edexcel

Mark Scheme (Results)
Summer 2016

Pearson Edexcel International A Level Statistics 2
(WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code WST02_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

WST02 June 2016

Question Number	Scheme	Marks
5. (a)	$\begin{aligned} & (1,1), \\ & (1,5)[\mathrm{x} 2](5,5), \\ & (1,10)[\mathrm{x} 2],(5,10)[\mathrm{x} 2],(10,10) \end{aligned}$ e.g. $(1,5)$ and $(5,1)$ counts once only	B2
(b)	[For $M=1,(1,1)] \quad q \times q=\frac{1}{25}, \quad q=\frac{1}{5}$	M1, A1
	$[$ For $M=5,(1,5),(5,1),(5,5)] \quad q r+r q+r^{2}=\frac{13}{80}$	M1
	$r^{2}+2\left(\frac{1}{5}\right) r-\frac{13}{80}=0 \rightarrow r=\frac{-\frac{2}{5}+\sqrt{\left(\frac{2}{5}\right)^{2}-4\left(-\frac{13}{80}\right)}}{2} \rightarrow r=\frac{1}{4}$	M1 A1
	$[$ For $M=10,(1,10),(10,1),(5,10),(10,5),(10,10)]$	
	$2 q s+2 r s+s^{2}=\frac{319}{400} \text { or } q+r+s=1$	M1
	$s=\frac{11}{20}$	A1
		[9]
	Notes	
(a)	B2 all 6 pairs correct, ignore duplicates [e.g. $(1,5)$ and $(5,1)]$ but no incorrect (B1 at least 4 correct pairs. Do not include duplicates but can ignore any incorr For M marks can $\mathrm{ft} \boldsymbol{q}$ and \boldsymbol{r} but only if they are probabilities	pairs seen ect pairs)
(b)	$1{ }^{\text {st }} \mathrm{M} 1 \quad$ a correct equation to find q	
	$1^{\mathrm{st}} \mathrm{~A} 1 \quad q=\frac{1}{\sim} \mathrm{oe}$	
	$2^{\text {nd }} \mathrm{M} 1$ attempt at equation for r with $q[\mathrm{ft}$ their $q]$ (condone 1 missing term but $3^{\text {rd }} \mathrm{M} 1$ attempt to solve 3 TQ (formula, completing the square or factorising se $2^{\text {nd }} \mathrm{A} 1 \quad r=\frac{1}{4}$ oe $4^{\text {th }}$ M1 correct equation for s, ft their q and their r or use of sum of probabilities $=1$ but must have values for q and $r \mathrm{ft}$ $3^{\text {rd }} \mathrm{A} 1 \quad s=\frac{11}{20} \text { oe }$	no extras) below) eir q and r
	Formula: If correct formula is quoted allow 1 slip, otherwise correct expr' for their equation Complete Sq: i.e. $\left(r+\frac{1}{5}\right)^{2}-\frac{1}{25}-\frac{13}{50}=0$ Allow 1 slip and ft their equation Factorise: Must multiply out to give "ends [inc. sign]" or "middle term" of their equation	
SC epen	$\begin{array}{rlr} \text { B1 for } \frac{q}{q+r+s}=\frac{1}{5}, & \mathrm{~B} 1 \text { for } \frac{r}{q+r+s}=\frac{1}{4}, & \mathrm{~B} 1 \text { for } \frac{s}{q+r+s}=\frac{11}{20} \\ 1^{\text {st }} \mathrm{M} 01^{\text {st }} \mathrm{A} 1 & 2^{\text {nd }} \mathrm{M} 03^{\text {rd }} \mathrm{M} 02^{\text {nd }} \mathrm{A} 1 & 4^{\text {th }} \mathrm{M} 03^{\text {rd }} \mathrm{A} 1 \end{array}$	

Question Number	Scheme	Marks
(ii)	$\begin{aligned} & \sqrt{n(0.04)(1-0.04)}=1.44 \quad \text { or } n(0.04)(1-0.04)=1.44^{2} \\ & 0.0384 n=2.07(36), \\ & \text { mean }=54 \times 0.04=2.16 \quad \text { or } \frac{54}{25} \end{aligned}$	M1 dM1, A1 B1cao (4)
(b)	$\left[(0.96)^{20}\right]=0.44200 \ldots$ awrt $\mathbf{0 . 4 4 2}$	B1 (1)
(c)	$\begin{aligned} & X \sim \mathrm{~B}(20,0.04) \\ & {[\mathrm{P}(X=3 \mid X \geqslant 1)=] \frac{\mathrm{P}(X=3)}{\mathrm{P}(X \geqslant 1)}} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$
	$=\frac{20 \mathrm{C} 3(0.04)^{3}(0.96)^{17}}{1-(0.96)^{20}} \text { or } \frac{20 \mathrm{C} 3(0.04)^{3}(0.96)^{17}}{1-\text { their }(\mathrm{b})}=0.065322 \ldots \text { awrt } \underline{\mathbf{0 . 0 6 5 3}}$	dM1 A1 (4)
(d)	$\begin{aligned} & \mathrm{H}_{0}: p=0.04 \quad \mathrm{H}_{1}: p>0.04 \\ & {[X \sim \mathrm{~B}(125,0.04)]} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \end{array}$
	$\mathrm{P}(X \geqslant 10)=1-\mathrm{P}(X \leqslant 9) \quad$ or $\mathrm{P}(X \leqslant 9)=0.9682$	M1
	$\begin{array}{ll} =1-0.9682 & \mathrm{P}(X \geqslant 10)=0.0318 \\ =0.0318 & \mathrm{CR} X \geqslant 10 \end{array}$	A1
	Reject H_{0} or Significant or 10 lies in the Critical region.	
	Evidence that proportion/number/rate/\%/probability of cars failing the test is more ... or the car mechanic's claim is supported.	$\begin{array}{cc} \text { A1cso } & (6) \\ & {[15]} \end{array}$
	Notes	
(a)(i)	M1 use of s.d. $=\sqrt{n p(1-p)}=1.44$ with a value of p in $(0,1)$ or equation with variance	
	dM 1 dep on $1^{\text {st }} \mathrm{M} 1$ for solving equation as far as $a n=2.07(36)$ or $n=\frac{1.44}{a}$	(ns only 3/3)
(c)	B1 for writing or using $\mathrm{B}(20,0.04)$. May be implied by e.g. $\mathrm{P}(X=3)=0.036449 .$. (Allow 3 sf)	
	$1^{\text {st }} \mathrm{M} 1$ for a correct ratio expression for conditional prob. $\mathrm{P}(X \geqslant 1)$ may be 1	
	$2^{\text {nd }} \mathrm{M} 1$ dep on first M1 for correct attempt at either $\mathrm{P}(X=3)$ or $\mathrm{P}(X \geqslant 1)$ (may ft (b))	
(d)	B1 for both hypotheses correct (p or π) (Allow $\mathrm{H}_{0}: \lambda=5 \quad \mathrm{H}_{1}: \lambda>5$) [\geqslant is B0]	
	$1^{\text {st }} \mathrm{M} 1$ for writing or using $1-\mathrm{P}(X \leqslant 9)$ or giving $\mathrm{P}(X \leqslant 9)=0.9682$ or $\mathrm{P}(X \geqslant 10)=0.0318$	
	$1^{\text {st }} \mathrm{A} 1$ for 0.0318 or $\mathrm{CR} X \geqslant 10$ [either of these scores the M1A1] $2^{\text {nd }} \mathrm{dM} 1$ for correct statement based on their prob and 0.05 or 10 and their CR. (i.e. R $\mathrm{H}_{0} /$ Significant $/ 10$ lies in the Critical region) May be implied by a correct contextua Dep on $1^{\text {st }} \mathrm{M} 1$. Do not allow contradictory statements e.g. "significant, accept H_{0} " $2^{\text {nd }}$ A1cso for a correct contextual conclusion and no errors seen. (can score B1B0M1A0M1A0) $1^{\text {st }} \mathrm{M} 1$ for $\mathrm{P}(X \geqslant 10)$ and standardising with 9.5	ect statement. 10.5
Two-Tail	Allow max of: B0B1M1A1 (2 for CR of $X \geqslant 11$ otherwise 0) dM1 (for accepting H_{0}) A0cso	

