Qu 6	Scheme	Marks	AO
(a)	[Sum of probs $=1$ implies] $\log _{36} a+\log _{36} b+\log _{36} c=$	M1	3.1a
	$\Rightarrow \log _{36}(a b c)=1$ so $a b c=36$	A1	3.4
	All probabilities greater than 0 implies each of a, b and $c>1$	B1	2.2a
	$36=2^{2} \times 3^{2}$ (or 3 numbers that multiply to give 36 e.g. 2, 2, 9 etc)	dM1	2.1
	Since a, b and c are distinct must be $\underline{\mathbf{2 , 3 , 6}} \quad(\boldsymbol{a}=\mathbf{2 , b}=\mathbf{3}, \boldsymbol{c}=\mathbf{6})$		3.2a
		(5)	
(b)	$\left(\log _{36} a\right)^{2}+\left(\log _{36} b\right)^{2}+\left(\log _{36} c\right)$	M1	3.4
	$=0.38140 \ldots$ awrt $\underline{\mathbf{0 . 3 8 1}}$	Al^{A}	1.1 b
		(7 marks)	
	Notes		
(a)	$1^{\text {st }} \mathrm{M} 1$ for a start to the problem using sum of probabilities leading to eq'n in a, b and c $1^{\text {st }} \mathrm{A} 1$ for reducing to the equation $a b c=36$ [Must follow from their equation.]		
NB	Can go straight from $a b c=36$ to the answer for full marks for part (a). B1 for deducing that each value >1 (may be implied by 3 integers all >1 in the next line)		
	B1 for deducing that each value >1 (may be implied by 3 integ $2^{\text {nd }}$ dM1 (dep on M1A1) for writing 36 as a product of prime factor 3 values with product $=36$ and none $=1$ $2^{\text {nd }} \mathrm{A} 1$ for 2,3 and 6 as a list or $a=2, b=3$ and $c=6$	in the ne	t line)
SC	M0M0 If no method marks scored but a correct answer given score: M0A0B1M0A1 (2/5)		
Ans only	This gets the SC score of $2 / 5$ [Question says show your working clearly]		
(b)	M1 for a correct expression in terms of a, b and c or values; ft their integers a, b and c Condone invisible brackets if the answer implies they are used. A1 for awrt 0.381		

Qu 4	Scheme	Marks	AO
(a)	$0.08+0.09+0.36=\underline{\mathbf{0 . 5 3}}$	B1	1.1b
		(1)	
(b)(i)	$[\mathrm{P}(G \cap E \cap S)=0 \Rightarrow] \quad \boldsymbol{p}=\mathbf{0}$	B1	1.1 b
(ii)] $0.08+0.05+q+" p "=0.25 \quad \underline{\boldsymbol{q}=\mathbf{0 . 1 2}}$	M1	1.1 b
		A1	1.1 b
		(3)	
(c)(i)	$\left[\mathrm{P}(S \mid E)=\frac{5}{12} \Rightarrow\right] \frac{r+" p "}{r+" p "+0.09+0.05}=\frac{5}{12}$	M1	3.1a
		A1ft	1.1 b
	$[12 r=5 r+5 \times 0.14 \Rightarrow] \quad \underline{r=0.10}$	A1	1.1 b
(ii)	$[0.08+0.05+" 0.12 "+" 0 "+0.09+" 0.10 "+0.36+t=1 \Rightarrow] t=\mathbf{0 . 2 0}$		1.1 b
		(4)	
(d)	$\begin{aligned} & \mathrm{P}\left(S \cap E^{\prime}\right)=0.36+" q "[=0.48] \\ & \mathrm{P}\left(\left[\left(S \cap E^{\prime}\right)\right] \cap G\right)=" q "[=0.12] \text { and } \mathrm{P}(G)=0.25 \text { and } \\ & \quad \mathrm{P}\left(S \cap E^{\prime}\right) \times \mathrm{P}(G)=" 0.48 " \times \frac{1}{4} \text { or } 0.12 \end{aligned} \quad \begin{array}{r} \mathrm{P}\left(S \cap E^{\prime}\right) \times \mathrm{P}(G)=0.12=\mathrm{P}\left(\left[\left(S \cap E^{\prime}\right)\right] \cap G\right) \text { so are independent } \end{array}$	B1ft	1.1 b
		M1	2.1
		A1	2.2a
		(3)	
		(11 mar	
	Notes		
(a)	B1 for 0.53 (or exact equivalent) [Allow 53\%]		
(b)(i)	B1 for $p=0$ (may be placed in Venn diagram)		
(ii)	M1 for a linear equation for $q(\mathrm{ft}$ letter " p " or their value if 0 , $p, 0.12) \Rightarrow \mathrm{by} p+q=0.12$ A1 for $q=0.12$ (may be placed in Venn diagram)		
(c)(i)	$1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct ratio of probabilities (on LHS) allowing ft of their p where $0, p<0.86$ $2^{\text {nd }} \mathrm{A} 1$ for $r=0.1(0)$ or exact equivalent (may be in Venn diagram) Ans only 3/3		or den ired. 0.86
(ii)	B1ft for $t=0.2(0)($ o.e. $) \underline{o r}$ correct ft i.e. $0.42-(p+q+r)$ where p, q, r and t are all probs		
(d)	B1 ft for $\mathrm{P}\left(S \cap E^{\prime}\right)=0.48$ (with label) (ft letter " q " or their value if $0 „ q$ „ 0.12) M1 for attempting all required probs (labelled) and using them in a correct test (allow ft of q) A1 for all probs correct and a correct deduction (no ft deduction here)		
SC	No "P" If correct argument seen apart from P for probability for all 3 marks, award (B0M1A1) If unsure about an attempt using conditional probabilities, please send to review.		

Section A: STATISTICS

Qu 3	Scheme					Marks	AO
(a)	The probability of a dart hitting the target is constant (from child to child and for each throw by each child) The throws of each of the darts are independent (o.e.)					B1	1.2 1.2
(b)	$[\mathrm{P}(H \geqslant 4)=1-\mathrm{P}(H \leqslant 3)=1-0.9872=0.012795 . .=$					B1	1.1 b
(c)	$\mathrm{P}(F=5)=0.9^{4} \times 0.1,=0.0656$					M1, A1)	3.4 1.1 b
(d)	n				10		
	$\mathrm{P}(F=n)$	01	$0.01+\alpha$		$0.01+9 \alpha$	M	3.1 b
(e) (f)	Sum of probs $=1 \quad \Rightarrow \frac{10}{2}[2 \times 0.01+9 \alpha]=1$ [i.e. $5(0.02+9 \alpha)=1$ or $0.1+45 \alpha=1]$ so $\alpha=\underline{\mathbf{0 . 0 2}}$ $\mathrm{P}(F=5 \mid \text { Thomas' model })=\underline{\mathbf{0 . 0 9}}$ Peta's model assumes the probability of hitting target is constant (o.e.) and Thomas' model assumes this probability increases with each attempt(o.e.)					M1A1	3.1a 1.1 b
						A1	1.1 b
						(4)	
						B1ft (1)	3.4
						B1	3.5a
						(1)	
						(11 ma	
	Notes						
(a)	$1^{\text {st }} \mathrm{B} 1$ for stating that the probability (or possibility or chance) is constant (or fixed or same) $2^{\text {nd }} \mathrm{B} 1$ for stating that throws are independent ["trials" are independent is B0]						
(b)	B1 for awrt 0.0128 (found on calculator)						
(c)	M1 for a probability expression of the form $(1-p)^{4} \times p$ where $0<p<1$ A1 for awrt 0.0656						
SC		rans	nly of 0.06				
(d)	$1^{\text {st }}$ M1 for setting up terms of α. $2^{\text {nd }} \mathrm{M} 1$ for use of sum (allow 1 erro $1^{\text {st }} \mathrm{A} 1$ for a correct $2^{\text {nd }} \mathrm{A} 1$ for $\alpha=0.02$	he di Can b of pr or mi uatio must	ion of F wi lied by $2^{\text {nd }}$ 1 and clear erm). (Can act and com	hat M1 or sum be im fro	correct values of n and) or use of arithmetic se by $1^{\text {st }} \mathrm{A} 1$) ect working)	$\mathrm{P}(F=n)$ ies formula	
(e)	B1ft for value resulting from $0.01+4 \times$ "their α " (provided α and the answer are probs) Beware If their answer is the same as their (c) (or a rounded version of their (c)) score B0						
(f) ALT	Allow idea that Peta's model suggests the dart may never hit the target but Thomas' says that it will hit at least once (in the first 10 throws).						

Question	Scheme	Marks	AOs
1(a)		B1 $\mathrm{dB} 1$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(2)	
(b)	$\frac{9}{10} \times \frac{4}{5} \times \frac{2}{3}$	M1	1.1b
	$=\frac{12}{25}(=0.48)$	A1	1.1b
		(2)	
(c)	$\frac{9}{10} \times \frac{1}{5}+\frac{9}{10} \times \frac{4}{5} \times \frac{1}{3} \quad$ or $\quad 1-\left(\frac{1}{10}+\frac{9}{10} \times \frac{4}{5} \times \frac{2}{3}\right)$	M1	3.1b
	$=\frac{21}{50}(=0.42)$	A1	1.1b
		(2)	
(d)	$[\mathrm{P}($ Red from $B \mid$ Red selected $)]=\frac{\frac{9}{10} \times \frac{1}{5}}{\frac{1}{10}+\frac{9}{10} \times \frac{1}{5}+\frac{9}{10} \times \frac{4}{5} \times \frac{1}{3}}\left[=\frac{9}{\frac{9}{50}} \frac{\frac{13}{25}}{20}\right]$	M1	3.1b
	$=\frac{9}{26}$	A1	1.1b
		(2)	
(8 marks)			
Notes			
	Allow decimals or percentages throughout this question.		
(a)	B1: for correct shape (3 pairs) and at least one label on at least two pairs G(reen) and R(ed) allow G and G^{\prime} or R and R^{\prime} as labels, etc. condone 'extra' pairs if they are labelled with a probability of 0 dB1: (dep on previous B1) all correct i.e. for all 6 correct probabilities on the correct branches with at least one label on each pair		
(b)	M1: Multiplication of 3 correct probabilities (allow ft from their tree diagram) A1: $\frac{12}{25}$ oe		
(c)	M1: Either addition of only two correct products (product of two probs + product of three probs) which may ft from their tree diagram or for $1-\left('^{\prime} \frac{1}{10}^{\prime}+{ }^{\prime}(b)\right.$ ') A1: $\quad \frac{21}{50} \mathrm{oe}$		
(d)	M1: Correct ratio of probabilities or correct ft ratio of probabilities e.g. $\frac{{ }^{\prime \frac{9}{10}}{ }^{\prime} \times \frac{1}{5}{ }^{\prime}}{1-^{\prime}(b)^{\prime}}$ or $\frac{{ }^{\prime} \frac{9}{}{ }^{\prime} \times{ }^{\prime} \frac{1}{5}{ }^{\prime}}{\left.\frac{11^{\prime}}{10^{\prime}}+(c)\right)^{\prime}}$ with num $<$ den A1: $\quad \frac{9}{26}$ (allow awrt 0.346)		

Qu 1	Scheme	Marks	AO
(a)	A, C or D, B or D, C		1.2
		(1)	
(b)	$[p=0.4-0.07-0.24=] \quad \underline{\mathbf{0 . 0 9}}$		1.1 b
(c)	A and B independent implies	(1)	1.1 b
	$\mathrm{P}(A) \times 0.4=0.24$ or $(q+0.16+0.24) \times 0.4=0.24$	M1	
	so $\mathrm{P}(A)=0.6$ and $q=\underline{\mathbf{0 . 2 0}}$	A1cso	b
		(2)	
(d)(i)	$\mathrm{P}\left(B^{\prime} \mid C\right)=0.64 \text { gives } \frac{r}{r+p}=0.64 \text { or } \frac{r}{r+" 0.09 "}=0.64$	M1	3.1a
	$r=0.64 r+0.64 \text { " } p \text { " so } 0.36 r=0.0576 \text { so } r=\underline{\mathbf{0 . 1 6}}$	A1	1.1b
(ii)	Using sum of probabilities $=1$ e.g. " 0.6 " $+0.07+$ " 0.25 " $+s=1$		1.1b
	so $s=\underline{\mathbf{0 . 0 8}}$	A1	1.1 b
		(4)	
		(8 marks)	
	Notes		
(a)	B1 for one correct pair. If more than one pair they must all be correct. Condone in a correct probability statement such as $\mathrm{P}(A \cap C)=0$ or correct use of set notation e.g. $A \cap C=\varnothing$ BUT e.g. " $\mathrm{P}(A)$ and $\mathrm{P}(C)$ are mutually exclusive" alone is B 0		
(b)	B1 for $p=0.09$ (Maybe stated in Venn Diagram [VD]) [If values in VD and text conflict, take text or a value used in a later part]		
(c)	M1 for a correct equation in one variable for $\mathrm{P}(A)$ or q using independence or for seeing both $\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B)$ and $0.24=0.6 \times 0.4$ Alcso for $q=0.20$ or exact equivalent (dep on correct use of independence)		
Beware	A1cso for $q=0.20$ or exact equivalent (dep on correct use of independence) Use of $\mathrm{P}(A)=1-\mathrm{P}(B)=0.6$ leading to $q=0.2$ scores M0A0		
(d)(i)	$1^{\text {st }} \mathrm{M} 1$ for use of $\mathrm{P}\left(B^{\prime} \mid C\right)=0.64$ leading to a correct equation in r and possibly p.		
(ii)	$2^{\text {nd }} \mathrm{M} 1$ for use of total probability $=1$ to form a linear equation in s. Allow p, q, r etc Can follow through their values provided each of p, q, r are in $[0,1)$ $2^{\text {nd }} \mathrm{A} 1$ for $s=0.08$ or exact equivalent		

Qu 4	Scheme	Marks	AO
(a)	$\begin{gathered} \frac{k}{10}+\frac{k}{20}+\frac{k}{30}+\frac{k}{40}+\frac{k}{50}=1 \text { or } \frac{1}{600}(60 k+30 k+20 k+15 k+12 k)=1 \\ \text { So } k=\frac{600}{137}(*) \end{gathered}$	M1 A1cso (2)	1.1 b 1.1 b
(b)	(Cases are:) $D_{1}=30, D_{2}=50$ and $D_{1}=50, D_{2}=30$ and $D_{1}=40, D_{2}=40$	M1	2.1
	$\mathrm{P}\left(D_{1}+D_{2}=80\right)=\frac{k}{50} \times \frac{k}{30} \times 2+\left(\frac{k}{40}\right)^{2}$	M1	3.4
	$=0.0375619 \ldots$ awrt $\underline{\mathbf{0 . 0 3 7 6}}$		1.1b
(c)	Angles are: $a, a+d, \quad a+2 d, a+3 d$	M1	3.1a
	$\mathrm{S}_{4}=a+(a+d)+(a+2 d)+(a+3 d)=360$	M1	2.1
	(o.e.)	A1	2.2a
	Smallest angle is $a>50$ consider cases:	M1	3.1b
	$\mathrm{P}(D=10 \text { or } 20)=\underline{3 k}=\underline{90}$	A1	1.1b
		(5)	
		(10 marks)	
	Notes		
(a) Verify	M1 for clear use of sum of probabilities $=1$ (all terms seen) A1 cso (*) M1 scored and no incorrect working seen.		
	(Assume $\boldsymbol{k}=\frac{600}{137}$) to score the final A1 they must have a final comment " $\therefore k=\frac{600}{137}$ "		
(b)	$1^{\text {st }} \mathrm{M} 1$ for selecting at least 2 of the relevant cases (may be implied by their correct probs)		
	Allow for $\frac{k}{50} \times \frac{k}{30}+\left(\frac{k}{40}\right)^{2}$ or $2 \times\left(\frac{k}{50} \times \frac{k}{30}+\left(\frac{k}{40}\right)^{2}\right)$ A1 for awrt 0.0376 (exact fraction is $\frac{705}{18769}$)		
(c)	$1^{\text {st }}$ M1 for recognising the 4 angles and finding expressions in terms of d and their a $2^{\text {nd }}$ M1 for using property of quad with these 4 angles (equation can be un-simplified) Allow these two marks for use of a (possible) value of d e.g. $a+a+10+a+20+a+30=360$ (If at least 3 cases seen allow A1 for e.g. $4 a=300$) or allow M1M1 for a set of 4 angles with sum 360 and possible value of d (3 cases for A1) e.g. (for $d=20) 60,80,100,120$ $1^{\text {st }} \mathrm{A} 1$ for $2 a+3 d=180$ condition (o.e.) [Must be in the form $p a+q d=N$] $3^{\text {rd }} \mathrm{M} 1$ for examining cases and getting $d=10$ and $d=20$ only $2^{\text {nd }}$ A1 for $\frac{90}{137}$ or exact equivalent The correct answer and no obviously incorrect working will score $5 / 5$ A final answer of awrt 0.657 ($0.65693 \ldots$...) with no obviously incorrect working scores 4/5		

Question	Scheme	Marks	AOs
4(a)	$\mathrm{P}\left(A^{\prime} \mid B^{\prime}\right)=\frac{\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)}{\mathrm{P}\left(B^{\prime}\right)}$ or $\frac{0.33}{0.55}$	M1	3.1a
	$=\frac{3}{5}$ or 0.6	A1	1.1 b
		(2)	
(b)	$\begin{aligned} & \text { e.g. } \mathrm{P}(A) \times \mathrm{P}(B)=\frac{7}{20} \times \frac{9}{20}=\frac{63}{400} \neq \mathrm{P}(A \cap B)=0.13=\frac{52}{400} \\ & \text { or } \quad \mathrm{P}\left(A^{\prime} \mid B^{\prime}\right)=0.6 \neq \mathrm{P}\left(A^{\prime}\right)=0.65 \end{aligned}$	B1	2.4
		(1)	
(c)		B1	2.5
	B	M1	3.1a
		A1	1.1b
		M1	1.1 b
		A1	1.1 b
		(5)	
(d)	$\begin{aligned} & \mathrm{P}(B \cup C)^{\prime}=0.22+0.22 \text { or } 1-[0.56] \\ & \text { or } 1-[0.13+0.23+0.09+0.11] \end{aligned}$	M1	1.1 b
	$=0.44$	A1	1.1b
		(2)	
(10 marks)			
Notes:			
(a) M1: for a correct ratio of probabilities formula and at least one correct value. A1: a correct answer			
(b) for a fully correct explanation: correct probabilities and correct comparisons.			
(c) B1: for inte M1: for A1: for M1: for A1: fully	with B intersecting A and C but C not intersecting A secting circles, but with zeros entered for $A \cap C$ and method for finding $\mathrm{P}(B \cap C)$.09 .13 and their 0.09 in correct places and method for their correct	three No box	
(d) M1: for a correct expression - ft their probabilities from their Venn diagram. A1: cao			

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \({ }^{\text {a }}\) Marks \\
\hline 4. (a) \& \[
[\text { Let } \mathrm{P}(A)=p]{ }_{0.4 p+0.7(1-p)=0.45}
\] \\
\hline \& Notes \\
\hline (a) \& \begin{tabular}{l}
\(1^{\text {st }} \mathrm{M} 1 \quad\) for \(0.4 p\) or \(0.7(1-p)\) seen in an equation for \(p\) \\
\(1^{\text {st }} \mathrm{A} 1 \quad\) for a fully correct equation for \(p\)
\end{tabular} \\
\hline ALT \& \[
\begin{array}{ll}
\hline 1^{\text {st }} \mathrm{M} 1 \& \text { for attempt at } 2 \text { sim' eq'ns in } p \text { and } q \text { Allow one error. } \\
\& 0.4 p+0.7 q=\frac{9}{20} \text { and } 0.6 p+0.3 q=\frac{11}{20} \\
1^{\text {st }} \mathrm{A} 1 \& \text { for any correct equation in } p \text { or } q
\end{array}
\] \\
\hline (b)

SC \& $$
\begin{aligned}
& 2^{\text {nd }} \mathrm{M} 1 \quad \text { for simplifying their linear equation with at least } 2 \text { terms in } p \text { or } q \text { to } a=b p \text { or } b q \\
& 2^{\text {nd }} \mathrm{A} 1 \quad \text { for } \mathrm{P}(A)=\frac{5}{6} \text { or exact equiv e.g. } 0.8 \dot{3} \text { (may be seen on their tree diagram) } \\
& \left.1^{\text {st }} \mathrm{B} 1 \mathrm{ft} \quad \text { for } 1^{\text {st }} 2 \text { branches i.e. } \frac{5}{6} \text { and } \frac{1}{6} \text { (follow through their } \mathrm{P}(A)\right) \\
& 2^{\text {nd }} \mathrm{B} 1 \quad \text { for } 2^{\text {nd }} 4 \text { branches i.e. } \frac{3}{5} \text { and } \frac{3}{10} \\
& \text { M1 for a ratio of probabilities ft their numerator from their tree diagram but denom }=0.55 \\
& \text { A1 for } \frac{1}{11} \text { or exact equivalent e.g. } 0 . \dot{0} \dot{9} \\
& {\left[\mathbf{P}(\boldsymbol{A}) \neq \frac{5}{6} \text {] award M1A0 for } \frac{\mathrm{P}\left(A^{\prime}\right) \times \frac{3}{10}}{\mathrm{P}(A) \times \frac{3}{5}+\mathrm{P}\left(A^{\prime}\right) \times \frac{3}{10}} \text { ft their } \mathrm{P}(A) \text { and } \mathrm{P}\left(A^{\prime}\right)=1-\mathrm{P}(A)\right.}
\end{aligned}
$$

\hline
\end{tabular}

CR A

Question Number	Scheme	Marks
2. (a)	(The event that) the integer selected is prime and ends in a 3 (and is between 1 and 50 inclusive)	B1
(b)	$\frac{15}{50} \text { (or equivalent e.g. 0.30) [condone } 30 \% \text {] }$	B1 (1)
(c)	$\frac{12}{50}$ (or equivalent e.g. 0.24) [condone 24%]	B1 (1)
(d)	$[\mathrm{P}(A \mid C)=] \frac{\mathrm{P}(A \cap C)}{\mathrm{P}(C)}=\frac{\frac{7}{50}}{\frac{30}{50}}=, \frac{7}{\underline{30}}$	$\mathbf{M 1}, \underline{\mathbf{A 1}}$ (2)
(e)	$\frac{15}{50} \neq \frac{7}{30}, \quad$ so not independent.	M1, A1
(f)	$\begin{equation*} [\mathrm{P}(B \mid(A \cap C))=] \frac{\mathrm{P}(B \cap A \cap C)}{\mathrm{P}(A \cap C)}=\frac{\frac{2}{50}}{\frac{7}{50}}=, \quad \frac{2}{7} \tag{2} \end{equation*}$	$\mathbf{M 1}, \underline{\mathbf{A 1}}$
		[9 marks]
(d)	M1 for a correct ratio expression (may be in words) with at least one correct probability	
	substituted or correct ratio expression and $\frac{7}{n}$ or $\frac{m}{30}$ where $7<n$ or $m<30$ or fully correct ratio of probabilities. A1 for $\frac{7}{30}$ or any exact equivalent e.g. $0.2 \dot{3}$ but 0.233 is M1A0 (Correct ans	nly = M1A1)
(e)	M1 for correctly comparing 'their (b)' with 'their (d)', can be in words or symbols e.g. $\mathrm{P}(A) \neq \mathrm{P}(A \mid C)$ in symbols. A1 dependent on a correct (b) and (d) (or awrt 0.233 in (d)) and for concluding not independent	
SC	For a correct test using correctly labelled $\mathrm{P}(A)=\frac{15}{50}, \mathrm{P}(C)=\frac{30}{50}$ and $\mathrm{P}(A$ with all correct probabilities and $\frac{15}{50} \times \frac{30}{50}=\frac{9}{50} \neq \frac{7}{50}$ (o.e.) seen leading to "not independent" score M0A1	$C)=\frac{7}{50}$
(f)	M1 for a correct ratio expression (may be in words) with at least one correct probability substituted or correct ratio expression and $\frac{r}{7}$ or $\frac{2}{t}$ where $r<7$ or $2<t$ or fully correct ratio of probabilities A1 for $\frac{2}{7}$ or an exact equivalent. Allow awrt 0.286 here as well.(Correct ans. only $=$ M1A1)	

Question Number	Scheme	Marks
4.(a)		B1 B1 (2)
(b)	$\begin{aligned} 1-0.3 \times 0.5 \times 0.7 & \times 0.9 \text { or } 0.7+(0.3 \times 0.5)+(0.3 \times 0.5 \times 0.3)+(0.3 \times 0.5 \times 0.7 \times 0.1) \\ & =\underline{\mathbf{0 . 9 0 5 5}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(c)	$\begin{align*} & {\left[\mathrm{P}\left(P_{1} \cup P_{2} \mid \text { Pass }\right)=\right] \frac{0.7+" 0.3 " \times 0.5}{(b)},=\frac{0.85}{" 0.9055 "} } \\ &=0.938707 \ldots=\mathrm{awrt} \underline{\mathbf{0 . 9 3 9}} \tag{3} \end{align*}$	(2) $\mathrm{M} 1, \mathrm{~A} 1 \mathrm{ft}$ A1
(d)	$\begin{align*} & \quad p+(1-p)(p-0.2) \text { or } 1-(1-p)(1.2-p) \text { (o.e.) } \\ & \text { e.g. } \quad p+p-p^{2}+0.2 p-0.2=0.95 \rightarrow p^{2}-2.2 p+1.15=0 \tag{*} \end{align*}$	M1 dM1A1cso (3)
(e)	$\begin{gathered} p=\frac{2.2 \pm \sqrt{2.2^{2}-4 \times 1.15}}{2} \text { or Complete the sq: }(p-1.1)^{2}-1.1^{2}+1.15=0 \\ =\frac{2.2 \pm 0.4898 \ldots}{2} \text { or } \frac{2.2 \pm \sqrt{0.24}}{2} \text { or } 1.1 \pm \sqrt{0.06} \text { or }(1.34 \ldots), 0.855 \ldots \\ p=0.85505102 \ldots p=\underline{\mathbf{0 . 8 5 5}} \end{gathered}$	M1 A1 A1
	Notes	
(a)	$1^{\text {st }} \mathrm{B} 1 \quad$ for correctly placing 0.3 and 0.5	
(b)	Apart from (d), a correct answer with no incorrect working scores for a correct expression (ft from their tree diagram) A1 for 0.9055 or exact equivalent e.g. $\frac{1811}{2000}$ Accept 0.906 only if correct	marks. xpr' seen
(c)	M1 for a correct ratio of probs ft their 0.3 and their answer to (b)[if $<1]$. A1ft for correct numerator and their part (b) on denominator A1 for awrt 0.939 or accept exact fraction eg $\frac{1700}{1811}$	m > Den M0
(d)	$\begin{array}{ll} 1^{\text {st }} \mathrm{M} 1 & \text { for a correct expression for } \mathrm{P}(\text { pass }) \text { in terms of } p[\text { condone } p-(p \\ 2^{\text {nd }} \mathrm{dM} 1 & \begin{array}{l} \text { dep. on } 1^{\text {st }} \mathrm{M} 1 \text { for expanding brackets and forming an equation in } \end{array} \\ & \text { Allow one slip } \\ \text { A1cso } & \text { correct processing leading to printed answer. No incorrect workin } \end{array}$	$\text { 1) }(p-0.2) \mathrm{etc}]$ seen.
(e)	M1 for attempt to solve given equation, correct expression. Condone j $1^{\text {st }} \mathrm{A} 1$ for correct expression and simplified square root or $1.34 \ldots$ and 0.8 $2^{\text {nd }} \mathrm{A} 1$ for $p=0.855$ only (penalise any extra value >1) Correct ans only	$+\operatorname{not} \pm$ ores $3 / 3$
Ans. only	For $\frac{1}{10}(11-\sqrt{6})$ or $0.855 \ldots$ score M1A1A0 (not to 3 dp) but for 0.855 can	M1A1A1

