edexcel

Mark Scheme (Results) June 2015

Pearson Edexcel International A Level in Statistics 2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA042723
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Marks
1. (a)	$\{\mathrm{P}(X>4)=\} 1-\mathrm{F}(4) \quad 1-\mathrm{F}(4)$ seen or used	M1
	$\left\{=1-\frac{3}{5}\right\}=\frac{2}{5}$	A1
		[2]
(b)	$\mathrm{P}(3<X<a)=0.642$	
	$\mathrm{F}(a)-\mathrm{F}(3)=0.642$	M1 o.e.
	$\mathrm{F}(a)-\frac{1}{20}\left(3^{2}-4\right)=0.642\{\Rightarrow \mathrm{~F}(a)=0.892\} \quad$ Correct equation	A1 o.e.
	$\frac{1}{5}(2 a-5)-" \frac{1}{20}\left(3^{2}-4\right) "=0.642 \Rightarrow a=\ldots \quad \begin{aligned} & \text { Solving this equation o.e., } \end{aligned}$	dM1
	$\left\{\frac{1}{5}(2 a-5)=0.892 \Rightarrow\right\} a=4.73$ (or $x=4.73$)	A1 cao
		[4]
(b)	Alternative Method for Part (b)	
	$\int_{3}^{4}\left(\frac{1}{10} x\right)\{d x\} \quad \begin{array}{r} \text { Correct expression for finding the } \\ \text { probability between } x=3 \text { and } x=4 \end{array}$	M1
	$\left\{\left[\frac{x^{2}}{20}\right]_{3}^{4}\right\}=\frac{4^{2}}{20}-\frac{3^{2}}{20}\left\{=\frac{7}{20}\right\} \quad \begin{array}{r} \text { Correct } \frac{4^{2}}{20}-\frac{3^{2}}{20} \\ \text { simplified or un-simplified } \end{array}$	A1
	$\left.\int_{3}^{4}\left(\frac{1}{10} x\right)\{\mathrm{d} x\}+\int_{4}^{a}\left(\frac{2}{5}\right)\{\mathrm{d} x\}=0.642 \Rightarrow a=\ldots \quad \begin{array}{r}\text { Writes a correct equation and } \\ \text { attempts to solve leading to } \\ a=\ldots \text { (or } x=\ldots\end{array}\right)$	dM1
		A1 cao
		[4]
(c)	$f(x)=\frac{\mathrm{d}}{\mathrm{d}}\left(\frac{1}{20}\left(x^{2}-4\right)\right)=\frac{1}{10} x \quad$ Attempt at differentiation. See notes.	M1
	$\begin{aligned} \mathrm{f}(x)= & \frac{\mathrm{d} x}{}\left(\frac{1}{20}\left(x^{2}-4\right)\right)=\frac{1}{10} x \quad \text { At least one of } \frac{1}{10} x \text { or } \frac{2}{5} \\ & \mathrm{~d}(1\end{aligned}$	A1
	$\mathrm{f}(x)=\frac{\mathrm{a}}{\mathrm{~d} x}\left[\frac{1}{5}(2 x-5)\right)=\frac{2}{5} \quad \text { Both } \frac{1}{10} x \text { and } \frac{2}{5}$	A1
	$\mathrm{f}(x)=\left\{\begin{array}{lr} \frac{1}{10} x, \quad 2 \leqslant x \leqslant 4 \\ \frac{2}{5}, \quad 4<x \leqslant 5 & \begin{array}{r} \text { This mark is dependent on M1 } \\ \text { All three lines with limits correctly } \\ \text { followed through from their } \mathrm{F}^{\prime}(x) \end{array} \\ 0, \text { otherwise } & \end{array}\right.$	dB1ft
		[4]
		10

	Question 1 Notes	
1. (a)	M1 Note	1-F(4) seen or used. Can be implied by either $1-\frac{3}{5}$ or $1-\frac{1}{5}(2(4)-5)$ or $1-\frac{1}{20}\left(4^{2}-4\right)$ The probability statements $1-\mathrm{P}(X \leqslant 4)$ or $1-\mathrm{P}(X<4)$ are not sufficient for M1
	A1 Note	$\frac{2}{5} \text { or } 0.4$ Give M1A1 for the correct answer from no working.
(b)	NOTE	In part (b), candidates are allowed to write - $\mathrm{F}(a)$ as either $\mathrm{P}(X<a)$ or $\mathrm{P}(X \leqslant a)$. Also condone $\mathrm{F}(a)$ written as $\mathrm{F}(x)$ - $\mathrm{F}(3)$ as either $\mathrm{P}(X<3)$ or $\mathrm{P}(X \leqslant 3)$
	M1	For writing $\mathrm{F}(a)-\mathrm{F}(3)=0.642$ or equivalent (see NOTE above)
	A1 Note	For an un-simplified $\mathrm{F}(a)-\frac{1}{20}\left(3^{2}-4\right)=0.642$ or equivalent (see NOTE above) Give $1^{\text {st }} \mathrm{M} 11^{\text {st }} \mathrm{A} 1$ for $\mathrm{F}(a)=0.892$ or $\mathrm{P}(X \geqslant a)=0.108$
	$\begin{gathered} \text { SC } \\ \text { Note } \end{gathered}$	Allow SC $1^{\text {st }}$ M1 $1^{\text {st }}$ A1 for $\frac{1}{20}\left(a^{2}-4\right)-\frac{1}{20}\left(3^{2}-4\right)=0.642$ Give $1^{\text {st }} \mathrm{M} 0$ for $\mathrm{F}(a-1)-\mathrm{F}(3)=0.642$ o.e. without a correct acceptable statement
	dM1 Note	dependent on the FIRST method mark being awarded. Attempts to solve $\frac{1}{5}(2 a-5)-$ "their $\mathrm{F}(3)$ " $=0.642$ leading to $a=\ldots($ or $x=\ldots)$ dM1 can be given for either $\frac{1}{5}(2 a-5)=0.892$ or $1-\frac{1}{5}(2 a-5)=0.108$ leading to $a=\ldots$ (or $x=\ldots$)
	A1	$a=4.73$ (or $x=4.73$) cao
	Note Note	Give M0A0M0A0 for $\mathrm{F}(a)-(1-\mathrm{F}(3))=0.642\{\Rightarrow \mathrm{~F}(a)=1.392\}$ Give M0A0M0A0 for $\int_{3}^{a}\left(\frac{1}{10} x\right) \mathrm{d} x=0.642$ (this solves to give awrt 4.67)
(c)	M1	At least one of either $\begin{aligned} & \frac{1}{20}\left(x^{2}-4\right) \rightarrow \pm \alpha x \pm \beta, \alpha \neq 0, \beta \text { can be } 0 \\ & \frac{1}{5}(2 x-5) \rightarrow \pm \delta, \delta \neq 0 \end{aligned}$
	$1^{\text {st }}$ A1	At least one of $\frac{1}{10} x$ or $\frac{2}{5}$. Can be simplified or un-simplified.
	$2^{\text {nd }}$ A1	Both $\frac{1}{10} x$ and $\frac{2}{5}$. Can be simplified or un-simplified.
	dB1ft Note Note Note	dependent on the FIRST method mark being awarded. All three lines with limits correctly followed through from their $\mathrm{F}^{\prime}(x)$ Condone the use of < rather than \leqslant or vice versa. 0 , otherwise is equivalent to $0, x<2$ and $0, x>5$ In part (c), accept f being expressed consistently in another variable eg. u

Question Number	Scheme	Marks
3. (a)	$\{\mathrm{f}(x)\} \uparrow \quad \begin{array}{r} \text { A horizontal line drawn above the } \\ x \text {-axis in the first quadrant } \end{array}$	B1
	 dependent on the first B mark Labels of $c, 2 c$ and $\frac{1}{c}$, marked on the graph. Ignore $\{O\},\{x\}$ and $\{\mathrm{f}(x)\}$	dB1
		[2]
(b)		B1
	$\left\{\mathrm{E}\left(X^{2}\right)=\right\} \int_{c}^{2 c}\left(\frac{1}{2 c-c} x^{2}\right)\{\mathrm{d} x\} \quad \int_{c}^{2 c} x^{2} \mathrm{f}(x)\{\mathrm{d} x\} \text { where } \mathrm{f}(x) \text { is }$	M1
	$=\left[\frac{1}{c}\left(\frac{x^{3}}{3}\right)\right]_{\{c\}}^{\{2 c\}} \quad \begin{array}{rr} \pm \operatorname{Ag}(c) x^{2} \rightarrow \pm B g(c) x^{3}, A \neq 0, B \neq 0 \\ \text { (Ignore limits for this mark) } \end{array}$	M1
	$=\left(\frac{(2 c)^{3}}{3 c}-\frac{c^{3}}{3 c}\right)\left\{=\frac{7 c^{2}}{3}\right\}$ dependent on first M mark. Applies limits of $2 c$ and c to an integrated function in x and subtracts the correct way round.	dM1
	$\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}$	
	$=\frac{7 c^{2}}{3}-\left(\frac{3 c}{2}\right)^{2}$ dependent on first M mark. Applying the variance formula correctly with their $\mathrm{E}(X)$	dM1
	$=\frac{c^{2}}{12} *$ Correct proof	A1
		[6]
(c)	Correct un-simplified (or simplified) $\begin{aligned} & X>2(2 c-X) \text { inequality statement } \\ & \text { Can be implied by } X>\frac{4 c}{3} \end{aligned}$	M1
	$\xrightarrow{\Rightarrow} X>4 c-2 X \Rightarrow 3 X>4 c$	
	$\Rightarrow X>\frac{4 c}{3} \quad \text { Rearranges } X>2(2 c-X) \text { to give } X>\text {. } 1 \text { or } X \text { den } \text {... }$	dM1
	$\left\{\mathrm{P}(X>2(2 c-X))=\mathrm{P}\left(X>\frac{4 c}{3}\right)\right\}=\frac{2}{3}$	A1
		[3]
		11
	Note: In (c), give M2 for either $X>\frac{4 c}{3}$ or $\mathrm{P}\left(X>\frac{4 c}{3}\right)$ or $1-\mathrm{P}\left(X<\frac{4 c}{3}\right)$	

	Question 3 Notes	
3. (a)	$1^{\text {st }}$ B1	A horizontal line drawn above the x-axis in the first quadrant
	Note Note	dependent on the FIRST B mark being awarded. Labels of $c, 2 c$ and $\frac{1}{c}$, marked on the graph. Allow the label $\frac{1}{2 c-c}$ as an alternative to $\frac{1}{c}$ Ignore $\{O\},\{x\}$ and $\{\mathrm{f}(x)\}$
(b)	B1 Note Note	$\mathrm{E}(X)=\frac{3 c}{2}$, simplified or un-simplified. This mark can be implied. B1 can be given for an un-simplified $\left(\frac{(2 c)^{2}}{c}\right)-\left(\frac{c^{2}}{c}\right)$ or $\frac{3 c^{2}}{2 c}$ or $2 c-\frac{c}{2}$ etc. $\int_{c}^{2 c} \frac{1}{c} x \mathrm{~d} x$ or $\left[\frac{x^{2}}{2 c}\right]_{c}^{2 c}$ are not sufficient for B1.
	$\begin{gathered} \mathbf{1}^{\text {st }} \mathbf{1} \\ \text { Note } \end{gathered}$	Correct $\mathrm{E}\left(X^{2}\right)$ expression of $\int_{c}^{2 c} x^{2} \mathrm{f}(x)\{\mathrm{d} x\}$ where $\mathrm{f}(x)$ is equivalent to $\frac{1}{c}$. Must have limits of $2 c$ and c. Note the $\mathrm{d} x$ is not required for this mark.
	$\begin{gathered} 2^{\text {nd }} \mathrm{M} 1 \\ \text { Note } \end{gathered}$	$\pm \mathrm{Ag}(c) x^{2} \rightarrow \pm B \mathrm{~g}(c) x^{3}, A \neq 0, B \neq 0$, where $\mathrm{g}(c)$ is a function of c Limits are not required for the second $2^{\text {nd }}$ M1 mark.
	$3^{\text {rd }}$ dM1	dependent on the FIRST method mark being awarded. Applies limits of $2 c$ and c to an integrated function in x and subtracts the correct way round.
	$4^{\text {th }} \text { M1 }$ Note	dependent on the FIRST method mark being awarded. Applying the variance formula correctly with their follow through $\mathrm{E}(X)$. Allow $4^{\text {th }}$ M1 for $\{\operatorname{Var}(X)=\} \int_{c}^{2 c}\left(\frac{1}{2 c-c} x^{2}\right)\{\mathrm{d} x\}-\left(\int_{c}^{2 c}\left(\frac{1}{2 c-c} x\right)\{\mathrm{d} x\}\right)^{2}$
	A1	Correctly proves that $\operatorname{Var}(X)=\frac{c^{2}}{12}$. Note: Answer is given
(c)	$1^{\text {st }}$ M1	For writing down a correctly un-simplified (or simplified) inequality statement. Eg: $X>2(2 c-X)$ or $\mathrm{P}(X>2(2 c-X))$ (Note: " P " is not required for this mark)
	$\begin{gathered} 2^{\text {nd }} \mathbf{d M 1} \\ \text { Note } \\ \text { Note } \\ \hline \end{gathered}$	dependent on the FIRST method mark being awarded. Rearranges to give $\mathrm{P}(X> \pm \alpha c)$ or $\mathrm{P}(X< \pm \alpha c)$ or $X> \pm \alpha c$ or $X< \pm \alpha c, \alpha \neq 0$ " P " is not required for these cases above Also allow, with P , the statements $1-\mathrm{P}(X< \pm \alpha c)$ or $1-\mathrm{P}(X> \pm \alpha c), \alpha \neq 0$
	NOTE	Give M2 for either $X>\frac{4 c}{3}$ or $\mathrm{P}\left(X>\frac{4 c}{3}\right)$ or $1-\mathrm{P}\left(X<\frac{4 c}{3}\right)$
	A1	$\frac{2}{3} \text { or } \frac{4}{6} \text { or } 0.6$
	Note	Give M1M1A1 for a final answer of $\frac{2}{3}$ from any working.

Question Number	Scheme	Marks
3. (b)	Alternative Method 1 for Part (b)	
	$\{\operatorname{Var}(X)=\}$	
	Implied $\mathrm{E}(X)=\frac{3 c}{2}$	B1
	$\begin{array}{r} \int_{c}^{2 c}\left(\frac{1}{2 c-c}\left(x-\frac{3}{2} c\right)^{2}\right)\{\mathrm{d} x\} \quad \begin{array}{l} \int_{c}^{2 c} x^{2} \mathrm{f}(x)\{\mathrm{d} x\} \text { where } \mathrm{f}(x) \text { is equivalent to } \frac{1}{c} . \\ \text { Applies } \int_{c}^{2 c} \mathrm{f}(x)\left(x-\frac{3 c}{2}\right)^{2}\{\mathrm{~d} x\} \text { where } \mathrm{f}(x) \text { is a } \\ \text { is equivalent to } \frac{1}{c} \text {. (Limits are required) } \end{array} . . \begin{array}{l} \text { (Limits are required) } \end{array} . \end{array}$	
		$2^{\text {nd }} \mathrm{M} 1$
	$=\frac{1}{3 c}\left(\left(\frac{c}{2}\right)^{3}-\left(-\frac{c}{2}\right)^{3}\right) \quad \begin{array}{r} \text { dependent on first } \mathbf{M ~ m a r k} \end{array}$	$3^{\text {rd }}$ dM1
	$=\frac{1}{3 c}\left(\frac{c^{3}}{4}\right)=\frac{c^{2}}{12} * \quad$ Correct proof	A1
		[6]
	Alternative Method 2 for Part (b)	
(b)	$\{\operatorname{Var}(X)=\}$	
	$\int_{c}^{2 c}\left(\frac{1}{2 c-c}\left(x-\frac{3}{2} c\right)^{2}\right)\{\mathrm{d} x\} \quad$ Award as in Alt. Method 1	$\begin{aligned} & \text { B1 } \\ & \mathbf{1}^{\text {st }} \text { M1 } \\ & \mathbf{4}^{\text {th }} \text { M1 } \end{aligned}$
	$=\frac{1}{c} \int_{c}^{2 c}\left(x^{2}-3 c x+\frac{9}{4} c^{2}\right)\{\mathrm{d} x\}$	
	$=\frac{1}{c}\left[\frac{1}{3} x^{3}-\frac{3}{2} c x^{2}+\frac{9}{4} c^{2} x\right]_{\{c\}}^{\{2 c\}} \begin{array}{r} \pm A g(c)(x-\delta)^{2} \rightarrow \pm B \mathrm{~g}(c)\left(\pm \alpha x^{3} \pm \beta x^{2} \pm \delta x\right)^{3}, \\ A, B, \alpha, \beta, \delta \neq 0 \text { (Ignore limits for this mark) }\end{array}$	$\mathbf{2}^{\text {nd }} \mathrm{M} 1$
	$=\frac{1}{c}\left(\left(\frac{1}{3}(2 c)^{3}-\frac{3}{2} c(2 c)^{2}+\frac{9}{4} c^{2}(2 c)\right)-\left(\frac{1}{3}(c)^{3}-\frac{3}{2} c(c)^{2}+\frac{9}{4} c^{2}(c)\right)\right) \quad$ As earlier	$3^{\text {rd }}$ dM1
	$=\frac{1}{c}\left(\left(\frac{8}{3} c^{3}-6 c^{3}+\frac{9}{2} c^{3}\right)-\left(\frac{1}{3} c^{3}-\frac{3}{2} c^{3}+\frac{9}{4} c^{3}\right)\right)$	
	$=\frac{1}{c}\left(\left(\frac{7}{6} c^{3}\right)-\left(\frac{13}{12} c^{3}\right)\right)=\frac{1}{c}\left(\frac{c^{3}}{12}\right)$	
	$=\frac{c^{2}}{12} * \quad$ Correct proof	A1
		[6]

Question Number	Scheme			Marks
4. (a)	$\begin{aligned} & \mathrm{P}(X=0 \mid k=3)=0.0498 \\ & \mathrm{P}(X=0 \mid k=4)=0.0183 \\ & \mathrm{P}(X=0 \mid k=5)=0.0067 \\ & \left\{\mathrm{e}^{-k}<0.025 \Rightarrow k>\right\} 3.688 \ldots \\ & \mathrm{P}(X \leqslant 8 \mid k=3)=0.9962, \mathrm{P}(X \geqslant 9 \mid k=3)=0.0038 \\ & \mathrm{P}(X \leqslant 8 \mid k=4)=0.9786, \mathrm{P}(X \geqslant 9 \mid k=4)=0.0214 \\ & \mathrm{P}(X \leqslant 8 \mid k=5)=0.9319, \quad \mathrm{P}(X \geqslant 9 \mid k=5)=0.0681 \end{aligned}$		At least one of these 9 probabilites or awrt 3.7 seen in their working	B1
			Both $\mathrm{P}(X=0)=0.0183$ or awrt 3.7 and either $\mathrm{P}(X \geqslant 9)=0.0214$ or $\mathrm{P}(X \leqslant 8)=0.9786$	B1
	Both tails less than 2.5% when $k=4$		Final answer given as $k=4$	B1
				[3]
(b)	Actual sig. level $=0.0214+0.0183$		See notes	M1
	$=0.0397$		0.0397	A1 cao
				[2]
				5
	Question 4 Notes			
4. (a)				
	$\mathbf{1 s t}^{\text {st }}$ B1	For any of $0.0498,0.0183,0.0067,0.9962,0.9786,0.9319,0.0038,0.0214,0.0681$ or awrt 3.7 seen in their working.		
	$\begin{gathered} \mathbf{2 n d}^{\text {nd }} \\ \text { B1 } \end{gathered}$	For both $\mathrm{P}(X=0)=0.0183$ or awrt 3.7 and either $\mathrm{P}(X \geqslant 9)=0.0214$ or $\mathrm{P}(X \leqslant 8)=0.9786$ These must be written as probability statements.		
	$3^{\text {rd }}$ B1	Final answer given as $k=4$. Also allow $\lambda=4$		
	Note	Do not recover working for part (a) in part (b)		
(b)	M1	For the addition of two probabilities for two tails, where each tail < 0.05		
	A1	0.0397 cao		

Question Number	Scheme						Marks
5.	$Y=\frac{2 X_{1}+X_{2}}{3} \text { where }$		x	6	9		
			$X=x)$	0.35	0.65		
	Note: You can mark parts (a) and (b) together for this question.						
(a)	$\begin{array}{ll} \frac{2(6)+6}{3}=6 & \frac{2(9)+9}{3}=9 \\ \frac{2(6)+9}{3}=7 & \frac{2(9)+6}{3}=8 \end{array}$			At least three correct values for y of either $6,7,8$ or 9			B1
				Correct values for y of 6, 78 and 9 only			B1
							[2]
(b)							M1
							M1
	sample	$(6,6)$	$(6,9)$	$(9,6)$	$(9,9)$	See notes	A1
	y	6	7	8	9		
	$\mathrm{P}(\mathrm{Y}=y)$	0.1225	0.2275	0.2275	0.4225	At least 3 correct	A1
	or $\mathrm{P}(Y=y)$	$\frac{49}{400}$	$\frac{91}{400}$	$\frac{91}{400}$	$\frac{169}{400}$	See notes	B1ft
							[5]
(c)	$\{\mathrm{E}(Y)\}=6(0.1225)+7(0.2275)+8(0.2275)+9(0.4225)=7.95$ or $\frac{159}{20}$						M1;A1 cao
							[2]
							9
(c)	Alternative Method for Part (c)						
	$\left\{\mathrm{E}(Y)=\frac{2}{3} \mathrm{E}\left(X_{1}\right)+\frac{1}{3} \mathrm{E}\left(X_{2}\right)=\frac{2}{3} \mathrm{E}(X)+\frac{1}{3} \mathrm{E}(X)=\mathrm{E}(X)\right\}$						
	$=6(0.35)+9(0.65) ;=7.95$ or $\frac{159}{20}$						M1; A1 cao
	[2]						

	Question 5 Notes	
5. (a)	Note	You can mark parts (a) and (b) together for this question.
	$\begin{aligned} & \mathbf{1}^{\text {st }} \mathbf{B 1} \\ & 2^{\text {nd }} \mathbf{B 1} \end{aligned}$	At least three correct values for y of either $6,7,8$ or 9 Correct values for y of 6,78 and 9 only. Note: Any extra value(s) given is $2^{\text {nd }} \mathrm{BO}$.
(b)	$1^{\text {st }}$ M1	At least one of either $(0.35)^{2},(0.65)(0.35),(0.35)(0.65)$ or $(0.65)^{2}$. Can be implied.
	$2^{\text {nd }}$ M1	At least two of either $(0.35)^{2},(0.65)(0.35),(0.35)(0.65)$ or $(0.65)^{2}$. Can be implied.
	$1^{\text {st }}$ A1	At least two correct probabilities given which either must be linked to a correct sample (x_{1}, x_{2}) or their followed through y-value.
	$\begin{gathered} \mathbf{2}^{\text {nd }} \mathrm{A} 1 \\ \text { B1ft } \end{gathered}$	At least 3 correct probabilities corresponding to the correct value of y. Either - all 4 correct probabilities corresponding to the correct value of y - 6, 7, 8 and 9 with two correct probabilities, two other probabilities and $\sum \mathrm{p}(y)=1$
	Note Note Note	B1ft is dependent on $1^{\text {st }}$ M1 $2^{\text {nd }}$ M1 $1^{\text {st }}$ A1. A table is not required but y-values must be linked with their probabilities for $2^{\text {nd }}$ A1 B1 Eg: (6, 6) by itself does not count as an acceptable value of y
(c)	M1 Note	A correct follow through expression for $\mathrm{E}(Y)$ using their distribution Also allow M1 for a correct expression for $\mathrm{E}(X)$
	A1	$7.95 \text { cao Allow } \frac{159}{20}$

Question Number	Scheme	Marks
6. (a)	$X \sim \mathrm{~B}(30,0.4) \quad X \sim \mathrm{~B}(30,0.4)$	B1
		[1]
(b)	Eg: Any one of either Any one of these - Constant probabilty of buying insurance - Customers buy insurance independently of each other context which refers to insurance	B1
		[1]
(c)	$\mathrm{P}(X<r)<0.05$	
	$\begin{array}{lr} \{\mathrm{P}(X \leqslant 8)=\mathrm{P}(X<9)\}=0.0940 & \text { For at least one of either } 0.094(0) \text { or } \\ \{\mathrm{P}(X \leqslant 7)=\mathrm{P}(X<8)\}=0.0435 & 0.0435 \text { seen in part (c) } \end{array}$	M1
		A1
		[2]
(d)	$\{Y \sim \mathrm{~B}(100,0.4) \approx\} Y \sim \mathrm{~N}(40,24) \quad$.	M1
	$\{\mathrm{P}(Y \geqslant t)\} \approx \mathrm{P}(Y>t-0.5) \quad$ For either $t-0.5$ or $t+0.5$	M1
	$\left\{=\mathrm{P}\left(Z>\frac{(t-0.5)-40}{\sqrt{24}}\right)=0.938\right\}$	
	Standardising (\pm) with their mean and their standard deviation and either $\sqrt{24}$ $t-0.5$ or t or $t+0.5$ or $t-1.5$	M1
	-1.54 or 1.54 or awrt -1.54 or awrt 1.54	B1
	So, $\{$ So, $t=32.955571 \ldots\} \Rightarrow t=33$	A1 cao
		[6]
(e)	$\mathrm{H}_{0}: p=0.4, \mathrm{H}_{1}: p<0.4$ Both hypotheses are stated correctly	B1
	\{Under $\mathrm{H}_{0}, X \sim \mathrm{~B}(25,0.4)$ \}	
	Probability Method Critical Region Method	
	$\mathrm{P}(X \leqslant 6) ;=0.0736$	M1
	$\mathrm{P}(X \leqslant 6) ;=0.0736$ $\{\mathrm{P}(X \leqslant 7)=0.1536\}$ $\mathrm{CR}: X \leqslant 6$	A1
	$\{0.0736<0.10\}$	
	Reject H_{0} or significant or 6 lies in the CR Dependent on $\mathbf{1}^{\text {st }}$ M1	dM1
	So percentage (or proportion) who buy insurance has decreased.	A1 cso
		[5]
		15

Question Number	Scheme	Marks
7. (a)	$\int_{0}^{k}\left(\frac{2 x}{15}\right)\{d x\}+\int_{5}^{k} \frac{1}{5}(5-x)\{d x\}=1$ Complete method of writing a correct equation for the area with correct limits and setting the result equal to 1	M1
	$\left[\frac{x^{2}}{15}\right]_{\{0\}}^{\{k\}}+\left[x-\frac{x^{2}}{10}\right]_{\{k\}}^{\{5\}}=1 \quad$ Both $\frac{2 x}{15} \rightarrow \frac{x^{2}}{15}$ and $\frac{1}{5}(5-x) \rightarrow$ Evidence of $x^{n} \rightarrow x^{n+1}$	M1
	$\left(\frac{k^{2}}{15}\right)+\left(5-\frac{5^{2}}{10}-\left(k-\frac{k^{2}}{10}\right)\right)=1$	
	$2 k^{2}+150-75-30 k+3 k^{2}=30$	
	$k^{2}-6 k+9=0 \quad \text { or } \frac{k^{2}}{6}-k+\frac{3}{2}=0$	
	$(k-3)(k-3)=0 \Rightarrow k=\ldots$ Dependent on the $1^{\text {st }} \mathrm{M}$ mark Attempt to solve a 3 term quadratic equation leading to $k=\ldots$	dM1
		A1
		[5]
(b)	\{mode $=\} 3$ - 3 or states their k value from part (a)	B1 1 ft
		[1]
(c)	$\left\{\mathrm{P}\left(\left.X \leqslant \frac{k}{2} \right\rvert\, X \leqslant k\right)=\frac{\mathrm{P}\left(X \leqslant \frac{k}{2} \cap X \leqslant k\right)}{\mathrm{P}(X \leqslant k)}\right\}$	
	$=\frac{\mathrm{P}\left(X \leqslant \frac{k}{2}\right)}{\mathrm{P}(X \leqslant k)} \quad$ Either $\frac{\mathrm{P}\left(X \leqslant \frac{k}{2}\right)}{\mathrm{P}(X \leqslant k)}$ or $\frac{\mathrm{F}\left(\frac{k}{2}\right)}{\mathrm{F}(k)}$ seen or implied.	M1
	$=\frac{\int_{0}^{\frac{k}{2}}\left(\frac{2 x}{15}\right)\{d x\}}{\int_{0}^{k}\left(\frac{2 x}{15}\right)\{d x\}}$ see notes	dM1
	$=\frac{\frac{1}{15}\left(\frac{k}{2}\right)^{2}}{\frac{k^{2}}{15}} \quad \begin{array}{r} \text { Correct substitution of their } \\ \text { limits or their } k \text { into } \\ \text { conditional probability } \\ \text { formula. } \end{array}$	A1ft
	$\left\{=\frac{\left(\frac{9}{60}\right)}{\left(\frac{9}{15}\right)}=\frac{0.15}{0.6}\right\}=\frac{1}{4} \quad \frac{1}{4}$ or 0.25	A1 cao
		[4]
		10

	Question 7 Notes	
7. (a)	$\mathbf{1}^{\text {st }} \mathrm{M} 1$	$\int_{0}^{k}\left(\frac{2 x}{15}\right)\{\mathrm{d} x\}+\int_{5}^{k} \frac{1}{5}(5-x)\{\mathrm{d} x\}=1$. (with correct limits and $=1$) $\{\mathrm{d} x\}$ not needed.
	$2^{\text {nd }}$ M1	Evidence of $x^{n} \rightarrow x^{n+1}$
	$1^{\text {st }} \mathrm{A} 1$	Both $\frac{2 x}{15} \rightarrow \frac{x^{2}}{15}$ and $\frac{1}{5}(5-x) \rightarrow x-\frac{x^{2}}{10}$
	$3^{\text {rd }}$ dM1	dependent on the FIRST method mark being awarded. Attempt to solve a three term quadratic equation. Please see table on page 20
	$2^{\text {nd }} \mathrm{A1}$	$k=3$ from correct working.
	Note Note	WARNING: $\frac{2 x}{15}=\frac{1}{5}(5-x)$ to get $k=3$ is M0MOA0M0A0. It is possible to give M0M1A1M0A0 in part (a).
(b)	B1 ft	Mode $=3$ or candidate states their k value from part (a), where $0<$ their $k<5$
(c)	$\mathbf{1}^{\text {st }} \mathrm{M} 1$ Note	Either $\frac{\mathrm{P}\left(X \leqslant \frac{k}{2}\right)}{\mathrm{P}(X \leqslant k)}$ or $\frac{\mathrm{F}\left(\frac{k}{2}\right)}{\mathrm{F}(k)}$, seen or implied by their later working. Without reference to a correct conditional probability statement give $1^{\text {st }} \mathrm{M} 0$ for either $\frac{\mathrm{f}\left(\frac{k}{2}\right)}{\mathrm{f}(k)} \text { or } \frac{\mathrm{F}(k)-\mathrm{F}\left(\frac{k}{2}\right)}{\mathrm{F}(k)} \text { or } \frac{\mathrm{P}\left(X \leqslant \frac{k}{2}\right) \times \mathrm{P}(X \leqslant k)}{\mathrm{P}(X \leqslant k)}$
	$2^{\text {nd }} d M 1$	dependent on the FIRST method mark being awarded. Applies the conditional probability statement by writing down - $\frac{\int_{0}^{\frac{k}{2}}\left(\frac{2 x}{15}\right)\{\mathrm{d} x\}}{\int^{k}(2 x)}$ with limits. $\int_{0}^{k}\left(\frac{2 x}{15}\right)\{\mathrm{d} x\}$ - $\frac{\mathrm{F}\left(\frac{k}{2}\right)}{\mathrm{F}(k)}$ where $\mathrm{F}(x)$ is defined as $\mathrm{F}(x)=\frac{x^{2}}{15}$ These statements can be implied by later working. Finding $\mathrm{P}(X \leqslant 1.5)=0.15$ and $\mathrm{P}(X \leqslant 3)=0.6$ without applying $\frac{0.15}{0.6}$ is $2^{\text {nd }} \mathrm{M} 0$
	$1^{\text {st }} \mathbf{A l f t}$ Note	Correct substitution of their limits or their k into conditional probability formula. Candidates can work in terms of k for this $1^{\text {st }} \mathrm{A} 1$ mark.
	$2^{\text {nd }} \mathbf{A 1}$ Note	$\frac{1}{4} \text { or } 0.25 \text { cao }$ Condone giving $2^{\text {nd }} \mathrm{A} 1$ for achieving a correct answer of 0.25 where at least one of their stated $\mathrm{P}\left(X \leqslant \frac{k}{2}\right)$ or $\mathrm{P}(X \leqslant k)$ is greater than 1
	Note	Alternative method using similar triangles. Area up to $\frac{k}{2}$ is $\frac{1}{4}$ of the area up to k. This can score 4 marks.

7. (a) Alternative Method 1 for Part (a) Using the CDF

($\begin{array}{ll} 0 \leqslant x \leqslant k, \mathrm{~F}(x)=\int_{0}^{k} \frac{2 t}{15}\{\mathrm{~d} t\}=\left[\frac{2 t^{2}}{\underline{30}}\right]_{0}^{x}=\frac{x^{2}}{15} & \text { Evidence of } x^{n} \rightarrow x^{n+1} \\ k<x \leqslant 5, \mathrm{~F}(x)=\mathrm{F}(k)+\int_{k}^{x} \frac{1}{5}(5-t)\{\mathrm{d} t\} & \text { Both } \frac{2 x}{15} \rightarrow \frac{x^{2}}{\underline{15}} \text { and } \\ =\frac{k^{2}}{15}+\left[\frac{1}{5}\left(5 t-\frac{t^{2}}{2}\right)\right]_{k}^{x} & \frac{1}{5}(5-x) \rightarrow x-\frac{x^{2}}{10} \end{array}$	$\begin{aligned} & \mathbf{2}^{\text {nd }} \mathrm{M} 1 \\ & \\ & \mathbf{1}^{\text {st }} \mathbf{A 1} \\ & \text { o.e. } \end{aligned}$
	$\left.\begin{array}{l} =\frac{k^{2}}{15}+\frac{1}{5}\left(5 x-\frac{x^{2}}{2}\right. \end{array}\right)-\frac{1}{5}\left(5 k-\frac{k^{2}}{2}\right)$ $\{\mathrm{F}(5)=1 \Rightarrow\} 5-\frac{5^{2}}{10}-k+\frac{k^{2}}{6}=1$ Complete method of writing a correct equation for the area with correct limits and setting $F(5)=1$	$1^{\text {st }}$ M1
	then apply the main scheme	
7. (a)	Alternative Method 2 for Part (a) Use of Area	
	$\frac{1}{2} k\left(\frac{2 k}{15}\right)+\frac{1}{2}\left(\frac{5-k}{5}\right)(5-k)=1 \quad$ Complete area expression put $=1$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 oe. } \end{aligned}$
	then apply the main scheme	
General	Note $\quad \mathrm{F}(x)=\left\{\begin{array}{c}\text { The c.d.f is defined as } \\ 0, x<0 \\ \frac{x^{2}}{15}, \\ x-\frac{x^{2}}{10}-\frac{3}{2}, \\ 1, x>x \leqslant 3\end{array}\right.$	
7. (a)	Method mark for solving a 3 term quadratic of the form $x^{2}+b x+c=0$ Factorising/Solving a quadratic equation is tested in Question 7(a). 1. Factorisation $\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $\|p q\|=\|c\|$, leading to $x=\ldots$ $\left(a x^{2}+b x+c\right)=(m x \pm p)(n x \pm q)$, where $\|p q\|=\|c\|$ and $\|m n\|=\|a\|$, leading to $x=\ldots$ 2. Formula Attempt to use correct formula (with values for a, b and c) 3. Completing the square Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $x=\ldots$	

