

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International A Level in Statistics 1 (WST01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2015 Publications Code IA042720 All the material in this publication is copyright © Pearson Education Ltd 2015 www.yesterdaysmathsexam.com

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

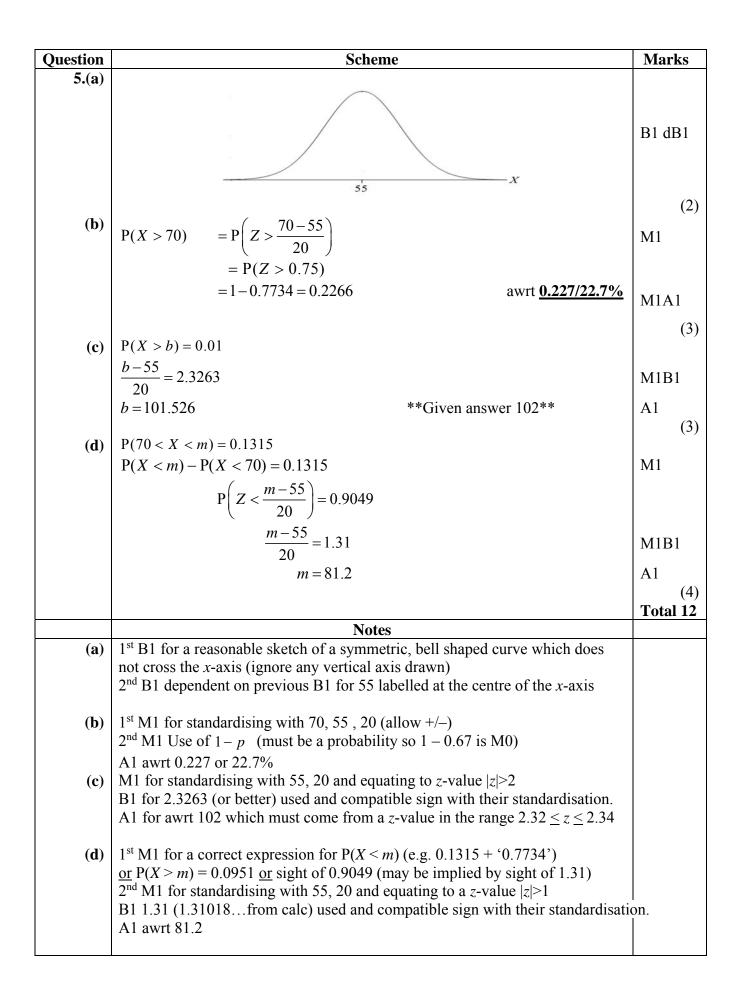
General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

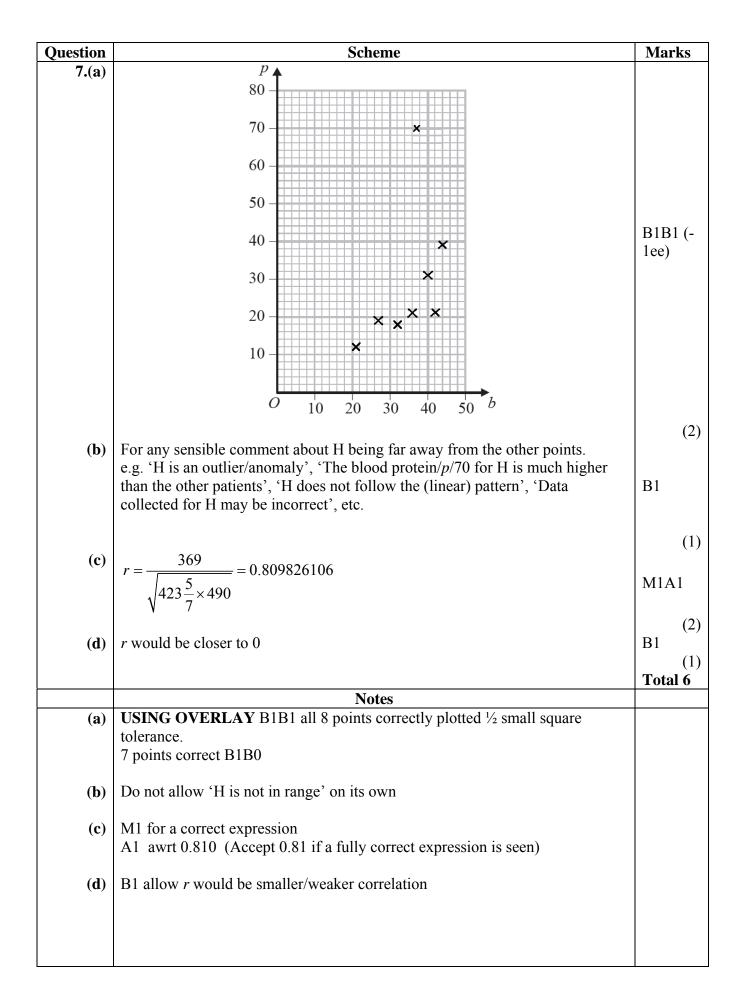
These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.


June 2015 WST01 STATISTICS 1 Mark Scheme

Question	Scheme			
1. (a)	F(4) = 1	M1		
	$F(4) = 1$ $4^{2} k = 1 \Longrightarrow k = \frac{1}{16}$	A1 (2)		
(b)	e.g. $P(X = 2) = F(2) - F(1) = \frac{4}{16} - \frac{1}{16} = \frac{3}{16}$			
	[x] 1 2 3 4			
	$\begin{bmatrix} P(X=x) \end{bmatrix} \frac{1}{16} \frac{3}{16} \frac{5}{16} \frac{7}{16}$			
	(0.0625) (0.1875) (0.3125) (0.4375)	A1		
		(2) Total 4		
	Notes			
(a)	M1 for writing or using $F(4)=1$			
	A1 for $\frac{1}{16}$ or 0.0625 (Answer only scores 2 out of 2)			
(b)	M1 for correct use of $F(x)$ to find $P(X = 2, 3, or 4)$ (can follow through their <i>k</i> , 3 <i>k</i> , 5 <i>k</i> , 7 <i>k</i>). May be implied by at least two correct probabilities or correct follow through.			
	A1 for a fully correct probability distribution. Allow exact decimals. Ignore incorrect or missing labels if table is all correct.			


Question	Scheme	Marks
2. (a)	$S_{xy} = 1474.1 - \frac{441.5 \times 59.8}{20} = 154.015$ awrt <u>154</u>	M1A1
	$S_{xx} = 11261.25 - \frac{441.5^2}{20} = 1515.1375 \qquad \text{awrt } \underline{1520}$	A1
(b)	$b = \left[\frac{S_{xy}}{S_{xx}}\right] = \frac{"154.015"}{"1515.1375"} = \left[0.10165084\right]$	(3) M1
	$[a = \overline{y} - b\overline{x} \rightarrow] a = \frac{59.8}{20} - b' \times \frac{441.5}{20} = [0.7460577]$ y = 0.746 + 0.102x	M1
	y = 0.746 + 0.102x	A1 (3)
(c)	$\frac{v}{100000} = 0.746' + 0.102' \left(\frac{s-50}{10}\right)$ $v = 23780.34997 + 1016.508403s$	M1
	v = 23780.34997 + 1010.3084033 c = awrt 23600-23800 d = awrt 1020**	A1 A1 (3)
(d)	$v = 23780.34997 + 1016.508403 \times 130 = 155926.44236$ awrt <u>156000</u>	M1A1 (2)
(e)	For each (additional) 1 m^2 in floor size, the value of the house <u>increases by</u> <u>'£1020'</u>	B1
(f)	[31 <i>d</i> =] £31511.76 awrt (£) <u>32000</u>	(1) B1 (1)
		(1) Total 13
	Notes	
(a)	M1 for one correct expression for S_{xy} or S_{xx}	
	1 st A1 for either S_{xy} = awrt 154 or S_{xx} = awrt 1520	
	2^{nd} A1 for both	
(b)	1 st M1 for a correct expression for <i>b</i> (ft their $S_{xy} \neq 1474.1$)	
	2^{nd} M1 for a correct expression for <i>a</i> (allow use of the letter <i>b</i>) A1 for $y = 0.746 \pm 0.102 x$ (<i>a</i> = swrt 0.746 and <i>b</i> = swrt 0.102) Must be in y	
	A1 for $y = 0.746 + 0.102x$ ($a = awrt 0.746$ and $b = awrt 0.102$) Must be in y and x and no fractions.	
(c)	M1 for substituting $y = \frac{v}{100000}$ and $x = \left(\frac{s-50}{10}\right)$ into their equation in (b)	
	$1^{\text{st}} \text{A1} \ c = \text{awrt} \ 23600-23800$	
	$2^{nd} A1 d = 1020^{**}$ answer given so must come from correct working	
Alt	Using $S_{sv} = 1000000S_{xy}$ and $S_{ss} = 100S_{xx}$ to find d and using $\overline{v} = 100000\overline{y}$ and $\overline{s} = 10\overline{x} + 50$ to find c can score M1 provided fully correct.	
	s = 10x + 50 to find c can score wit provided fully confect.	
(d)	M1 for substituting $s = 130$ into their (c) or substituting $x = 8$ into their (b) A1 awrt 156 000	
(e)	B1 A correct contextualised interpretation of the numerical value of the gradient which must mention m^2 or floor size and \pounds or value. Allow follow	
(f)	through from their regression equation in (c) B1 awrt (£)32 000	
(1)		1

Question	Scheme	Marks
3 (a)	$[P(\text{Female}) =]\frac{30}{90} \text{ oe}$	B1
(b)	$[P(Male < 4 \text{ years}) =] \frac{P(Male \cap < 4 \text{ years})}{P(<4 \text{ years})} = \frac{\frac{16}{(90)}}{\frac{16+9}{(90)}} = \frac{16}{25} \text{ oe}$	(1) M1A1
(c)	$[P(Male \mid <10 \text{ years}) =] \frac{P(Male \cap <10 \text{ years})}{P(<10 \text{ years})} = \frac{\frac{20+16}{(90)}}{\frac{9+16+14+20}{(90)}} = \frac{36}{59}$	(2) M1A1
(d)	P(Male < 4 years) = $\frac{16}{25}$, P(Male) = $\frac{60}{90}$ or P(< 4 years Male) = $\frac{16}{60}$, P(< 4 years) = $\frac{25}{90}$ or	(2) M1
	$P(Male \cap <4 \text{ years}) = \frac{16}{90}, P(Male) = \frac{60}{90}, P(<4 \text{ years}) = \frac{25}{90}$ $P(M \mid <4) \neq P(M) \text{ or } P(<4 \mid M) \neq P(<4) \text{ or }$ $P(Male \cap <4 \text{ years}) \neq P(M) \times P(<4)$ so not independent.	M1 A1
		(3) Total 8
(a)	Notes 30	
(a)	B1 for $\frac{30}{90}$ or exact equivalent	
(b)	M1 for a correct ratio expression with at least one correct probability substituted <u>or</u> for a correct ratio of probabilities. num>denom is M0 A1 $\frac{16}{25}$ or 0.64 (Correct answer scores 2 out of 2).	
(c)	M1 for a correct ratio expression with at least one correct probability substituted <u>or</u> for a correct ratio of probabilities. num>denom is M0. A1 $\frac{36}{59}$ or condone awrt 0.610 (must be 3sf) (Correct answer gets 2 out of 2).	
(d)	1 st M1 for stating all of the required numerical probabilities for a correct test which must be labelled. The probabilities must be correct or correct ft from (b) (If attempting the first test, $P(Male < 4 \text{ years}) = '\frac{16}{25}'$ was found in part(b) and need not be fully restated here). 2 nd M1 for <u>use</u> of a correct test. Must see the product if attempting the 3 rd test. A1 for correct test with all probabilities correct <u>and</u> a correct conclusion. NB Use of A and B throughout scores M0M0A0 unless A and B are explicitly defined.	

Question	Scheme	Marks
4.(a)	$[P(\text{both blue}) = \frac{1}{20} \times \frac{1}{20} =]\frac{1}{400} \text{ oe}$	B1 (1)
(b)	P(exactly 1 red) = $2 \times \frac{1}{20} \times \frac{19}{20}$, = $\frac{19}{200}$ oe	(1) M1, A1
(c)	P(2 yellow and 1 green)= $3 \times \frac{4}{9} \times \frac{5}{8} \times \frac{4}{7} = \frac{10}{21}$ oe	(2) B1 M1 A1
(d)	P(All beads are yellow) = $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}$	(3) M1
	P(At least 1 bead is green) = 1 - P(All beads are yellow)	
	$1 - \frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times \frac{2}{6} = \frac{121}{126}$	M1A1
	Nt.4.	(3) Total 9
(a)	1 Notes	
(a)	B1 $\frac{1}{400}$ or 0.0025	
(b)	M1 for a correct equivalent expression $\frac{1}{20} \times \frac{19}{20} + \frac{19}{20} \times \frac{1}{20}$	
	A1 $\frac{19}{200}$ or 0.095	
(c)	B1 for $3 \times$ or for the sum of exactly 3 identical products attempted M1 for any one product correct	
	A1 $\frac{10}{21}$ (allow awrt 0.476 from correct working)	
(d)	$1^{\text{st}} \text{M1} \frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}$	
	2^{nd} M1 Use of $1 - p$ (where p is a product of 4 probabilities)	
	A1 $\frac{121}{126}$ (condone awrt 0.960 must be at least 3sf from correct working)	
	OR 1 st M1 List all 15 favourable outcomes <u>and</u> at least one correct product	
	(YYYG)×4 [(YYGY), (YGYY), (GYYY)] (YYGG)×6 [(YGYG), (YGGY), (GYYG), (GYGY), (GGYY)]	
	(GGYG)×4 [(GGGY), (YGGG), (GYGG)] (GGGG)	
	2 nd M1 Sum all 15 correct probabilities	
	A1 $\frac{121}{126}$ (condone awrt 0.960 must be at least 3sf from correct working)	

Question	Scheme	Marks
6(a)	$F(3) = \frac{3}{4}$	B1
(b)	E(X) = 2.5	(1) B1 (1)
(c)	$E(X^{2}) = 1^{2} \times \frac{1}{4} + 2^{2} \times \frac{1}{4} + 3^{2} \times \frac{1}{4} + 4^{2} \times \frac{1}{4} \left[= \frac{15}{2} \right]$	M1
	$\operatorname{Var}(X) = \frac{15}{2} - \left(\frac{5}{2}\right)^2 = \frac{5}{4} * *$	M1A1 cso
(d)	$P(Y=y) = \frac{1}{4}$	(3) B1
(e)	$\operatorname{Var}(Y) = \operatorname{Var}(kX + c) =$	(1)
	$k^2 \operatorname{Var}(X)$	M1
	$=\frac{5}{4}k^2$	A1
(f)	c = 3 - k	(2) B1
(1)	$c - J - \kappa$	(1)
	Notes	Total 9
(a)	B1 $\frac{3}{4}$ oe	
(b)	4 B1 2.5 oe	
(c)	1 st M1 for correct expression for E(X^2). $\frac{15}{2}$ on its own does not imply this mark	
	2^{nd} M1 for correct expression for Var(X) (follow through their E(X ²) and E(X))	
	A1 for $\frac{5}{4}$ cso	
Alt (c)	1 st M1 for writing or using Var(X) = $\frac{n^2 - 1}{12}$ (may be implied by 2 nd M1)	
	2^{nd} M1 for $\frac{4^2 - 1}{12}$ or $\frac{(4+1)(4-1)}{12}$ (15/12 on its own does not score this mark)	
	A1 $\frac{5}{4}$ cso (dependent on both M marks and no incorrect working seen)	
(d)	B1 $\frac{1}{4}$ may be in a table, but must be $\frac{1}{4}$ for each probability.	
(e)	M1 for $k^2 Var(X)$	
	A1 oe	
	Note: Var(Y) = $\frac{3^2 + (3+k)^2 + (3+2k)^2 + (3+3k)^2}{4} - \left(\frac{(3+(3+3k))^2}{2}\right)^2$ oe scores	M1A1 (if
	the correct expression is seen, we can isw)	

Question	Scher	me	Marks	
8. (a)	(Time is) <u>continuous</u>		B1	
(b)	40 people = 8 large squares/200 small squares 200 people = 40 large squares/1000 small squares 40/(21 - 11) or correct scale on f.d. axis		(1) B1	
	$\frac{x}{40} = \frac{180}{200} \text{ or } \frac{x}{40} = \frac{7.2}{8} \text{ or } (21-18) \times 4 + (25-21) \times 6$			
	36 people (spent between 18 and 25 min	utes shopping in the supermarket)	A1 (3)	
(c)	Median = $26 + \frac{[30]}{36} \times 5 = $ awrt <u>30.2</u>		M1A1	
(d)	$\sum fx = 16 \times 40 + 23.5 \times 30 + 28.5 \times 36 + 33.5 \times 40 + 38.5 \times 14 + 46 \times 20 + 61 \times 20$ = 6390 **		(2) M1 A1cso (2)	
(e)	$i \ \overline{x} = \frac{6390}{200} = 31.95$			
	ii $\sigma = \sqrt{\frac{238430}{200} - 31.95^2} = \sqrt{171.3475} =$	13.09 (or $s = 13.122$) awrt <u>13.1</u>	M1A1 (3)	
(f)	0.409	awrt <u>0.4</u>	B1 (1)	
(g)	Method 1	Method 2 (see note)	DA	
		(almost) symmetric oe	B1	
	not a good decision	a good decision	dB1	
			(2) Total 14	
	Not			
(a) (b)	1 0			
(c)	M1 for an attempt at the medians (should	, ,	$81 - \frac{[6]}{26} \times 5$	
(d)	A1 awrt 30.2 (can come from using $(n+1)$) M1 for a correct expression for $\sum fx$ condone one incorrect product A1cso for 6390 and all correct			
(e)(i) (ii)	B1 31.95 or equivalent fraction M1 for correct expression for standard deviation including root A1 awrt 13.1 (answer of awrt 13.1 scores 2 out of 2) [NB ($s = 13.122$)]			
(g)	1 st B1 for comment on skew (may be seen in part (f)). Method 1: skew or median \neq mean Only allow method 2 if their(f) < 0.45. Method 2: ~symmetric (any mention of correlation is B0) 2 nd dB1 for a correct compatible comment about the manager's decision			
		a usout the munuger 5 decision		

www.yesterdaysmathsexam.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom