

Mark Scheme (Results)

Summer 2016

Pearson Edexcel International A Level Statistics 2

(WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code WST02_01_1606_MS All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

WST02 June 2016

Question Number	Scheme	Marks
1. (a)	$(X \sim Po(9), P(X \leq 10) = 0.7060)$	
	v = 11 [Not $v > 11$ or any inequality]	B1
(*)		(1)
(b)		M1
	0.8030 - 0.0212 = 0.7818 awrt <u>0.782</u>	A1 (2)
	$\mathbf{D}_{\mathbf{r}}(1,5)$	(2)
(c)	Po(1.5) P(Y > 1) = 1 - P(Y \le 1) <u>or</u> 1 - 0.5578	B1
		M1 A1
	= 0.4422 awrt <u>0.442</u>	A1 (3)
(d)	[Let W = number of visits to the school website in 8 hours.]	(3)
(u)	W~Po(72) approximately N(72, 72)	M1 A1
		M1 M1
	$P(W > 80) = P\left(Z > \frac{80.5 - 72}{\sqrt{72}}\right)$	
	= P(Z > 1.00)	
	= 0.1587 (or 0.15824 from calculator) awrt <u>0.159/0.158</u>	A1
		(5)
		[11]
	Notes	
(b)	M1 for writing or using $P(X \le 11) - P(X \le 3)$ May be implied by a correct answer.	
(c)	B1 for writing or using Po(1.5)	
	May be implied by $P(X = 0) = 0.2231$ or $P(X = 1) = 0.3346$ or $P(X \le 1) = 0.3346$	0.5578
	M1 for writing $1 - P(Y \le 1)$ or $1 - 0.5578$ (Condone use of X or any other le	tter)
	A1 for awrt 0.442 (correct answer only scores 3/3)	
(d)	1^{st} M1 for using a normal approximation with $\mu = 72$	
	1 st A1 for $\mu = 72$ and $\sigma^2 = 72$ or $\sigma = \sqrt{72}$ These may be seen in a standardised	expression
	2 nd M1 Using 80.5 or 79.5 3 rd M1 standardising using 79.5, 80.5 or 80 with their mean and their standard	deviation

Question Number	Scheme	Marks	
2. (a)(i)	$120(p)^{3}(1-p)^{7}$	B1	
(ii)	$[10C3](p)^{3}(1-p)^{7} = [10C7]16(p)^{7}(1-p)^{3}$ <u>or</u> their (a)(i) = $[10C7]16(p)^{7}(1-p)^{3}$	M1	
	$(1-p)^4 = 16(p)^4 \Longrightarrow (1-p) = 2(p)$ 1	M1	
	$p = \frac{1}{3}$	A1 (4)	
(b)	$\frac{\mathrm{e}^{-\lambda}\lambda^3}{3!} = 5\frac{\mathrm{e}^{-\lambda}\lambda^5}{5!}$	(4) M1	
	3! 5! $4 - 3^2$	M1	
	$4 = \lambda^2$ $\lambda = 2$	A1 (3)	
(c)	np = 32	(3) M1	
	n = 80	A1	
	$\alpha = 19.2$	A1 (3)	
		[10]	
	Notes		
(a)(i)	(a)(i) B1 Allow equivalent expressions e.g. $10C3(p)^3(1-p)^{10-3}$		
(ii)	1 st M1 correct equation ft their (a)(i) (condone missing binomial coefficients) be on the correct side. Condone numerical slips.	but 16 must	
	2^{nd} M1 attempt to solve their equation as far as a linear equation in <i>p</i> .		
	Condone numerical slips but they must deal with the algebraic terms correctly.		
	A1 for $\frac{1}{3}$ or an exact equivalent. Allow 3/3 for correct answer only in (ii)		
NB1	If the 16 is on the wrong side they should get $p = \frac{2}{3}$ and score M0M1A0		
NB2	If there is no 16, or the 16 disappears, and they get $p = 0.5$ they score 2^{nd} M1 A0		
(b)	1 st M1 correct equation		
	2 nd M1 attempt to solve their equation as far as $\lambda^2 = k$ or $\lambda = \sqrt{k}$. Allow nu	merical slips.	
	A1 for $\lambda = 2$ only		
NB1	If the 5 is on the wrong side they should get $\lambda = 10$ and score M0M1A0		
NB2	If there is no 5, or the 5 disappears, and they get $\lambda^2 = 20$ or $\lambda = \sqrt{20} = 2\sqrt{5}$ they score 2^{nd} M1 A0		
(c)	M1 use of $np = 32$ Allow any value of p provided $0 1^{st} A1 n = 802^{nd} A1 \alpha = 19.2$		

Question Number	Scheme	Mar	ks
3. (a)	$P(X \le 7) = 0.8883 \text{ or } P(X \le 8) = 0.9644 \text{ or } P(X \ge 8) = 0.1117 \text{ or } P(X \ge 9) = 0.0356$ Critical Region is $X \ge 9$ (o.e.)	M1 A1	
(b) (c)	(1 - 0.9644=) 0.0356 [NB Calculator gives: 0.03557486] Reject H ₀ /Significant <u>or</u> value of <i>p</i> is > 0.45	B1cao B1ft	(2) (1)
(d)(i) (ii)	Conclusion would not change as H_0 would still be rejected Conclusion would change as H_0 would not be rejected	B1 B1	(1)
			(2) [6]
	Notes		
(a)	M1for one of these 4 probabilities - may be implied by a correct critical regionA1for $X \ge 9$ (allow $X > 8$) (o.e.) e.g. [9, 12], {9, 10, 11, 12} etcAns. only 2/2NB Must be $X \ge 9$ for A1, do not award for just seeing P($X \ge 9$)		
(b)	B1 for 0.0356 or better		
(c)	B1f ft their critical region in (a) Must say "reject" and "H ₀ " No contradictory statements Just saying "9 is not in the critical region" is <u>not</u> enough Allow a restart i.e. calculating $P(X \ge 9) = 0.0356 < 0.05$ so significant		
	If they score B0 in (c) then score B0B0 in (d)		
(d)	In (c) they reject H_0 In (c) they accept H_0		
(i)	B1 for "No", "no change", "significant" etc B0 whatever they say		
(ii)	B1 for "Yes", "do not reject H_0 " etc B1 for "no change" or "do not reject H_0 " etc		etc
CR	(i) NB new CR is $X \ge 9$ but can treat any incorrect mention of CR as ISW (ii) NB new CR is $X \ge 10$ but can treat any incorrect mention of CR as ISW		

Question Number	Scheme	Marks
4. (a)	(Continuous) Uniform/Rectangular	B1 (1)
(b)	$\left[\frac{1}{5}(5-2)\right] = \frac{3}{5} (\text{o.e.})$	(1) B1
	$P(X > 6) = p \text{ where } p = \frac{1}{5} \text{ or } \frac{7-6}{7-2} \text{ o.e.}$ <i>Y</i> = number of flights with a waiting time more than 6 minutes $[P(Y \ge 1) = 1 - P(Y = 0)] = 1 - (1-p)^5 = 1 - (\frac{4}{5})^5 = 0.67232 \text{ awrt } \underline{0.67232}$	(1) M1 M1, A1 (3)
(d)	$\int_{2}^{x} \frac{1}{5} dt = \left[\frac{t}{5}\right]_{2}^{x} \text{or} \frac{x}{5} + c \text{ and } \frac{7}{5} + c = 1 \text{ or } \frac{2}{5} + c = 0$	M1
	$\int 0 \qquad x < 2$	A1
	$F(x) = \begin{cases} 0 & x < 2\\ \frac{x-2}{5} & 2 \le x \le 7\\ 1 & x > 7 \end{cases}$	B1
	$\begin{bmatrix} 1 & x > 7 \end{bmatrix}$	(3)
(e)	Shape (single straight line of positive gradient wholly above <i>x</i> -axis) With or without a horizontal line ("lid")	B1
	Correct sketch with labels 2, 7 on <i>x</i> -axis and 1 on <i>y</i> -axis (With or without "lid")	dB1 (2)
(f)	$(Mean = \frac{2+7}{2} = 4.5)$	B1
	So on foggy days, Mean = 6.5 and Variance $=\frac{(7-2)^2}{12} = \frac{25}{12}$ or awrt 2.08	M1 A1
		(3) [13]
(c)	Notes $1^{\text{st}} \text{ M1} \text{ for } P(X > 6) = \frac{1}{5} \text{ o.e.}$	
(d)	 2nd M1 correct expression of the form 1-(1-p)⁵ ft their p = P(X > 6) provided 0 M1 for correct integration and sight of correct limits <u>or</u> integrating with + c and attempt to use F(7) = 1 or F(2) = 0 A1 for second line correct with correct limits. Allow < instead of ≤ B1 for first and third lines correct with correct limits. Allow ≤ and ≥ instead of < and > 	
(e)	2^{nd} dB1 dependent on the first B1 for correct sketch with the 2, 7 and 1 in the correct places	
(f)	M1 a correct expression for Var(X) = $\frac{(7-2)^2}{12}$ or $\frac{(9-4)^2}{12}$	
	or $\int_{\alpha}^{\beta} \frac{1}{5} x^2 dx - \mu^2$ If $\mu = 4.5$ use [2, 7] for $\mu = 6.5$ use [4, 9] but no other cases A1 for $\frac{25}{12}$ or awrt 2.08 do not isw [Answers only full marks]	

Question Number	Scheme	Marks	
	(1, 1),		
	(1, 5)[x2] (5, 5), e.g. (1, 5) and (5, 1) counts once only	B2	
	(1, 10)[x2], (5, 10)[x2], (10, 10)		
		(2)	
(b)	[For $M = 1, (1, 1)$] $q \times q = \frac{1}{25},$ $q = \frac{1}{5}$	M1, A1	
	[For $M = 5, (1, 5), (5, 1), (5, 5)$] $qr + rq + r^2 = \frac{13}{80}$	M1	
	$r^{2} + 2\left(\frac{1}{5}\right)r - \frac{13}{80} = 0 \rightarrow r = \frac{-\frac{2}{5} + \sqrt{\left(\frac{2}{5}\right)^{2} - 4\left(-\frac{13}{80}\right)}}{2} \rightarrow r = \frac{1}{4}$	M1 A1	
	[For $M = 10, (1, 10), (10, 1), (5, 10), (10, 5), (10, 10)$]		
	$2qs + 2rs + s^2 = \frac{319}{400}$ or $q + r + s = 1$	M1	
	11	A1	
	$s = \frac{11}{20}$	(7)	
		[9]	
	Notes		
(a)	B2 all 6 pairs correct, ignore duplicates [e.g. (1, 5) and (5, 1)] but no incorrect pairs seen (B1 at least 4 correct pairs. Do not include duplicates but can ignore any incorrect pairs)		
	For M marks can ft <i>q</i> and <i>r</i> but only if they are probabilities		
(b)	1^{st} M1 a correct equation to find q		
	$1^{\text{st}} \text{A1} q = \frac{1}{5} \text{ oe}$		
	2^{nd} M1 attempt at equation for <i>r</i> with <i>q</i> [ft their <i>q</i>] (condone 1 missing term but no extras) 3^{rd} M1 attempt to solve 3TQ (formula, completing the square or factorising see below)		
	2^{nd}A1 $r = \frac{1}{4} \text{oe}$		
	4^{th} M1 correct equation for s, ft their q and their r		
	<u>or</u> use of sum of probabilities = 1 but must have values for q and r ft the	eir q and r	
	$3^{\rm rd} A1 s = \frac{11}{20} {\rm oe}$		
	Solving 3TQ Formula: If correct formula is quoted allow 1 slip, otherwise correct expr' for	their equation	
	Complete Sq: i.e. $(r + \frac{1}{5})^2 - \frac{1}{25} - \frac{13}{50} = 0$ Allow 1 slip and ft their equation		
	Factorise: Must multiply out to give "ends [inc. sign]" or "middle term" of the	ir equation	
SC	B1 for $\frac{q}{q+r+s} = \frac{1}{5}$, B1 for $\frac{r}{q+r+s} = \frac{1}{4}$, B1 for $\frac{s}{q+r+s} = \frac{11}{20}$ 1 st M0 1 st A1 2 nd M0 3 rd M0 2 nd A1 4 th M0 3 rd A1		
epen	$1^{\text{st}} \text{ M0} 1^{\text{st}} \text{ A1}$ $2^{\text{nd}} \text{ M0} 3^{\text{rd}} \text{ M0} 2^{\text{nd}} \text{ A1}$ $4^{\text{th}} \text{ M0} 3^{\text{rd}} \text{ A1}$		

Question Number	Scheme		Marks
6. (a)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(ax-bx^2\right) = a-2bx$		M1
	a - 2b(1) = 0 $a = 2b$		A1cso (2)
(b)			
	$\int_{[0]}^{[2]} (ax - bx^2) \mathrm{d}x = 1$		M1
	$\begin{bmatrix} (ax^2 bx^3) \end{bmatrix}^2$		
	$\left[\left(\frac{ax^2}{2} - \frac{bx^3}{3}\right)\right]_0^2 = 1$		A1
	$\frac{(2b)(2^2)}{2} - \frac{b(2^3)}{3} = 1$	$a = \frac{3}{2} \qquad b = \frac{3}{4}$	dM1 <u>A1</u> <u>A1</u>
	2 3	2 4	
			(5)
(c)	$\int_{0}^{1.5} f(x) dx = \left[\left(\frac{ax^2}{2} - \frac{bx^3}{3} \right) \right]_{0}^{1.5}$		241
	$\int_{0}^{1} \left[\left(\begin{array}{cc} 2 & 3 \end{array} \right) \right]_{0}$		M1
	$=\frac{\frac{3}{2}(1.5)^2}{2} - \frac{(\frac{3}{4})(1.5)^3}{3} = \frac{27}{32}$	$\frac{27}{32}$ or awrt <u>0.844</u>	A1
	2 3 32	32	(2)
(d)	F(1.5) > 0.75,		M1
	Therefore the upper quartile of <i>X</i> is less than 1.5		A1ft (2)
			[11]
	Notes		
(a)	M1 differentiating $f(x)$ at least one of $x^n \to x^{n-1}$, must lead to a function of x. May		. May
	complete the square (M1 when $x = \frac{a}{2b}$). Use of " $-\frac{b}{2a}$ " must quote this and get M1 for $1 = \frac{a}{2b}$		
	A1cso fully correct solution with no errors seen		
Beware	Use of $f(2) = 0$ scores M0A0. [Send argument b	ased on $f(x) = 0$ to review	ew.]
(b)	1 st M1 attempt to integrate and equate to 1 (at least one $x^n \rightarrow x^{n+1}$) Ignore limits.		
	1 st A1 correct integration (in terms of <i>a</i> or <i>b</i> or both) a NB sight of $2 = \frac{8}{4} l_{1} + 1$ (which is conjugated to E		
	NB sight of $2a - \frac{8}{3}b = 1$ (which is equivalent to F(2) = 1) scores the first M1A1		
	2^{nd} dM1 for use of correct limits (at least $x = 2$ must be seen) and substituting $a = 2b$ to obtain an equation in 1 variable (dependent on previous M1)		
	15		
(c)	M1 for use of F(1.5) or $\int_{0}^{\infty} f(x) dx$ (at least one $x^{n} \to x^{n+1}$) with limits and ft their <i>a</i> and <i>b</i>		
(d)	M1 for a correct comparison of their $F(1.5)$ with 0.75		
Find Q_3	M1 if they attempt $F(x) = 0.75$ and get $Q_3 = awrt 1.35$ (calc 1.347296) and A1 for conc'l		
	A1ft for correct conclusion (follow through their value o	f F(1.5) provided $0.5 <$	F(1.5) < 1)

Question Number	Scheme	Marks	
7. (a)(i)	$\sqrt{n(0.04)(1-0.04)} = 1.44$ or $n(0.04)(1-0.04) = 1.44^2$	M1	
	$0.0384n = 2.07(36), \qquad n = 54$	dM1, A1	
(ii)	mean = $54 \times 0.04 = 2.16$ or $\frac{54}{25}$	B1cao	
(b)	$[(0.96)^{20}] = 0.44200$ awrt 0.442	(4) B1 (1)	
(c)	$X \sim B(20, 0.04)$	B1 (1)	
	$\left[P(X=3 \mid X \ge 1) = \right] \frac{P(X=3)}{P(X \ge 1)}$	M1	
	$=\frac{20C3(0.04)^3(0.96)^{17}}{1-(0.96)^{20}} \text{ or } \frac{20C3(0.04)^3(0.96)^{17}}{1-\text{ their (b)}} = 0.065322 \text{ awrt } \underline{0.0653}$	dM1 A1 (4)	
(d)	H ₀ : $p = 0.04$ H ₁ : $p > 0.04$	B1	
	$[X \sim B(125, 0.04)]$ Po(5)	B1	
	$P(X \ge 10) = 1 - P(X \le 9)$ or $P(X \le 9) = 0.9682$	M1	
	$= 1 - 0.9682 \qquad P(X \ge 10) = 0.0318$		
	$= 0.0318 \qquad \qquad \text{CR } X \ge 10$	A1	
	Reject H_0 or Significant or 10 lies in the Critical region. Evidence that proportion/number/rate/%/probability of cars failing the test is more	dM1 A1cso (6)	
	or the car <u>mechanic's claim is supported</u> .	[15]	
	Notes		
(a)(i)	M1 use of s.d. = $\sqrt{np(1-p)}$ = 1.44 with a value of p in (0, 1) or equation with variance		
	dM1 dep on 1 st M1 for solving equation as far as $an = 2.07(36)$ or $n = \frac{1.44^2}{a}$ (Ans only 3/3)		
(c)	B1 for writing or using B(20, 0.04). May be implied by e.g. $P(X = 3) = 0.036449(Allow 3 sf)$		
	1 st M1 for a correct ratio expression for conditional prob. $P(X \ge 1)$ may be $1 - P(X = 0)$		
	2^{nd} M1 dep on first M1 for correct attempt at either P(X = 3) or P(X \ge 1) (may ft (b)) (Ans only 4/4)		
(d)	B1 for both hypotheses correct (<i>p</i> or π) (Allow H ₀ : $\lambda = 5$ H ₁ : $\lambda > 5$) [\geq is B	0]	
	B1 for using Po(5) (May need to check tables e.g. $P(X \le 10) = 0.9863$ would a stability of the point of the		
	1 st M1 for writing or using $1 - P(X \le 9)$ or giving $P(X \le 9) = 0.9682$ or $P(X \ge 10) = 1^{st} A1$ for 0.0318 or CR $X \ge 10$ [either of these scores the M1A1]	0.0318	
	2 nd dM1 for correct statement based on their prob and 0.05 or 10 and their CR. (i.e. Reject H ₀ /Significant/10 lies in the Critical region) May be implied by a correct contextual statement. Dep on 1 st M1. Do not allow contradictory statements e.g. "significant, accept H ₀ "		
Normal	2 nd A1cso for a correct contextual conclusion and no errors seen. (can score B1B0M1A0M1A0) 1 st M1 for P($X \ge 10$) and standardising with 9.5 or 10.5		
Two-Tail	Allow max of: B0B1M1A1 (2 for CR of $X \ge 11$ otherwise 0) dM1 (for accepting H ₀) A0cso		

www.yesterdaysmathsexam.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom