx}{2}\right)^{-3} = \frac{1}{8} \left(1 + (-3)\left(\frac{kx}{2}\right)\right)$	$+\frac{(-3)(-3-1)}{2!}\left(\frac{k}{2!}\right)$	$\left(\frac{x}{2}\right)^2 + \dots \right\}, k$	> 0	
(a)	$\left\{A = \right\} \frac{1}{8}$	$A = \frac{1}{8}$ or 2^{-3} or 0.125, clearly identified as A or as their answer to part (a)				B1 cao	
							[1]
			Use	s the x^2 term of the	e binomial expa	ansion to give	
			either $\frac{(-3)}{2}$	$\frac{9(-4)}{2!}$ or $\left(\frac{k}{2}\right)^2$ or	$\left(\frac{kx}{2}\right)^2$ or $\frac{(-1)^2}{2}$	$\frac{-3)(-4)}{2}$ or 6	M1
(b)	$\left(\frac{1}{8}\right)\frac{(-3)(-3)}{2!}$	$\frac{-4}{2}\left(\frac{k}{2}\right)^2$	either (their A	$(-3)(-4)\left(\frac{k}{2}\right)^2$ or		2: (2)	
				(2) (4)		(their A) 1,	
			or $\frac{3}{16}k^2$ or $\frac{3}{16}k^2x^2$ or	or $(2^{-5})\frac{(-3)(-4)}{2!}$	$(2^{-5})^{-2}$	$\frac{(-3)(-4)}{2!}(k)^2$	
	$\left\{ \text{So,} \left(\frac{1}{8}\right)^{\frac{1}{8}}\right\}$	$\frac{(-3)(-4)}{2!} \left(\frac{k}{2}\right)$	$= \frac{243}{16} \Rightarrow \frac{3}{16}k^2 = \frac{243}{16}$	$\left\{\frac{3}{5} \Rightarrow k^2 = 81\right\}$			
	So, $k =$					k=9 cao	
(c)		No	te: $k = \pm 9$ with no reference Lises the α			to give either	[3]
	Uses the x term of the binomial expansion to give eith			_			
	$\left(\frac{1}{8}\right)$ (-3)	$\left(\frac{k}{2}\right)$	(then $A)(-3)(\frac{1}{2})$ or (then $A)(-3)(\frac{1}{2})$, where (then $\frac{1}{2}$)				M1
		(2)		or $(2)^{-4}(-3)(k)$	or $(2)^{-4}(-3)($	$(kx) \text{ or } -\frac{3k}{16}$	
	$\begin{cases} So, B = \\ \end{cases}$	$ \left(\frac{1}{8}\right)(-3)\left(\frac{9}{2}\right) $	$\Rightarrow \left. \begin{array}{c} B = -\frac{27}{16} \end{array} \right.$	_	$\frac{27}{16}$ or $-1\frac{11}{16}$	or -1.6875	A1 cso
							[2]
			Que	estion 2 Notes			U
		-	ESTION IGNORE LAI			ARTS TOGE	THER.
	Note ($(2+kx)^{-3} = \frac{1}{8}$	$\left(1 - \frac{3}{2}kx + \frac{3}{2}k^2x^2 +\right)$	$= \frac{1}{8} - \frac{3}{16}kx + \frac{3}{16}k$	$x^2x^2 +$		
	Note V	Writing down	$\left\{ \left(1 + \frac{kx}{2}\right)^{-3} \right\} = 1 + \left(-3\right)$	$\left(\frac{kx}{2}\right) + \frac{(-3)(-3-2)}{2!}$	$\frac{-1}{2} \left(\frac{kx}{2} \right)^2 + \dots$		
		gets (b) 1st M1					
			$\left\{ (2+kx)^{-3} \right\} = \frac{1}{8} \left(1 + (-1)^{-3} \right)$	$3)\left(\frac{kx}{2}\right) + \frac{(-3)(-3)}{2!}$	$\frac{-1}{2}\left(\frac{kx}{2}\right)^2 + \dots$)	
			1 2 nd M1 and (c) M1	(2)/	- 4)		
	Note V	Writing down	$\left\{ (2+kx)^{-3} \right\} = 2^{-3} + (-3)^{-3}$	$(2^{-4})(kx) + \frac{(-3)(-3)(-3)}{2}$	$(2^{-5})(kx)^2$		
			1 2 nd M1 and (c) M1			2	
	Note V	Writing down	$\left\{ (2+kx)^{-3} \right\} = (\text{their } A)$	$\left(1+(-3)\left(\frac{kx}{2}\right)+\frac{(}{}$	$\frac{-3)(-3-1)}{2!} \left(\frac{k}{2}\right)$	$\left(\frac{x}{2}\right)^2 + \dots$	
	W	where (their A	A) 1 1, gets (b) 1^{st} M1 2	and (c) M1			

		www.yesterdaysmathsexam.com				
2. (b), (c)	Note	(their A) is defined as either				
	• their answer to part (a)					
		• their stated $A =$				
		• their " 2^{-3} " in their stated $2^{-3} \left(1 + \frac{kx}{2}\right)^{-3}$				
	Note	Give 2^{nd} M0 in part (b) if (their A) = 1				
	Note	Give M0 in part (c) if (their A) = 1				
2. (c)	Note	Allow M1 for (their A)(-3) $\left(\frac{\text{their } k \text{ from (b)}}{2}\right)$				
	Note	Award A0 for $B = -\frac{27}{16}x$				
	Note	Allow A1 for $B = -\frac{27}{16}x$ followed by $B = -\frac{27}{16}$ or $-1\frac{11}{16}$ or -1.6875				
	Note	$k = -9$ leading to $B = \frac{27}{16}$ or $1\frac{11}{16}$ or 1.6875 is A0				
	Note	Give A0 for finding both $B = -\frac{27}{16}$ and $B = \frac{27}{16}$ (without rejecting $B = \frac{27}{16}$) as their final answer.				
	Note	The A1 mark in part (c) is for a correct solution only.				
	Note	Be careful! It is possible to award M0A0 in part (c) for a solution leading to $B = -\frac{27}{16}$. E.g.				
		$f(x) = (2 + kx)^{-3} = 2^{-3}(1 + kx)^{-3} = \frac{1}{8}\left(1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \dots\right) = \frac{1}{8} - \frac{3k}{8}x + \frac{3k^2}{4}x^2 + \dots$				
		leading to (a) $A = \frac{1}{8}$, (b) $k = \frac{9}{2}$, (c) $B = -\frac{27}{16}$, gets (a) B1, (b) M1M0A0 (c) M0A0				
2. (b), (c)	Note	$^{-3}C_0(2)^{-3} + ^{-3}C_1(2)^{-4}(kx) + ^{-3}C_2(2)^{-5}(kx)^2$ with the C terms not evaluated				
		gets (b) 1 st M0 2 nd M0 and (c) M0				

Question	www.yesterdaysmathsexam.com Scheme Notes						Marks			
Number	x 0 0.2	0.4	1	0.6		0.8	1	6	<u> </u>	
3.	$\begin{array}{c ccccc} x & 0 & 0.2 \\ \hline y & 2 & 1.862542 \end{array}$			1.56981		1994	1.27165	$y = \frac{6}{(2 + 1)^2}$	$\frac{e^x}{e^x}$	
(a)								B1 cao		
	,		lue o	on the given	table	e or in	their workin			[1]
								brackets $\frac{1}{2}$	×(0.2)	
(1.)	1,00,000	1.06054 1.6	71020	1.50001	1 41	004\7		1		B1 o.e.
(b)	$\frac{1}{2}(0.2)\left[\frac{2+1.27165+2}{\text{their}}\right]$	1.86254 + 1.	/1830) + 1.56981 -	1.41	994)]		or $\frac{1}{10}$ or	$\frac{1}{2} \times \frac{1}{5}$	
							For str	ucture of	[]	M1
	$\left\{ = \frac{1}{10}(16.41283) \right\} = 1.64$	1283 = 1 641	13 (4	dn)			anything tha	t rounds to	1 6413	A1
	10 (10.41203)	1203 – 1.041	15 (4	ц р)				t Tourids to	71.0413	
(c)	x 1 5									[3]
	$\left\{ u = e^x \text{ or } x = \ln u \triangleright \right\}$									
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \mathrm{e}^x \text{ or } \frac{\mathrm{d}u}{\mathrm{d}x} = u \text{ or } \frac{\mathrm{d}x}{\mathrm{d}u}$	$=\frac{1}{u}$ or du	<i>u</i> = <i>u</i>	dx etc., an	d) ($\frac{6}{(e^x + 2)}$	$\frac{1}{2} dx = \hat{0} \frac{1}{(u - 1)^2}$	$\frac{6}{(2)u} du$	See notes	B1 *
	$\{x=0\} \bowtie a=e^0 \bowtie \underline{a=1}$						a=1 ar	and $b = e$ or	$b = e^1$	B1
	$\{x=1\} \triangleright b=e^1 \triangleright \underline{b}=\underline{e}$						evidence of		$d \rightarrow e$	Di
	NOTE: 1 st NOTE: 2						vork in part rk in part (d			[2]
(d) Woy 1	$\frac{6}{u(u+2)} \circ \frac{A}{u} + \frac{B}{(u+2)}$	Writing -	6	o <u>A</u> +	В	, o.e	e. or 1	o <u>P</u> +	<u>Q</u>	
Way 1		+ $\frac{B}{(u+2)}$ Writing $\frac{6}{u(u+2)} \circ \frac{A}{u} + \frac{B}{(u+2)}$, o.e. or $\frac{1}{u(u+2)} \circ \frac{P}{u} + \frac{Q}{(u+2)}$, o.e., and a complete method for finding the value of at least one of				M1				
	\triangleright 6° $A(u+2) + Bu$	o.e., and	i a co	impiete met			nng the value t heir B (or t			
	$u = 0 \triangleright A = 3$	Both t	heir	A = 3 and	their	· B = -	-3. (Or their	$P = \frac{1}{2}$ ar	nd their	4.1
	$u = -2 \triangleright B = -3$		Q	$=-\frac{1}{2}$ with	the fa	ctor of	f 6 in front o	f the integr	ral sign)	A1
	f 6 f (3	3)			In	itegrate	es $\frac{M}{u} \pm \frac{N}{u \pm 1}$	— . <i>M</i> . <i>N</i>	$k^{-1}0$:	
	$\int \frac{6}{u(u+2)} \mathrm{d}u = \int \left(\frac{3}{u} - \frac{3}{u}\right) \mathrm{d}u$	$\frac{du}{(u+2)}$ du		(;						M1
				•		-	artial fraction $f(u \pm k)$	*		
	$= 3\ln u - 3\ln u$ or $= 3\ln 2u - 3\ln 2u$	` ′	Int				is correctly			A 1 C4
		, í				fı	rom their M	and from	their N.	A1 ft
	$\int \left\{ \operatorname{So} \left[3 \ln u - 3 \ln (u+2) \right]_{1}^{e} \right\}$	}				d	lependent of			
	$= (3\ln(e) - 3\ln(e+2)) - (3\ln(e+2))$	•		(or their b a	and th	neir a .	Applie where $b > 0$,	es limits of $a b^{-1} 1$, $a > a$		dM1
	[Note: A proper considera			•			f 1 and 0 in 3		,	UIVII
	limit of $u = 1$ is required for						(correct way	y round.	
	$= 3 - 3\ln(e + 2) + 3\ln 3$ or	r 3(1 - ln(e	+ 2)	+ ln3) or 3	3 + 3	$\ln\left(\frac{3}{2}\right)$	$\frac{1}{2}$			
		$3-3\ln(e+2)+3\ln 3$ or $3(1-\ln(e+2)+\ln 3)$ or $3+3\ln\left(\frac{3}{e+2}\right)$ see notes					A1 cso			
	or $3\ln\left(\frac{e}{e+2}\right) - 3\ln\left(\frac{1}{3}\right)$ or $3 - 3\ln\left(\frac{e+2}{3}\right)$ or $3\ln\left(\frac{3e}{e+2}\right)$ or $\ln\left(\frac{27e^3}{(e+2)^3}\right)$									
	Note: Allow e ¹ in place of e for the final A1 mark.						[6]			
	Note: Give final A0 for 3								1 to 0	12
	Note: Give final A0 for 3							•		
	Note: Give final A0 for $3 \ln e - 3 \ln (e + 2) + 3 \ln 3$, where $3 \ln e$ has not been simplified to 3									

		www.yesterdayomathseyamucom						
3. (b)	1	M1: Do not allow an extra y-value or a repeated y value in their []						
		Do not allow an omission of a <i>y</i> -ordinate in their [] for M1 unless they give the correct answer of awrt 1.6413, in which case both M1 and A1 can be scored.						
		A1: Working must be seen to demonstrate the use of the trapezium rule.						
		(Actual area is 1.64150274)						
	-	Full marks can be gained in part (b) for awrt 1.6413 even if B0 is given in part (a)						
		Award B1M1A1 for						
		$\frac{1}{10}(2+1.27165) + \frac{1}{5}(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) = \text{awrt } 1.6413$						
		ting mistakes: Unless the final answer implies that the calculation has been done correctly						
	Award I	$31M0A0 \text{ for } \frac{1}{2}(0.2) + 2 + 2(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=16.51283)$						
	Award I	$31M0A0 \text{ for } \frac{1}{2}(0.2)(2+1.27165) + 2(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) (=13.468345)$						
		$31M0A0 \text{ for } \frac{1}{2}(0.2)(2) + 2(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) + 1.27165 (=14.61283)$						
		tive method: Adding individual trapezia						
	Area ≈ 0	$.2 \times \left\lfloor \frac{2 + "1.86254"}{2} + \frac{"1.86254" + 1.71830}{2} + \frac{1.71830 + 1.56981}{2} + \frac{1.56981 + 1.41994}{2} + \frac{1.41994 + 1.27165}{2} \right\rfloor$						
		.641283						
	B1	0.2 and a divisor of 2 on all terms inside brackets						
	M1 A1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2 anything that rounds to 1.6413						
3. (c)	1 st B1	Must start from either						
		• $ \grave{0} y dx $, with integral sign and dx						
		• $\int \frac{6}{(e^x + 2)} dx$, with integral sign and dx						
		• $\int \frac{6}{(e^x + 2)} \frac{dx}{du} du$, with integral sign and $\frac{dx}{du} du$						
		and state either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$						
		and end at $\partial \frac{6}{u(u+2)} du$, with integral sign and du , with no incorrect working.						
	Note	So, just writing $\frac{du}{dx} = e^x$ and $\hat{\int} \frac{6}{(e^x + 2)} dx = \hat{\int} \frac{6}{u(u+2)} du$ is sufficient for 1st B1						
	Note	Give 2^{nd} B0 for $b = 2.718$, without reference to $a = 1$ and $b = e$ or $b = e^1$						
	Note	You can also give the 1 st B1 mark for using a reverse process. i.e.						
		Proceeding from $\hat{\int} \frac{6}{u(u+2)} du$ to $\hat{\int} \frac{6}{(e^x+2)} dx$, with no incorrect working,						
		and stating either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$ Give final A0 for $3 - 3\ln(e + 2) + 3\ln 3$ simplifying to $1 - \ln(e + 2) + \ln 3$						
3. (d)	Note	Give final A0 for $3 - 3\ln(e + 2) + 3\ln 3$ simplifying to $1 - \ln(e + 2) + \ln 3$						
		(i.e. dividing their correct final answer by 3)						
		Otherwise, you can ignore incorrect working (isw) following on from a correct exact value.						
	Note	A decimal answer of 1.641502724 (without a correct exact answer) is final A0						
	Note	$\left[-3\ln(u+2) + 3\ln u\right]_{1}^{e}$ followed by awrt 1.64 (without a correct exact answer) is final M1A0						

		Question 3 Notes Continued				
3. (d)	Note	BE CAREFUL! Candidates will assign their own "A" and "B" for this question.				
	Note	Writing down $\frac{6}{(u+2)u}$ in the form $\frac{A}{(u+2)} + \frac{B}{u}$ with at least one of A or B correct is 1 st M1				
	Note	Writing down $\frac{6}{(u+2)u}$ as $\frac{-3}{(u+2)} + \frac{3}{u}$ is 1 st M1 1 st A1.				
	Note	Condone $\int \left(\frac{3}{u} - \frac{3}{(u+2)}\right) du$ to give $3\ln u - 3\ln u + 2$ (poor bracketing) for 2^{nd} A1.				
	Note	Award M0A0M1A1ft for a candidate who writes down				
		e.g. $\int \frac{6}{u(u+2)} du = \int \left(\frac{6}{u} + \frac{6}{(u+2)}\right) du = 6\ln u + 6\ln(u+2)$				
	AS EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ AS PARTIAL FRACTIONS.					
	Note Award M0A0M0A0 for a candidate who writes down					
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.				
	Note	Award M1A1M1A1 for a candidate who writes down				
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.				
	Note	If they lose the "6" and find $\int_{1}^{e} \frac{1}{u(u+2)} du$ we can allow a maximum of M1A0M1A1ftM1A0				

		Question	3 Notes Conti	nued		
3. (d) Way 2	$\left\{ \int \frac{6}{u^2 + 2u} \mathrm{d}u = \int \frac{3(2u + 2)}{u^2 + 2u} \mathrm{d}u \right\}$	$du - \int \frac{6u}{u^2 + 2u} du$	}			
	$= \int \frac{3(2u+2)}{u^2 + 2u} du - \int \frac{6}{u+2} du$	i $\partial \frac{\pm \varepsilon}{i}$	$ \grave{0}^{\frac{\pm \mathcal{O}(2u+2)}{u^2+2u}} \left\{ du \right\} \pm \grave{0}^{\frac{\mathcal{O}}{u+2}} \left\{ du \right\}, \ \alpha, \beta, \delta \neq 0 $			M1
	$\int u + 2u$ $\int u + 2$			Correc	t expression	A1
	Integrates $\frac{\pm M(2u+2)}{u^2+2u} \pm \frac{N}{u\pm k}$, M, N			_ 70		M1
`	$= 3\ln(u^2 + 2u) - 6\ln(u+2)$	any one	$e ext{ of } \pm / \ln(u^2 +$	$\pm 2u$) or $\pm m \ln $	$(b(u \pm k));$	
		Integration of both	n terms is corre	ctly followed th their <i>M</i> and f		A1 ft
	$\left\{\operatorname{So}, \left[3\ln(u^2+2u)-6\ln(u+2u)\right]\right\}$	$\left(2\right)^{\circ}_{1}$	dependent on the 2^{nd} M mark Applies limits of e and 1 (or their b and their a, where $b > 0, b^{-1} 1, a > 0$) in u			dM1
	$= \left(3\ln(e^2 + 2e) - 6\ln(e + 2)\right)$	- (3ln3-6ln3)	or applies limits of 1 and 0 in x and subtracts the correct way round.			
	$= 3\ln(e^2 + 2e) - 6\ln(e + 2) +$	3ln3	3ln($e^2 + 2e) - 6\ln(e -$	$+2) + 3 \ln 3$	A1 o.e.
	A 1 2 1				Ī	[6]
3. (d)	Applying $u = q - 1$	-1		–1+0		
Way 3	$\left\{ \int_{1}^{e} \frac{6}{u(u+2)} du = \right\} \int_{2}^{1+e} \frac{6}{(\theta - 1)^{2}} du = \frac{1}{2} \int_{2}^{1+e} \frac{6}{u(u+2)} du = \frac{1}{2} \int_{2}^{1+e} \frac{1}{u(u+2)} du =$	$\frac{6}{\theta^2 - 1} du = \left[3 \ln \frac{1}{2} \right]$	$\left(\frac{\theta-1}{\theta+1}\right)\Big _{2}^{1+\epsilon}$		M1A1M1A1	
	$= 3\ln\left(\frac{1+e-1}{e+1+1}\right) - 3\ln\left(\frac{2-1}{2+1}\right)$	$\frac{1}{1}$ = $3\ln\left(\frac{e}{e+2}\right)$ -	$3\ln\left(\frac{1}{3}\right)$	3 rd M mark i	s dependent 2 nd M mark	dM1A1
						[6]

Question Number	Scheme		Notes		Marks
4.	$4x^2 - y^3 - 4xy + 2^y = 0$				
(a) Way 1	$\left\{ \underbrace{\frac{dy}{dx}} \times \right\} \underbrace{8x - 3y^2 \frac{dy}{dx}}_{-4y - 4x \frac{dy}{dx}} + \underbrace{\frac{-y}{2^y \ln 2 \frac{dy}{dx}}}_{-4y - 4x \frac{dy}{dx}} = 0$				M1 <u>A1 <u>M1</u> B1</u>
	$8(-2) - 3(4)^{2} \frac{dy}{dx} - 4(4) - 4(-2) \frac{dy}{dx} + 2^{4} \ln 2x$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	depen	dent on the first M mark	dM1
	$-16 - 48 \frac{dy}{dx} - 16 + 8 \frac{dy}{dx} + 16 \ln 2 \frac{dy}{dx}$	$\frac{y}{x} = 0$			
	$\frac{dy}{dx} = \frac{32}{-40 + 16\ln 2}$ or $\frac{-32}{40 - 16\ln 2}$ or $\frac{-32}{-40 + 16\ln 2}$	$\frac{4}{5+2\ln 2}$	or ${-5}$	$\frac{4}{+\ln 4}$ or exact equivalent	A1 cso
	NOTE: You can recover w	ork for pa	art (a) i	n part (b)	[6]
(b)	e.g. $m_{\rm N} = \frac{-40 + 16 \ln 2}{-32}$ or $\frac{40 - 16 \ln 2}{32}$	Applying	$m_{\rm N} = \frac{1}{n}$	$\frac{1}{n_{\rm T}}$ to find a numerical $m_{\rm N}$	M1
			Can be	implied by later working	
	• $y-4=\left(\frac{40-16\ln 2}{32}\right)(x-2)$			Using a numerical $m_{\rm N}$ (1 $m_{\rm T}$), either	
	Cuts y-axis $\Rightarrow x = 0 \Rightarrow y - 4 = \begin{pmatrix} -4 & -4 & -4 \\ -4 & -4 & -4 \end{pmatrix}$	40 - 16ln2 32	$\left(2\right)$	$y-4 = m_N(x-2)$ and sets $x=0$ in their normal equation	M1
	• $4 = \left(\frac{40 - 16\ln 2}{32}\right)\left(-2\right) + c$			$4 = (\text{their } m_{\text{N}})(-2) + c$	
	$\begin{cases} \Rightarrow c = 4 + \frac{40 - 16\ln 2}{16}, \text{ so } y = \frac{104 - 16\ln 2}{16} \end{cases}$	$\frac{12}{2} \Rightarrow$			
	$y \text{ (or } c) = \frac{13}{2} - \ln 2$			$\frac{13}{2}$ - ln2 or - ln2 + $\frac{13}{2}$	A1 cso isw
	Note: Allow exact equivalents in the	e form p	- ln2 fo	r the final A mark	[3]
		1			9
(a) Way 2	$\left\{\frac{dx}{dy}\times\right\} \underbrace{8x\frac{dx}{dy} - 3y^2}_{====================================$	= 0			M1 <u>A1</u> <u>M1</u> B1
	$8(-2)\frac{dx}{dy} - 3(4)^2 - 4(4)\frac{dx}{dy} - 4(-2) + 2^4 \ln 2 = \frac{32}{-40 + 16 \ln 2} \text{ or } \frac{-32}{40 - 16 \ln 2} \text{ or } \frac{-32}{-40 + 16 \ln 2}$	= 0	depen	dent on the first M mark	dM1
					A1 cso
	Note: You must be clear that Way 2 is				[6]
4 ()	NT 4 TO 41 00 4 0	Question	4 Notes	<u> </u>	
4. (a)	Note For the first four marks Writing down from no working				
		R	x - 4v		
		or $\frac{3v^2 + 1}{3v^2 + 1}$	$\frac{3}{4x-2^y}$	ln 2 scores M1A1M1B1	
	· · · · · · · · · · · · · · · · · · ·	•			
		or $\frac{1}{3y^2} + \frac{1}{3y^2}$	$\frac{y}{4x-2^y}$	ln2 scores M1A0M1B1	
	Writing $8x dx - 3y^2 dy - 4y dx - 4y dx$	$4x dy + 2^y 1$	$\ln 2 dy =$	0 scores M1A1M1B1	

		Question 4 Notes Continued
4. (a)	1 st M1	Differentiates implicitly to include <i>either</i> $\pm 4x \frac{dy}{dx}$ or $-y^3 \rightarrow \pm \lambda y^2 \frac{dy}{dx}$ or $2^y \rightarrow \pm m2^y \frac{dy}{dx}$
		(Ignore $\left(\frac{dy}{dx}\right)$). /, m are constants which can be 1
	1 st <u>A1</u>	Both $4x^2 - y^3 \to 8x - 3y^2 \frac{dy}{dx}$ and $= 0 \to = 0$
	Note	e.g. $8x - 3y^2 \frac{dy}{dx} - 4y - 4x \frac{dy}{dx} + 2^y \ln 2 \frac{dy}{dx} \rightarrow -3y^2 \frac{dy}{dx} - 4x \frac{dy}{dx} + 2^y \ln 2 \frac{dy}{dx} = 4y - 8x$
		or e.g. $-16 - 48 \frac{dy}{dx} - 16 + 8 \frac{dy}{dx} + 16 \ln 2 \frac{dy}{dx} \rightarrow -48 \frac{dy}{dx} + 8 \frac{dy}{dx} + 16 \ln 2 \frac{dy}{dx} = 32$
		will get 1 st A1 (implied) as the "= 0" can be implied by the rearrangement of their equation.
	2 nd <u>M1</u>	$-4xy \rightarrow -4y - 4x\frac{dy}{dx} \text{ or } 4y - 4x\frac{dy}{dx} \text{ or } -4y + 4x\frac{dy}{dx} \text{ or } 4y + 4x\frac{dy}{dx}$
	= B1	$2^{y} \rightarrow 2^{y} \ln 2 \frac{dy}{dx}$ or $2^{y} \rightarrow e^{y \ln 2} \ln 2 \frac{dy}{dx}$
	Note	If an extra term appears then award 1 st A0
	3 rd dM1	dependent on the first M mark
		For substituting $x = -2$ and $y = 4$ into an equation involving $\frac{dy}{dx}$
	Note	M1 can be gained by seeing at least one example of substituting $x = -2$ and at least one
		example of substituting $y = 4$ unless it is clear that they are instead applying $x = 4$ and $y = -2$
		Otherwise, you will NEED to check (with your calculator) that $x = -2$, $y = 4$ that has been
		substituted into their equation involving $\frac{dy}{dx}$
	Note	A1 cso: If the candidate's solution is not completely correct, then do not give this mark.
	Note	isw: You can, however, ignore subsequent working following on from correct solution.
(b)	Note	The 2 nd M1 mark can be implied by later working. Eg. Award 1 st M1 and 2 nd M1 for $\frac{y-4}{2} = \frac{-1}{\text{their } m_{\text{T}} \text{ evaluated at } x = -2 \text{ and } y = 4}$
	Note	A1: Allow the alternative answer $\left\{y = \right\} \ln \left(\frac{1}{2}\right) + \frac{13}{2\ln 2} (\ln 2)$ which is in the form $p + q \ln 2$
4. (a) Way 2	1st M1	Differentiates implicitly to include <i>either</i> $\pm 4y \frac{dx}{dy}$ or $4x^2 \rightarrow \pm /x \frac{dx}{dy}$
		(Ignore $\left(\frac{dx}{dy}\right)$ =). / is a constant which can be 1
	1 st <u>A1</u>	Both $4x^2 - y^3 \to 8x \frac{dx}{dy} - 3y^2$ and $= 0 \to = 0$
	2 nd <u>M1</u>	$-4xy \rightarrow -4y\frac{dx}{dy} - 4x \text{ or } 4y\frac{dx}{dy} - 4x \text{ or } -4y\frac{dx}{dy} + 4x \text{ or } 4y\frac{dx}{dy} + 4x$
	= B1	$2^y \rightarrow 2^y \ln 2$
	3 rd dM1	dependent on the first M mark
		For substituting $x = -2$ and $y = 4$ into an equation involving $\frac{dx}{dy}$
<u> </u>	l .	ř

Question Number		Scheme		Notes	Marks	3
5.	$y = e^{x}$	$x^{x} + 2e^{-x}, x^{3}0$				
Way 1	${V = } \rho$	$\int_0^{\ln 4} \left(e^x + 2e^{-x} \right)^2 dx$	For $\pi \int (e^x + 2e^{-x})^2$ Ignore limits and dx. Can be implied.			
	$=\{\pi$	$\int_0^{\ln 4} \left(e^{2x} + 4e^{-2x} + 4 \right) dx$	Expands $(e^x + 2e^{-x})^2 \rightarrow \pm ae^{2x} \pm be^{-2x} \pm d$ where $\alpha, \beta, \delta \neq 0$. Ignore π , integral sign, limits and dx . This can be implied by later work.			
	Integrates at least one of either $\pm a e^{2x}$ to give or $\pm b e^{-2x}$ to give $\pm \frac{b}{2} e^{-2x}$				M1	
	= {p	$\left \frac{1}{2} e^{2x} - 2e^{-2x} + 4x \right ^{114}$		dependent on the 2 nd M mark		+
		, [2] J ₀		$e^{2x} + 4e^{-2x} \rightarrow \frac{1}{2}e^{2x} - 2e^{-2x}$	A1 J	
			whic	ch can be simplified or un-simplified		
				$4 \rightarrow 4x \text{ or } 4e^0x$	B1 cao	
	$= \{\rho\} \Big(\Big($	$\left(\frac{1}{2}e^{2(\ln 4)} - 2e^{-2(\ln 4)} + 4(\ln 4)\right) - \left(\frac{1}{2}e^{2(\ln 4)}\right)$	$e^0 - 2e^0 + 4(0)$	dependent on the previous method mark. Some evidence of applying limits of ln 4 o.e. and 0 to a changed function in x and subtracts the correct way round. Note: A proper consideration of the limit of 0 is required.	dM1	
	$=\{\pi\}\Big(\Big($	$\left(8 - \frac{1}{8} + 4 \ln 4\right) - \left(\frac{1}{2} - 2\right)$				
		$= \frac{75}{8}\rho + 4\rho \ln 4 \text{ or } \frac{75}{8}\rho + 8\rho$ or $\frac{75}{8}\rho + \ln 2^{8\rho} \text{ or } \frac{75}{8}\rho + \rho \ln 2^{8\rho}$	(0		A1 isw	
						[7]
			Question 5 N	lotes		7
5.	Note	π is only required for the 1 st B	1 mark and the fina	al A1 mark.		
	Note	Give 1 st B0 for writing $\rho \hat{\mathbf{j}} y^2 \hat{\mathbf{j}}$	1x followed by $2p$	$2\dot{\mathbf{p}}\left(\mathbf{e}^{x}+2\mathbf{e}^{-x}\right)^{2}\mathrm{d}x$		
	Note	Give 1 st M1 for $(e^x + 2e^{-x})^2 =$	$e^{2x} + 4e^{-2x} + 2e^0$	$+ 2e^0$ because $d = 2e^0 + 2e^0$		
	Note	A decimal answer of 46.8731	or <i>p</i> (14.9201)	(without a correct exact answer) is A	0	
	Note $\rho \left[\frac{1}{2} e^{2x} - 2e^{-2x} + 4x \right]^{\ln 4}$ followed by awrt 46.9 (without a correct exact answer) is final dM1A0					
	Note	Allow exact equivalents which	should be in the fo	orm $a\rho + b\rho \ln c$ or $\rho(a + b \ln c)$,		
		where $a = \frac{75}{8}$ or $9\frac{3}{8}$ or 9.375	. Do not allow $a =$	$=\frac{150}{16} \text{ or } 9\frac{6}{16}$		
	Note	Give B1M0M1A1B0M1A0 for $\rho \int_0^{\ln 4} \left(e^x + 2e^{-x} \right)^2 dx \rightarrow \rho \int_0^{\ln 4} \left(e^x + 2e^{-x} \right)^2 dx$	the common response	onse		

Question	www.yea	sterdaysmathse	xam.com	Notes	Marks
Number				Tioles	Wiaiks
5.	$y = e^x + 2e^{-x}, x^3 0$			•	
Way 2	[() [(· · · · · · · · · · · · · · · · · ·			For $\pi \int \left(e^x + 2e^{-x} \right)^2$	B1
	Ignore limits and dx . Can be implied.				
	$u = e^x > \frac{du}{dx} = e^x = u \text{ and } x = \ln 4$	$\triangleright u = 4, x = 0 \triangleright$	$u = e^0 = 1$		
	$V = \{\rho\} \int_{1}^{4} \left(u + \frac{2}{u}\right)^{2} \frac{1}{u} du = \{\rho\} \int_{1}^{4} \left(u^{2} + \frac{4}{u^{2}} + 4\right) \frac{1}{u} du$				
	6 4 ($\left(e^{x}+2e^{-x}\right)$	$\left(\frac{x}{u}\right)^{2} \rightarrow \pm \partial u \pm \partial u^{-3} \pm \partial u^{-1}$	
	$= \left\{ \rho \right\} \int_{1}^{\pi} \left(u + \frac{4}{u^3} + \frac{4}{u} \right) \mathrm{d}u$		Ignore π , in	where $u = e^x$, α , β , $\delta \neq 0$. tegral sign, limits and du. to be implied by later work.	<u>M1</u>
		Integrates at least one of either $\pm \partial u$ to give $\pm \frac{\partial}{\partial u} u^2$			M1
	, [1 2] ⁴	or $\pm bu^{-3}$ t			
	$= \{\rho\} \left \frac{1}{2}u^2 - \frac{2}{u^2} + 4\ln u \right ^2$	dependent on the 2 nd M mark			
	$\lfloor 2 u \rfloor_1$	$u + 4u^{-3}$			A1
		sir			
			B1 cao		
	$= \left\{ \rho \right\} \left(\left(\frac{1}{2} (4)^2 - \frac{2}{(4)^2} + 4 \ln 4 \right) - \left(\frac{1}{2} (1)^2 + 4 \ln 4 \right) \right)$	mark. S limi function in	Some evidence of applying ts of 4 and 1 to a changed in <i>u</i> [or ln 4 o.e. and 0 to an function in <i>x</i>] and subtracts the correct way round.	dM1	
$= \{\pi\} \left(\left(8 - \frac{1}{8} + 4 \ln 4 \right) - \left(\frac{1}{2} - 2 \right) \right)$					
		$= \frac{75}{8}\rho + 4\rho \ln 4 \text{ or } \frac{75}{8}\rho + 8\rho \ln 2 \text{ or } \pi \left(\frac{75}{8} + 4\ln 4\right) \text{ or } \pi \left(\frac{75}{8} + 8\ln 2\right)$			A1 isw
	or $\frac{75}{8}p + \ln 2^{8p}$ or $\frac{75}{8}p + p$	$0 \ln 256$ or $\ln \left(2^{8\rho} \right)$	$e^{\frac{75}{8}\rho}$ or $\frac{1}{8}\rho$	$0(75+32\ln 4)$, etc	AI ISW
					[7]

Question Number	Schemesterdaysmathsexam.com Notes	Marks
	$l_1: \mathbf{r} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, l_2: \mathbf{r} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}; \overrightarrow{OA} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} \text{ lies on } l_1 \text{Let } q_{\text{Acute}} \text{ be the acute angle between } l_1 \text{ and } l_2 = l_1 + l_2 + l_3 + l_4 + l_4 + l_4 + l_4 + l_5 + l_$	l_2
(a)	$\{l_1 = l_2 \Rightarrow\} 28 - 5\lambda = 3 \ \{\Rightarrow \lambda = 5\}$ or $4 - \lambda = 5 + 3\mu$ and $4 + \lambda = 1 - 4\mu$ $\{\Rightarrow \mu = -2\}$ or $\lambda = 5$ or $\mu = -2$ (Can be implie)	₽ <i>m</i> B1
	$\left\{ \overrightarrow{OX} = \right\} \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \text{ or } \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} - 2 \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} \qquad \text{Puts } l_1 = l_2 \text{ and solves to find } / \text{ and/or} $ $\text{and substitutes their value for } \lambda \text{ into } $ $\text{or their value for } \mu \text{ into}$	l_1 M1
		A1 cao
(b) Way 1	$\mathbf{d_1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \mathbf{d_2} = \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$ Realisation that the dot production is required between $\mathbf{d_1}$ and or a multiple of $\mathbf{d_1}$ and	$\mathbf{d}_2 \mid \mathbf{M}_1$
	$\cos \theta = \frac{\begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}} \begin{cases} = \frac{-7}{\sqrt{27} \cdot \sqrt{25}} \end{cases}$ $\frac{\text{dependent on t}}{\text{1st M mark. Application between } \mathbf{d_1} \text{ and } \mathbf{d_2} \text{ or multiple of } \mathbf{d_1} \text{ and } \mathbf{d_2} \text{ or multiple of } \mathbf{d_1} \text{ and } \mathbf{d_2} \text{ or multiple of } \mathbf{d_1} \text{ and } \mathbf{d_2} \text{ or multiple of } \mathbf{d_2} \text{ or multiple of } \mathbf{d_3} \text{ or multiple of } \mathbf{d_4} or m$	dM1 dM1
	$\{q = 105.6303588 \ \triangleright\}\ \theta_{Acute} = 74.36964117 = 74.37 \ (2 \text{ dp})$ awrt 74.37 seen in (b) or	
		[3]
(c)	$\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} - \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} = \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix} \text{ or } A_{/=2}, X_{/=5} \Rightarrow AX = 3 \mathbf{d}_1 , \{ \mathbf{d}_1 = \sqrt{2}\}$	7}
	$AX = \sqrt{(-3)^2 + (-15)^2 + (3)^2}$ or $3\sqrt{27} \left\{ = \sqrt{243} \right\} = 9\sqrt{3}$ Full method for finding AX or $AX = \sqrt{(-3)^2 + (-15)^2 + (3)^2}$ or $3\sqrt{27} \left\{ = \sqrt{243} \right\} = 9\sqrt{3}$	
	, , , , , , , , , , , , , , , , , , ,	
	Note: You cannot recover work for part (c) in either part (d) or part (e). YA	[2]
(d) Way 1	$\frac{YA}{\text{"9}\sqrt{3}\text{"}} = \tan(\text{"74.36964"}) \qquad \frac{YA}{\text{their } \overline{AX} } = \tan\theta \text{ or } YA = \left(\text{their } \overline{AX} \right)\tan\theta, \text{ where } \theta$	
	their acute or obtuse angle between l_1 and $YA = 55.71758 = 55.7$ (1 dp) anything that rounds to 55	
	anything that founds to 3.	[2]
(e)	$\{A_{\lambda=2}, X_{\lambda=5} \Rightarrow \text{So } AX = 2AB \Rightarrow \text{So at } B, \ \lambda = 3.5 \text{ or } \lambda = 0.5\}$	
Way 1	$\overline{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 3.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$ Substitutes either $/ = \frac{(\text{their } /_X \text{ found in } (a)) + 2}{2}$ $\text{or } /_B = 3 - \frac{(\text{their } /_X \text{ found in } (a))}{2} \text{ into}$	M1:
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 0.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$ At least one position vector is correction to the position vector are corrections.	Ι Δ Ι
	$OB = \begin{bmatrix} 28 \\ 4 \end{bmatrix} + 0.5 \begin{bmatrix} -5 \\ 1 \end{bmatrix}; = \begin{bmatrix} 25.5 \\ 4.5 \end{bmatrix}$ Both position vectors are corre (Also allow coordinate)	ct. s). A1
		[3]
		13

Question Number	Scheme	Notes	Marks
6. (e)	$\begin{cases} AX = 2AB \Rightarrow AB = \frac{1}{2}AX. \text{ So, } \overrightarrow{OB} = \overrightarrow{OA} \pm \overrightarrow{A} \end{cases}$	$\overrightarrow{AB} \Rightarrow \overrightarrow{OB} = \overrightarrow{OA} \pm \frac{1}{2} \overrightarrow{AX}$	
Way 2	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} + 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies either $\overrightarrow{OA} + 0.5\overrightarrow{AX}$ or $\overrightarrow{OA} - 0.5\overrightarrow{AX}$ where (their \overrightarrow{AX}) = $\pm \left[\text{(their } \overrightarrow{OX}) - \overrightarrow{OA} \right]$	M1;
	$\overline{}$ $\begin{pmatrix} 2 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14 \\ 15 \\ 15 \\ 15 \\ 15$	At least one position vector is correct (Also allow coordinates)	A1
	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	Both position vectors are correct (Also allow coordinates)	A1
			[3]
6. (e) Way 3		$ \begin{vmatrix} 1(2-\lambda) \\ 5(2-\lambda) \\ -1(2-\lambda) \end{vmatrix}; \overrightarrow{AX} = \begin{pmatrix} -3 \\ -15 \\ 3 \end{vmatrix} $ $ AX^2 = 243 \triangleright $ $ AB^2 = 27(2-1)^2 $	
		$(-/)^2 \triangleright (2-/)^2 = \frac{9}{4} \text{ or } 27/^2 - 108/ + \frac{189}{4} = 0$	
	or $108/^2 - 432/ + 189 = 0$ or $4/^2 - 16/ + 6$	T	
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 3.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Full method of solving for $/$ the equation $AX^2 = 4AB^2$ using (their \overrightarrow{AX}) and \overrightarrow{AB} and substitutes at least one of their values for $/$ into l_1	M1;
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \\ 4 \end{pmatrix} + 0.5 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1
	$\begin{pmatrix} 2 & 1 \\ 4 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 4 & 5 \end{pmatrix}$	Both position vectors are correct (Also allow coordinates)	A1
		= 3.5 or / = 0.5 can be found from solving either $\pm 2(10 - 5/)$ or $z: -3 = \pm 2(-2 + /)$	[3]
6. (e) Way 4	$\overrightarrow{OB} = \begin{pmatrix} -1\\3\\9 \end{pmatrix} + 0.5 \begin{pmatrix} 3\\15\\-3 \end{pmatrix}; = \begin{pmatrix} 0.5\\10.5\\7.5 \end{pmatrix}$	Applies either (their \overrightarrow{OX}) + 0.5 \overrightarrow{XA} or (their \overrightarrow{OX}) + 1.5 \overrightarrow{XA} where (their \overrightarrow{XA}) = \overrightarrow{OA} – (their \overrightarrow{OX})	M1;
	$\overrightarrow{OB} = \begin{pmatrix} -1\\3\\9 \end{pmatrix} + 1.5 \begin{pmatrix} 3\\15\\-3 \end{pmatrix}; = \begin{pmatrix} 3.5\\25.5\\4.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1
	$OB = \begin{pmatrix} 3 \\ 9 \end{pmatrix} + 1.5 \begin{pmatrix} 13 \\ -3 \end{pmatrix}, = \begin{pmatrix} 23.5 \\ 4.5 \end{pmatrix}$	Both position vectors are correct (Also allow coordinates)	A1
			[3]
6. (e) Way 5	$\overrightarrow{OB} = 0.5 \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies $\frac{1}{2} \left[(\text{their } \overrightarrow{OX}) + \overrightarrow{OA} \right]$	M1;
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	At least one position vector is correct (Also allow coordinates)	A1
	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} - 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix}$	Both position vectors are correct (Also allow coordinates)	A1
			[3]

Question Number		Scheme		Notes	Marks		
6. (e) Way 6	$\left\{ \left \overrightarrow{AX} \right = 9\sqrt{3}, \left d_1 \right = 3\sqrt{3} \implies K = \frac{9\sqrt{3}}{3\sqrt{3}} = 3 \implies \overrightarrow{AX} = 3\mathbf{d}_1; \text{ So, } \overrightarrow{OB} = \overrightarrow{OA} \pm \frac{1}{2}\overrightarrow{AX} = \overrightarrow{OA} \pm \frac{1}{2}(3\mathbf{d}_1) \right\}$						
		$= \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} + 0.5 \begin{pmatrix} 3 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$ $\overrightarrow{OA} + 0.5(K\mathbf{d_1}) \text{ or } \overrightarrow{OA} - 0.5(K\mathbf{d_1}),$ where $K = \frac{\text{their } \overrightarrow{AX} }{3\sqrt{3}}$					
	$\overrightarrow{OB} = $	$ \begin{vmatrix} 2 \\ 18 \\ 6 \end{vmatrix} - 0.5 \begin{pmatrix} 3 \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \end{vmatrix}; = \begin{pmatrix} 3.5 \\ 25.5 \\ 4.5 \end{pmatrix} $	At 1	least one position vector is correct (Also allow coordinates) Both position vectors are correct (Also allow coordinates)	A1 A1		
				(Also allow coordinates)	[3]		
		Ques	tion 6 Note	es			
6. (a)	Note	M1 can be implied by at least two correct	t follow thr	rough coordinates from their / or from	om their <i>m</i>		
(b)	Note	Evaluating the dot product (i.e. (-1)(3) + for the M1, dM1 marks.	+ (-5)(0) +	(1)(-4)) is not required			
	Note	For M1 dM1: Allow one slip in writing	down their	direction vectors, \mathbf{d}_1 and \mathbf{d}_2			
	Note	Allow M1 dM1 for					
		$\left(\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}\right) \cos q = \pm \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$					
	Note	$q = 1.297995^{c}$, (without evidence of awrt 74.37) is A0					
6. (b)		ative Method: Vector Cross Product					
Way 2		pply this scheme if it is clear that a vector $= \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & -5 & 1 \\ 3 & 0 & -4 \end{vmatrix} = \end{cases}$		$ \begin{array}{c} $	M1		
			1	, 1 2			
	sin q =	$\sin q = \frac{\sqrt{(20)^2 + (-1)^2 + (15)^2}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}}$ Applies the vector product formula between $\mathbf{d_1}$ and $\mathbf{d_2}$ or a multiple of $\mathbf{d_1}$ and $\mathbf{d_2}$					
	$\sin q = \frac{\sqrt{626}}{\sqrt{27}.\sqrt{25}} \Rightarrow q = 74.36964117 = 74.37 \text{ (2 dp)}$ awrt 74.37 seen in (b) only A1						
					[3]		
6. (c)	Finds the difference between their \overrightarrow{OX} and \overrightarrow{OA} and applies Pythagoras to the result to find AX or X OR applies $\left \left(\text{their } /_X \text{ found in } (a) \right) - 2 \right \sqrt{(-1)^2 + (-5)^2 + (1)^2}$				d AX or XA		
	Note						
	Note Allow M1A1 for $\begin{pmatrix} 3 \\ 15 \\ 3 \end{pmatrix}$ leading to $AX = \sqrt{(3)^2 + (15)^2 + (3)^2} = \sqrt{243} = 9\sqrt{3}$						
(e)	Note	Imply M1 for no working leading to any tw	wo compone	ents of one of the \overrightarrow{OB} which are cor	rect.		

Question Number	Scheme		Notes	Mar	ks
6. (d) Way 2	$\frac{"9\sqrt{3}"}{YA} = \tan(90 - "74.36964")$		$ \overrightarrow{AX} = \tan(90 - \theta) \text{ or } AY = \frac{\text{their } \overrightarrow{AX} }{\tan(90 - \theta)}, $ acute or obtuse angle between l_1 and l_2	M1	
	<i>YA</i> = 55.71758 = 55.7 (1 dp)		anything that rounds to 55.7	A1	[2]
6. (d) Way 3	$\frac{YA}{\sin("74.36964")} = \frac{"9\sqrt{3}"}{\sin(90 - "74.36964.")}$	")	$\frac{YA}{\sin \theta} = \frac{\text{their } \overline{AX} }{\sin(90 - \theta)} \text{ o.e., where } \theta \text{ is the acute or obtuse angle between } l_1 \text{ and } l_2$	M1	[2]
	$YA = \frac{9\sqrt{3}\sin(74.36964)}{\sin(15.63036)} = 55.71758$	= 55.7 (1 dp)	anything that rounds to 55.7	A1	
	, ,				[2]
6. (d) Way 4	$\mathbf{d}_{1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \overrightarrow{OY} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$	=			
	$\overrightarrow{YA} = \begin{pmatrix} 2\\18\\6 \end{pmatrix} - \begin{pmatrix} 5+3\mu\\3\\1-4\mu \end{pmatrix} = \begin{pmatrix} -3-3\mu\\15\\5+4\mu \end{pmatrix}$				
	$\overrightarrow{YA} \bullet \mathbf{d}_1 = 0 \implies \begin{pmatrix} -3 - 3\mu \\ 15 \\ 5 + 4\mu \end{pmatrix} \bullet \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} =$	= 0	(Allow a sign slip in copying \mathbf{d}_1) Applies $\overrightarrow{YA} \bullet \mathbf{d}_1 = 0$ or $\overrightarrow{AY} \bullet \mathbf{d}_1 = 0$	M1	
	$\Rightarrow 3 + 3m - 75 + 5 + 4m = 0 \Rightarrow m = \frac{67}{7}$		or $\overrightarrow{YA} \bullet (K \mathbf{d}_1) = 0$ or $\overrightarrow{AY} \bullet (K \mathbf{d}_1) = 0$		
	$YA^2 = \left(-3 - 3\left(\frac{67}{7}\right)\right)^2 + \left(15\right)^2 + \left(5 + 4\right)^2$		o find m and applies Pythagoras to find a numerical expression for AY^2 or for the distance AY		
	So, $YA = \sqrt{\left(-\frac{222}{7}\right)^2 + \left(15\right)^2 + \left(\frac{303}{7}\right)^2}$	ı			
	= 55.71758 = 55.7 (1 dp)	222 30	anything that rounds to 55.7	A1	[2]
	Note: $\overrightarrow{OY} = \frac{236}{7}\mathbf{i} + 3\mathbf{j} - \frac{261}{7}\mathbf{k}$, $\overrightarrow{AY} = -$	$\frac{1}{7}$ i + 15j + $\frac{1}{2}$	— k		_

Question Number	Scheme		Notes	Marks
7.	$\frac{\mathrm{d}h}{\mathrm{d}t} = k\sqrt{(h-9)}, 9 < h \in 200;$	$h = 130, \frac{\mathrm{d}h}{\mathrm{d}t} = -1.1$		
(a)	$-1.1 = k \sqrt{(130 - 9)} \bowtie k =$		30 and either $\frac{dh}{dt} = -1.1$ or $\frac{dh}{dt} = 1.1$ equation and rearranges to give $k =$	M1
	so, $k = -\frac{1}{10}$ or -0.1		$k = -\frac{1}{10}$ or -0.1	A1
(b) Way 1	$\int \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int k \mathrm{d}t$	the wrong position	correctly. dh and dt should not be in s, although this mark can be implied by ater working. Ignore the integral signs.	B1
	$\int (h-9)^{-\frac{1}{2}} dh = \int k dt$			
	1	Integrates $\frac{1}{\sqrt{(1+\epsilon)^2}}$	$\frac{\pm \lambda}{h-9}$ to give $\pm m\sqrt{(h-9)}$; /, $m = 0$	M1
	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \left(+c\right)$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \text{ or } \frac{6}{2}$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{ with/without } + c,$ t, which can be un-simplified or simplified.	A1
	${t = 0, h = 200 \triangleright} 2\sqrt{(200 - 9)} =$	k(0) + c	Some evidence of applying both $t = 0$ and $h = 200$ to changed equation ing a constant of integration, e.g. c or A	M1 \
		+ 2√ 191	dependent on the previous M mark Applies $h = 50$ and their value of c to their changed equation and rearranges to find the value of $t =$	dM1
	$t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (minu	tes) (nearest minute)	$t = 20\sqrt{191} - 20\sqrt{41}$ isw or awrt 148	A1 cso
				[6]
(b) Way 2	$\int_{200}^{50} \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int_{0}^{T} k \mathrm{d}t$	in the wrong positi	les correctly. dh and dt should not be ions, although this mark can be implied Integral signs and limits not necessary.	B1
	$\int_{200}^{50} \sqrt{(h-3)^{-\frac{1}{2}}} dh = \int_{0}^{T} k dt$			
	$\left[\frac{1}{(1-0)^{\frac{1}{2}}} \right]^{50}$	Integrates $\frac{1}{\sqrt{(}}$	$\frac{\pm \lambda}{h-9)} \text{ to give } \pm m\sqrt{(h-9)}; /, m^{-1} 0$	M1
	$\left[\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}\right]_{200}^{50} = \left[kt\right]_{0}^{T}$ Integrates $\frac{\pm \lambda}{\sqrt{(h-9)}}$ to give $\pm m\sqrt{(h-9)}$; $/$, $m \neq 0$ $\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \text{ or } \frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{ with/without limits,}$		A1	
			t, which can be un-simplified or simplified. The part of the par	
	$2\sqrt{41} - 2\sqrt{191} = kt$ or kT and (can be implied) $t = 0$ to their changed equation		M1 7	
	$t = \frac{2\sqrt{41 - 2\sqrt{191}}}{-0.1}$ dependent on the previous M mark Then rearranges to find the value of $t =$		dM1	
	$t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (minu	tes) (nearest minute)	$t = 20\sqrt{191} - 20\sqrt{41}$ or awrt 148 or 2 hours and awrt 28 minutes	A1 cso
				[6]
				8

www.yesterdaysmathsexam.com

		Question 7 Notes
7. (b)	Note	Allow first B1 for writing $\frac{dt}{dh} = \frac{1}{k\sqrt{(h-9)}}$ or $\frac{dt}{dh} = \frac{1}{(\text{their } k)\sqrt{(h-9)}}$ or equivalent
	Note	$\frac{\mathrm{d}t}{\mathrm{d}h} = \frac{1}{k\sqrt{(h-9)}} \text{ leading to } t = \frac{2}{k}\sqrt{(h-9)} \ (+c) \text{ with/without } + c \text{ is B1M1A1}$
	Note	After finding $k = 0.1$ in part (a), it is only possible to gain full marks in part (b) by initially writing
		$\frac{\mathrm{d}h}{\mathrm{d}t} = -k\sqrt{(h-9)} \text{ or } \grave{0}\frac{\mathrm{d}h}{\sqrt{(h-9)}} = \grave{0}-k\mathrm{d}t \text{ or } \frac{\mathrm{d}h}{\mathrm{d}t} = -0.1\sqrt{(h-9)} \text{ or } \grave{0}\frac{\mathrm{d}h}{\sqrt{(h-9)}} = \grave{0}-0.1\mathrm{d}t$
		Otherwise, those candidates who find $k = 0.1$ in part (a), should lose at least the final A1 mark in
		part (b).

Question Number	Schemeesterdaysmathsexam.com			Notes	Marks	
8.	$x = 3q\sin q, \ y = \sec^3 q, \ 0 \pm q$	$<\frac{\rho}{2}$				
(a)	8 2 3 1			Sets $y = 8$ to find θ and attempts to substitute their θ into $x = 3q \sin q$	M1	
	so k (or x) = $\frac{\sqrt{3}\pi}{2}$				$\frac{\sqrt{3}p}{2} \text{ or } \frac{3p}{2\sqrt{3}}$	A1
	Note: Obtaining to	wo value for k	k without ac	ecepting the o	correct value is final A0	[2]
(b)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sin\theta + 3\theta\cos\theta$				$3\theta \sin \theta \rightarrow 3\sin \theta + 3\theta \cos \theta$ Can be implied by later working	B1
	$\left\{ \int y \frac{\mathrm{d}x}{\mathrm{d}q} \left\{ \mathrm{d}q \right\} \right\} = \int (\sec^3 q)(3s)$	$\sin q + 3q\cos q$	$q)\{dq\}$		Applies $\left(\pm K \sec^3 q\right) \left(\text{their } \frac{dx}{dq}\right)$ Ignore integral sign and dq ; K^{-1} 0	M1
			Achieves		esult no errors in their working, e.g.	
	$= 3 \hat{\mathbf{j}} q \sec^2 q + \tan q \sec^2 q \mathrm{d}q$				bracketing or manipulation errors. It sign and $d\theta$ in their final answer.	A1 *
	$x = 0$ and $x = k \implies \underline{\alpha} = 0$ ar	and $\beta = \frac{\pi}{3}$	$\alpha = 0$	and $\beta = \frac{\pi}{3}$	or evidence of $0 \to 0$ and $k \to \frac{\pi}{3}$	B1
	Note: The w	ork for the fi	nal B1 mar	k must be see	en in part (b) only.	[4]
				$q \sec^2 q$	$\rightarrow Aqg(q) - B \int g(q), A > 0, B > 0,$	
			where $g(q)$ is a trigonometric function in q and			M1
(a)	(()		g(Q) = thei	r $\hat{\mathbf{g}} \sec^2 q \mathrm{d}q$. [Note: $\mathbf{g}(q)$ $^1 \sec^2 q$]	· <u>-</u>
(c) Way 1	$\left \left\{ \hat{\mathbf{j}} q \sec^2 q dq \right\} = q \tan q - \hat{\mathbf{j}} 1$	$\tan q \{dq\}$	<u> </u>			
vvavi		, (, ,		de	enendent on the previous M mark	
way 1		, (, ,	Eithe		ependent on the previous M mark $\rightarrow Aq \tan q - B \int \tan q, A > 0, B > 0$	dM1
vvay 1		, (, ,	Eithe		-	dM1
way 1	$= q \tan q - \ln(\sec q)$, (,)		er / qsec² q -	$ \Rightarrow Aq \tan q - B \int \tan q, A > 0, B > 0 $ or $q \sec^2 q \rightarrow q \tan q - \int \tan q$	dM1
way 1	$= q \tan q - \ln(\sec q)$	$+\ln(\cos q)$	qsec	$\frac{er}{c^2 q \to q \tan q}$	$ \Rightarrow Aq \tan q - B \int \tan q, A > 0, B > 0 $ or $q \sec^2 q \rightarrow q \tan q - \int \tan q $ $ q - \ln(\sec q) \text{ or } q \tan q + \ln(\cos q) \text{ or } $	dM1
way 1	$= q \tan q - \ln(\sec q)$ $\mathbf{or} = q \tan q$	+ ln(cos <i>q</i>)	qsec /qsec²q	$\frac{e^{r} / q \sec^{2} q}{e^{2} q \rightarrow q \tan q}$ $\frac{e^{2} q}{e^{2} q} \rightarrow q \tan q$	$ \Rightarrow Aq \tan q - B \int \tan q, A > 0, B > 0 $ or $q \sec^2 q \rightarrow q \tan q - \int \tan q$	
way 1	$= q \tan q - \ln(\sec q)$ or = $q \tan q$ Note: Condone	+ ln(cos <i>q</i>)	<i>q</i> sec / <i>q</i> sec ² <i>q</i> <i>q</i> tan <i>q</i> - ln(s	er $/q \sec^2 q$ - $e^2 q \rightarrow q \tan q$ $\rightarrow /q \tan q$ $\sec x) \text{ or } q \text{ t}$	$\Rightarrow Aq \tan q - B \int \tan q, A > 0, B > 0$ or $q \sec^2 q \rightarrow q \tan q - \int \tan q$ $y - \ln(\sec q) \text{ or } q \tan q + \ln(\cos q) \text{ or}$ $y - \ln(\sec q) \text{ or } q \tan q + \ln(\cos q) \text{ or}$ $y - \ln(\sec q) \text{ or } q \tan q + \ln(\cos q) \text{ or}$ $y - \ln(\sec q) \text{ or } q \tan q + \ln(\cos q) \text{ or}$ $y - \ln(\sec q) \text{ or } q \tan q + \ln(\cos q) \text{ or}$ $y - \ln(\cos q) \text{ or } q \tan q + \ln(\cos q) \text{ or}$ $y - \ln(\cos q) \text{ or } q \tan q + \ln(\cos q) \text{ or}$	
way 1	$= q \tan q - \ln(\sec q)$ $\mathbf{or} = q \tan q$	+ ln(cos <i>q</i>)	<i>q</i> sec / <i>q</i> sec ² <i>q</i> <i>q</i> tan <i>q</i> - ln(s	er $/q \sec^2 q$ - $e^2 q \rightarrow q \tan q$ $\rightarrow /q \tan q$ $\sec x) \text{ or } q \text{ t}$	$Aq \tan q - B \int \tan q, A > 0, B > 0$ or $q \sec^2 q \rightarrow q \tan q - \int \tan q$ $A - \ln(\sec q) \text{ or } q \tan q + \ln(\cos q) \text{ or } d + \ln(\cos q) \text{ or } d + \ln(\cos q)$	
way 1	$= q \tan q - \ln(\sec q)$ or = $q \tan q$ Note: Condone	$+ \ln(\cos q)$ $q \sec^2 q \to 0$	$q \sec^2 q$ $q \tan q - \ln(s - s)$ $\tan \theta \sec^2 s$	$\frac{e^{2} q \rightarrow q \tan q}{e^{2} q \rightarrow q \tan q}$ $\frac{\partial^{2} q}{\partial x^{2}} = \frac{\partial^{2} q}{\partial x^{2}} = \frac{\partial^{2} q}{\partial x^{2}}$ $\frac{\partial^{2} q}{\partial x^{2}} = \frac{\partial^{2} q}{\partial x^{2}} = \partial^$		A1
way 1	$= q \tan q - \ln(\sec q)$ $\mathbf{or} = q \tan q$ $\mathbf{Note: Condone}$ $\left\{ \hat{0} \tan q \sec^2 q \mathrm{d}q \right\}$	$+ \ln(\cos q)$ $q \sec^2 q \to 0$	$q \sec^{2} q$ $q \tan q - \ln(s \tan \theta \sec^{2} \theta + \frac{1}{2} \tan \theta \cos^{2} \theta + \frac{1}$	er $/q \sec^2 q - \frac{1}{2}$ $e^2 q \rightarrow q \tan q - \frac{1}{2}$ $e^2 q \rightarrow q \tan q - \frac{1}{2}$ $e^2 \theta$ or $/ \tan q - \frac{1}{2}$ $e^2 q$ or $\frac{1}{2}$ sec $e^2 q$, where $e^2 q$	or $q \sec^2 q \rightarrow q \tan q - \int \tan q$ $q - \ln(\sec q)$ or $q \tan q + \ln(\cos q)$ or $q \cot q \cot q + \ln(\cos q)$ or $q \cot q \cot q \cot q \cot q$ or $q \cot q $	A1
way 1	$= q \tan q - \ln(\sec q)$ or $= q \tan q$ Note: Condone $\left\{ \grave{0} \tan q \sec^2 q dq \right\}$ $= \frac{1}{2} \tan^2 q \text{ or } \frac{1}{2} \sec^2 q$ or $\frac{1}{2u^2} \text{ where } u = \cos q$	$+ \ln(\cos q)$ $q \sec^2 q \to 0$	$q \sec^{2} q$ $q \tan q - \ln(s)$ $\tan \theta \sec^{2} s$ $e^{2} q \rightarrow \frac{1}{2} \tan s$ or $0.5i$	$\frac{e^{x}}{g^{2}} = \frac{1}{2} \exp^{2} q - \frac{1}{2} \exp^$	or $q \sec^2 q \rightarrow q \tan q - \int \tan q$ or $q \sec^2 q \rightarrow q \tan q - \int \tan q$ $q - \ln(\sec q)$ or $q \tan q + \ln(\cos q)$ or $q \tan q + \ln(\cos q)$ or $q \tan q + \ln(\cos q)$ $q - \ln(\sec q)$ or $q \tan q + \ln(\cos q)$ or $q \tan q + \ln(\cos q)$ $q \cot q + \ln(\cos q)$ for A1 $q \sec^2 q \rightarrow \pm C \tan^2 q$ or $\pm C \sec^2 q$ or $\pm Cu^{-2}$, where $u = \cos q$ $q \cot q \cot q \cot q \cot q \cot q$ $q \cot q \cot q \cot q \cot q \cot q$ $q \cot q \cot q \cot q \cot q \cot q \cot q$ $q \cot q \cot q$ $q \cot q \cot$	A1 M1
way 1	$= q \tan q - \ln(\sec q)$ or = $q \tan q$ Note: Condone $\left\{ \grave{0} \tan q \sec^2 q dq \right\}$ $= \frac{1}{2} \tan^2 q \text{ or } \frac{1}{2} \sec^2 q$	$+ \ln(\cos q)$ $q \sec^2 q \to 0$	$q \sec^{2} q$ $q \tan q - \ln(s)$ $\tan \theta \sec^{2} s$ $e^{2} q \rightarrow \frac{1}{2} \tan s$ or $0.5i$	$\frac{e^{x}}{g^{2}} = \frac{1}{2} \exp^{2} q - \frac{1}{2} \exp^$	or $q \sec^2 q \rightarrow q \tan q - \int \tan q$ $q - \ln(\sec q)$ or $q \tan q + \ln(\cos q)$ or $q \cot q \cot q + \ln(\cos q)$ or $q \cot q \cot q \cot q \cot q$ or $q \cot q $	A1 M1
vvay 1	$= q \tan q - \ln(\sec q)$ or $= q \tan q$ Note: Condone $\left\{ \grave{0} \tan q \sec^2 q dq \right\}$ $= \frac{1}{2} \tan^2 q \text{ or } \frac{1}{2} \sec^2 q$ or $\frac{1}{2u^2} \text{ where } u = \cos q$	$+ \ln(\cos q)$ $q \sec^2 q \to \alpha$ $\tan q \sec^2 q$	$q \sec^{2} q$ $q \tan q - \ln(s \tan \theta \sec^{2} \theta)$ $e^{2} q \rightarrow \frac{1}{2} \tan \theta$ or $0.5i$ or λ	er $/q \sec^2 q - \frac{1}{2} \exp^2 q - \frac{1}{2} \exp^2 q - \frac{1}{2} \sec x$ or $q \cot^2 q$ or $\frac{1}{2} \sec u^{-2}$, where $u \cot^2 q$	or $q \sec^2 q \rightarrow q \tan q - \int \tan q$ or $q \sec^2 q \rightarrow q \tan q - \int \tan q$ $q - \ln(\sec q)$ or $q \tan q + \ln(\cos q)$ or $q \cot q + \ln(\cos q)$ or $q \cot q \cot q$ or $q \cot q \cot q \cot q$ or $q \cot q \cot q \cot q \cot q$	A1 M1
vvay 1	$= q \tan q - \ln(\sec q)$ or $= q \tan q$ Note: Condone $\left\{ \grave{0} \tan q \sec^2 q dq \right\}$ $= \frac{1}{2} \tan^2 q \text{ or } \frac{1}{2} \sec^2 q$ or $\frac{1}{2u^2} \text{ where } u = \cos q$ or $\frac{1}{2} u^2 \text{ where } u = \tan q$	$+ \ln(\cos q)$ $q \sec^2 q \to c$ $\tan q \sec^2 q \to c$ $+ \frac{3}{2} \tan^2 q \Big]_0^{\frac{\rho}{3}} = c$	$q \sec^{2} q$ $q \tan q - \ln(s)$ $\tan \theta \sec^{2} q$ $e^{2} q \rightarrow \frac{1}{2} \tan q$ or $0.5i$ or λ or $0.5/u^{-1}$ or $\left[3q \tan q\right]$	er $/q \sec^2 q - \frac{e^2 q}{2} \rightarrow q \tan q$ $\Rightarrow /q \tan q - \frac{e^2 q}{2} \rightarrow r + \frac{e^2 q}{2} \rightarrow r + \frac{1}{2} \sec q$ $\Rightarrow e^2 q \text{ or } \frac{1}{2} \sec q$ $\Rightarrow e^2 q \rightarrow q \tan q$ $\Rightarrow e^2 q \rightarrow q \cot q$	or $q \sec^2 q \rightarrow q \tan q - \int \tan q$ $q - \ln(\sec q)$ or $q \tan q + \ln(\cos q)$ or $q \cot q \cot q$ or $q \cot q \cot q \cot q$ or $q \cot q \cot q \cot q \cot q$ or $q \cot q $	A1 M1
vvay 1	$= q \tan q - \ln(\sec q)$ or $= q \tan q$ Note: Condone $\left\{ \grave{0} \tan q \sec^2 q dq \right\}$ $= \frac{1}{2} \tan^2 q \text{ or } \frac{1}{2} \sec^2 q$ or $\frac{1}{2u^2}$ where $u = \cos q$ or $\frac{1}{2}u^2$ where $u = \tan q$ $\left\{ \operatorname{Area}(R) \right\} = \left[3q \tan q - 3\ln(\sec q) + 2 \right]$ $= \left(3\left(\frac{\pi}{3}\right) \sqrt{3} - 3\ln 2 + 2 \right)$	$tan q sec$ $tan q sec$ $+ \frac{3}{2}tan^{2} q \int_{0}^{\frac{\rho}{3}} dt$ $+ \frac{3}{2}(3) - (0)$	$q \sec^{2} q$ $q \tan q - \ln(s)$ $\tan \theta \sec^{2} \theta$ $\cot \theta \cos^{2} \theta$ $or 0.5/u$ $or 0.5/u$ $or (3(\frac{\pi}{3}))$	er $/q \sec^2 q - \frac{1}{2} \exp^2 q - \frac{1}{2} \exp^2 q - \frac{1}{2} \sec x$) or $q \cot^2 q$ or $\frac{1}{2} \sec u$ $e^2 q \text{ or } \frac{1}{2} \sec u$	or $q \sec^2 q \rightarrow q \tan q - \int \tan q$ $q - \ln(\sec q)$ or $q \tan q + \ln(\cos q)$ or $q \cot q \cot q$ or $q \cot q \cot q \cot q$ or $q \cot q \cot q \cot q \cot q$ or $q \cot q $	A1 M1
way 1	$= q \tan q - \ln(\sec q)$ or $= q \tan q$ Note: Condone $\left\{ \grave{0} \tan q \sec^2 q dq \right\}$ $= \frac{1}{2} \tan^2 q \text{ or } \frac{1}{2} \sec^2 q$ or $\frac{1}{2u^2}$ where $u = \cos q$ or $\frac{1}{2}u^2$ where $u = \tan q$ $\left\{ \operatorname{Area}(R) \right\} = \left[3q \tan q - 3\ln(\sec q) + 2 \right]$ $= \left(3\left(\frac{\pi}{3}\right) \sqrt{3} - 3\ln 2 + 2 \right)$	$tan q sec$ $tan q sec$ $+ \frac{3}{2}tan^{2} q \int_{0}^{\frac{\rho}{3}} dt$ $+ \frac{3}{2}(3) - (0)$	$q \sec^{2} q$ $q \tan q - \ln(s)$ $\tan \theta \sec^{2} \theta$ $\cot \theta \cos^{2} \theta$ $or 0.5/u$ $or 0.5/u$ $or (3(\frac{\pi}{3}))$	er $/q \sec^2 q - \frac{1}{2} \exp^2 q - \frac{1}{2} \exp^2 q - \frac{1}{2} \sec x$) or $q \cot^2 q$ or $\frac{1}{2} \sec u$ $e^2 q \text{ or } \frac{1}{2} \sec u$	or $q \sec^2 q \rightarrow q \tan q - \int \tan q$ or $q \sec^2 q \rightarrow q \tan q - \int \tan q$ $q - \ln(\sec q)$ or $q \tan q + \ln(\cos q)$ or $q \cot q \cot q$ or $q \cot q \cot q \cot q$ or $q \cot q \cot q \cot q$ or $q \cot q \cot q \cot q \cot q$ or $q \cot q $	A1 A1 A1

	www.yesterdaysmatnsexam.com					
Question Number		Scheme		Notes	Marks	
8. (c)	Way 2 for the first 5 marks: Applying integration by parts on $\partial (q + \tan q) \sec^2 q dq$					
Way 2						
	h(q) and	g(q) are trigonometric functions in	q and g	$g(q) = \text{their } \hat{g} \sec^2 q dq. \text{ [Note: } g(q)^{-1} \sec^2 q \text{]}$		
			A(q	$+ \tan q) g(q) - B\dot{0}(1 + h(q))g(q), A > 0, B > 0$	M1	
				dependent on the previous M mark		
	= (q + ta)	$ \ln q $) $ \tan q - \hat{0}(1 + \sec^2 q) \tan q \left\{ dq \right\} $	47.5	Either $/[(q + \tan q)\sec^2 q] \rightarrow$	dM1	
			A(q)	$+ \tan q \tan q - B \hat{0} (1 + h(q)) \tan q, A^{-1} 0, B > 0$	UIVII	
				or $(q + \tan q)\tan q - \dot{0}(1 + \mathbf{h}(q))\tan q$		
	= (q + ta)	$(\ln q) \tan q - \hat{\mathbf{j}} (\tan q + \tan q \sec^2 q) \{ \mathbf{d} \cdot \mathbf{j} \}$	q			
	= (q + ta)	$(\ln q) \tan q - \ln(\sec q) - \dot{\mathbf{j}} \tan q \sec^2 q$	$\{dq\}$	$(q + \tan q)\tan q - \ln(\sec q) \text{ o.e.}$ or $/[(q + \tan q)\tan q - \ln(\sec q)] \text{ o.e.}$	A1	
		$= (q + \tan q)\tan q - \ln(\sec q) - \frac{1}{2}\tan^2 q$ or $= (q + \tan q)\tan q - \ln(\sec q) - \frac{1}{2}\sec^2 q $ etc.		$\tan q \sec^2 q \to \pm C \tan^2 q \text{ or } \pm C \sec^2 q$	M1	
				$(q + \tan q)\tan q - \frac{1}{2}\tan^2 q$	A1	
	,	2		or $(q + \tan q)\tan q - \frac{1}{2}\sec^2 q$		
	Note	Allow the first two marks in part (c) for $q \tan q - i \tan q$ embedded in their working				
	Note	Allow the first three marks in part (c) for $q \tan q - \ln(\sec q)$ embedded in their working				
	Note	Allow 3 rd M1 2 nd A1 marks for eit	her tan ²	$q - \frac{1}{2}\tan^2 q$ or $\tan^2 q - \frac{1}{2}\sec^2 q$		
		embedded in their working				
				on 8 Notes		
8. (a)	Note	Allow M1 for an answer of $k = \text{awrt } 2.72$ without reference to $\frac{\sqrt{3}p}{2}$ or $\frac{3p}{2\sqrt{3}}$				
	Note	Allow M1 for an answer of $k = 3\left(\arccos(\frac{1}{2})\right)\sin\left(\arccos(\frac{1}{2})\right)$ without reference to $\frac{\sqrt{3}p}{2}$ or				
	Note	E.g. allow M1 for $q = 60^{\circ}$, leading	E.g. allow M1 for $q = 60^{\circ}$, leading to $k = 3(60)\sin(60)$ or $k = 90\sqrt{3}$			

		www.yesterdaysmathsexa	ontinued					
8. (b)	Note	To gain A1, dq does not need to appear until the	ey obtain $3 \grave{0} (q \sec^2 q + \tan q \sec^2 q) dq$					
	Note	For M1, their $\frac{dx}{dq}$, where their $\frac{dx}{dq}$ ¹ $3q\sin q$, ne	For M1, their $\frac{dx}{dq}$, where their $\frac{dx}{dq}$ ¹ $3q\sin q$, needs to be a trigonometric function in q					
	Note	Vriting $\hat{\mathbf{j}}(\sec^3 q)(3\sin q + 3q\cos q) = 3\hat{\mathbf{j}}(q\sec^2 q + \tan q\sec^2 q)dq$ is sufficient for B1M1A1						
	Note	Vriting $\frac{dx}{d\theta} = 3\sin\theta + 3\theta\cos\theta$ followed by writing $\int y \frac{dx}{dq} dq = 3\int (q\sec^2q + \tan q\sec^2q)dq$						
	Note	s sufficient for B1M1A1 The final A mark would be lost for $ \mathring{0} \frac{1}{\cos^3 q} 3\sin q + 3q\cos q = 3 \mathring{0} (q\sec^2 q + \tan q\sec^2 q) dq $						
	Note	[lack of brackets in this particular case]. Give 2^{nd} B0 for $a = 0$ and $b = 60^{\circ}$, without reference	erence to $b = \frac{p}{a}$					
(a)	Note	A decimal answer of 7.861956551 (without a c	3					
(c)	Note	First three marks are for integrating $\theta \sec^2 \theta$ with	,					
	Note	Fourth and fifth marks are for integrating θ see θ with						
	Note	Candidates are not penalised for writing $\ln \sec q$						
	Note	$q \sec^2 q \rightarrow q \tan q + \ln(\sec q)$ WITH NO INTER	RMEDIATE WORKING is M0M0A0					
	Note	$q \sec^2 q \rightarrow q \tan q - \ln(\cos q)$ WITH NO INTEL	RMEDIATE WORKING is M0M0A0					
	Note	$q \sec^2 q \rightarrow q \tan q - \ln(\sec q)$ WITH NO INTER	RMEDIATE WORKING is M1M1A1					
	Note	$q \sec^2 q \rightarrow q \tan q + \ln(\cos q)$ WITH NO INTEL	RMEDIATE WORKING is M1M1A1					
	Note	Writing a correct $uv - \partial v \frac{du}{dx}$ with $u = q$, $\frac{dv}{dq} = \tan q$, $\frac{du}{dq} = 1$ and $v = \text{their } g(q)$ and making one error in the direct application of this formula is 1 st M1 only.						
8. (c)	Alternativ	we method for finding $\int \tan q \sec^2 q dq$,					
		$q \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}q} = \sec^2 q$ $e^2 q \Rightarrow v = \tan q$						
	,	$aq\sec^2 q dq = \tan^2 q - i \tan q \sec^2 q dq$						
	·	$q\sec^2 q \mathrm{d}q = \tan^2 q$						
			$\tan \theta \sec^2 \theta \text{ or } \to \pm C \tan^2 q$	M1				
	ù tan⊄sec	$e^2 q dq = \frac{1}{2} \tan^2 q$	$\tan q \sec^2 q \to \frac{1}{2} \tan^2 q$	A1				
	1 .	$ \sec q \qquad \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}q} = \sec q \tan q $ $ = \sec q \tan q \qquad \Rightarrow v = \sec q $	~					
	⊳ ù tan q	$q \sec^2 q dq = \sec^2 q - \hat{g} \sec^2 q \tan q dq$						
	⊳ 2j tan	$q\sec^2 q \mathrm{d}q = \sec^2 q$						
	ὴ tan q sec	$e^2 q dq = \frac{1}{2} \sec^2 q$	$\tan \theta \sec^2 \theta \text{ or } \to \pm C \sec^2 q$					
	,	2	$\tan q \sec^2 q \to \frac{1}{2} \sec^2 q \text{A1}$					

www.yesterdaysmathsexam.com