Qu 6	Scheme	Marks	AO			
(a)	[Sum of probs = 1 implies] $\log_{36} a + \log_{36} b + \log_{36} c = 1$	M1	3.1a			
	$\Rightarrow \log_{36}(abc) = 1$ so $abc = 36$	A1	3.4			
	All probabilities greater than 0 implies each of a, b and $c > 1$	B1	2.2a			
	$36 = 2^2 \times 3^2$ (or 3 numbers that multiply to give 36 e.g. 2, 2, 9 etc.)	dM1	2.1			
	Since a, b and c are distinct must be $2, 3, 6$ $(a = 2, b = 3, c = 6)$	A1	3.2a			
		(5)				
(0)	$(\log_{36} a)^2 + (\log_{36} b)^2 + (\log_{36} c)^2$	M1	3.4			
	[= 0.0374137+ 0.09398737+0.25]					
	= 0.38140 awrt <u>0.381</u>	A1	1.1b			
		(2)				
		(7 mark	s)			
	Notes					
(a)	1 st M1 for a start to the problem using sum of probabilities leading to eq'n i	in <i>a</i> , <i>b</i> and	с			
	1^{st} A1 for reducing to the equation $abc = 36$ [Must follow from their equation	on.]				
NB	Can go straight from $abc = 36$ to the answer for full marks for part (a	a).				
	B1 for deducing that each value > 1 (may be implied by 3 integers all > 1	l in the nex	xt line)			
	2^{nd} dM1 (dep on M1A1) for writing 36 as a product of prime factors <u>or</u>					
	3 values with product = 36 and none = 1					
	2^{Int} A1 for 2, 3 and 6 as a list or $a = 2, b = 3$ and $c = 6$					
Ans only	MUMU If no method marks scored but a correct answer given score: M0A0B1M0A1 (2/5) This gets the SC score of 2/5. [Ouestion save show your working clearly]					
	This gets the Se score of 2/5 [Question says show your working en	carry				
(b)	M1 for a correct expression in terms of a, b and c or values; ft their intege	rs <i>a</i> , <i>b</i> and	С			
	Condone invisible brackets if the answer implies they are used.					
	A1 for awrt 0.381					

G.B. Attwood 26/10/2021

Qu 4	Scheme	Marks	AO			
(a)	0.08 + 0.09 + 0.36 = 0.53	B1	1.1b			
		(1)				
(b)(i)	$\begin{bmatrix} \mathbf{P}(G \cap E \cap S) = 0 \implies \mathbf{p} = 0 \end{bmatrix} \mathbf{p} = 0$	B1	1.1b			
(ii)	$[P(G) = 0.25 \implies] 0.08 + 0.05 + q + "p" = 0.25$	M1	1.1b			
	q = 0.12	A1	1.1b			
(c)(i)		(3)	2.1			
	$\left P(S E) = \frac{5}{12} \implies \left \frac{r+p}{r+p+0.09+0.05} = \frac{5}{12} \right \right $	MI A1ft	3.1a 1.1b			
	$\begin{bmatrix} 1 \\ 12r = 5r + 5 \times 0.14 \\ \Rightarrow \end{bmatrix} \underline{r = 0.10}$	A1	1.1b			
(ii)	$[0.08 + 0.05 + "0.12" + "0" + 0.09 + "0.10" + 0.36 + t = 1 \implies] \underline{t = 0.20}$	B1ft	1.1b			
		(4)				
(d)	$P(S \cap E') = 0.36 + "q" [= 0.48]$	B1ft	1.1b			
	$P([(S \cap E')] \cap G) = "q"[=0.12]$ and $P(G) = 0.25$ and					
	$P(S \cap F') \times P(G) = "0.48" \times \frac{1}{2} \text{ or } 0.12$	M1	2.1			
	$\Gamma(3 + 12) \times \Gamma(0) = 0.43 \times \frac{1}{4} \text{ or } 0.12$					
	$P(S \cap E') \times P(G) = 0.12 = P(\lfloor (S \cap E') \rfloor \cap G)$ so are independent	A1	2.2a			
		(3)				
	Notes	(11 mar	KS)			
(a)	B1 for 0.53 (or exact equivalent) [Allow 53%]					
(D)(1) (ii)	B1 for $p = 0$ (may be placed in Venn diagram) M1 for a linear equation for a (ft letter "p" or their value if $0 = p = 0.12$) =	b h v n + a =	= 0.12			
	A1 for $q = 0.12$ (may be placed in Venn diagram)	, of p + q	0.12			
		_				
(c)(i)	M1 for a ratio of probabilities (r on num and den) (on LHS) with num < den correct ft Allow ft of letter "n" or their n where $0 = n < 0.86$ but " ± 0 "	and num	or den			
	1^{st} A1ft for a correct ratio of probabilities (on LHS) allowing ft of their <i>n</i> when	re 0 n < n < n < n < n < n < n < n < n < n	0.86			
	2^{nd} A1 for $r = 0.1(0)$ or exact equivalent (may be in Venn diagram) Ans only	v 3/3				
(ii)	B1ft for $t = 0.2(0)$ (o.e.) or correct ft i.e. $0.42 - (p + q + r)$ where p, q, r and	d t are all	probs			
(d)	$D_{10} = D(S - E') = 0.49$ (-14) 1-1 -1 (0.14) (0.14) (0.14) (0.14)	0.12)				
(u)	Biff for $P(S \cap E) = 0.48$ (with label) (it letter "q" or their value if 0 " q "	0.12)				
	A1 for all probs correct and a correct deduction (no ft deduction here)	st (allow ft	of <i>q</i>)			
sc	No "P" If correct argument seen apart from P for probability for all 3 marks, a	ward (B0N	41A1)			
	If unsure about an attempt using conditional probabilities, please send to review.					

Section A: STATISTICS

Qu 1				Sch	eme						Marks	AO
(a)	<i>c</i> 0	1	2	3	4	5	6	7	8		B1	1.2
	$P(C=c) \qquad \frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$		B1ft	1.2
						(2)						
(b)	$P(C < 4) = \frac{4}{9} (acc$	ept 0.44	44 or l	better)	1						B1	3.4
		-		,							(1)	
(c)	Probability lower th	an expe	ected s	sugges	sts mo	del is	<u>not</u> go	ood			Bĺft	3.5a
											(1)	
(d)	e.g. Cloud cover wi	ll vary	from	month	to mo	onth a	nd pla	ce to p	place		B1	3.5c
	So e.g. use a non-u	nitorm	distri	bution	l						(1)	
						Noto					(5 mark	.\$)
(a)	1 st D1 for a correct	sot of v	aluar	fore	A 11 or	$\frac{10000}{1}$	• : 8)					
(u)	and D10		alues	101 C.		$\sqrt{\frac{8}{8}, \frac{8}{8}}$, <u>8</u> }		• .1 1.		c 1	
	2 nd Blft for correct	probs	from 1	their v	alues	tor c ,	consis	tent w	vith di	screte unit	torm distril	p'n
	Maybe as a prob. I	unction	. Allo	DW P(2	x = x	$=\frac{1}{9}$	or $0 \leq$	$x \leq 0$	s prov	$1 \det x = \{$	0, 1, 2,,	8} 1S
	clearly defined son	newher	e.									
(h)	B1 for using cor	ract mo	del to	ant 4	(0.0)						
	Second a second second			$\frac{1}{9}$	1	.) .) f	1.:	D	(C < A) _ 3 4		(1-)
SC	Sample space {1,	., ð} II	score	a BOB	1 in (a	a) IOT 1	inis al	low P	(C < 4	$f = \frac{3}{8}$ to so	core B1 in ((D)
(c)	Blft for comme	nt that c	states	that th	e mod	lel nro	nosed	is or	is not	a good one	based on	
	their model	in part	(a) ar	nd thei	ir prot	abilit	v in (b)	15 1100	a good one		
	(b) - 0.315 > 0.05	Allov	v e.g.	"it is	not su	itable	"; "it i	s not a	accura	te" etc		
	$ (b) - 0.315 \le 0.05$	Allow	v a con	mmen	t that s	sugges	sts it <u>is</u>	<u>s</u> suita	ble			
	No prob in (b)	Allow	a com	pariso	on that	menti	ons 5	0% o	r 0.5 a	nd rejects	the model	
	No prob in (b) and	no 50%	% or ().5 or	(b) >	1 scor	es B0					
	Ignore any	comm	ients a	ibout l	ocatic	on or v	veathe	r patte	erns.			
(d)	B1 for a sensibl	e refine	ement	consid	derino	varia	tions i	n mor	nth or 1	ocation		
(4)	Just saying	"not un	iform	" is B()							
	Context & "non-un	niform'	'Allo	w mer	ntion of	of diff	erent l	ocatic	ons, mo	onths <u>and</u> i	non-unifor	m
	<u>or</u> use more	locatio	ns to	form a	n new	distrib	ution	with p	probab	ilities base	ed on frequ	encies
	Context & "binom	i al" All	low m	entior	of di	fferen	t locat	ions, i	month	s <u>and</u> bino	mial	
	Just relined model	Model	must	be out	llined	and co	1scret		non-ui	1110rm philities fo	r less clouv	1 cover
	Continuous model	Anv m	odel fl	hat is l	based	on a c	ontini	ious d	istribu	tion e g r	normal is B	
						u v		u			io D	-

Qu 3	Scheme	Marks	AO		
(a)	The probability of a dart hitting the target is constant (from child to child and	B1	1.2		
	for each throw by each child) (o.e.)				
	The <u>throws</u> of each of the darts are <u>independent</u> (o.e.)	B1	1.2		
		(2)			
(b)	$[P(H \ge 4) = 1 - P(H \le 3) = 1 - 0.9872 = 0.012795 =] $ awrt <u>0.0128</u>	B1	1.1b		
		(1)			
(c)	$P(F=5) = 0.9^4 \times 0.1, = 0.06561$	M1,	3.4		
	= awrt <u>0.0656</u>	A1	1.1b		
		(2)			
(d)	n 1 2 10	M1	2 1h		
	$P(F = n) = 0.01$ $0.01 + \alpha$ $0.01 + 9\alpha$	101 1	5.10		
	10^{10}	2 61 4 1	3.1a		
	Sum of probs = 1 $\Rightarrow \frac{1}{2} [2 \times 0.01 + 9\alpha] = 1$	MIAI	1.1b		
	[i.e. $5(0.02 + 9\alpha) = 1$ or $0.1 + 45\alpha = 1$] so $\alpha = 0.02$	A1	1.1b		
		(4)			
(e)	P(F = 5 Thomas' model) = 0.09	B1ft	3.4		
		(1)			
(f)	<u>Peta's model assumes the probability of hitting target is constant</u> (o.e.)	B1	3.5a		
	and <u>Thomas</u> ' model assumes this <u>probability increases</u> with each attempt(o.e.)	(1)			
		(1) (11 marl			
	Notos		(8)		
(9)	1^{st} B1 for stating that the probability (or possibility or chance) is constant (or f	ixed or sa	me)		
(4)	2^{nd} B1 for stating that throws are independent ["trials" are independent is B0]				
(b)	B1 for awrt 0.0128 (found on calculator)				
(c)	M1 for a probability expression of the form $(1-p)^4 \times p$ where 0				
	A1 for awrt 0.0656				
SC	Allow M1A0 for answer only of 0.066				
(d)	1^{st} M1 for setting up the distribution of F with at least 3 correct values of n and	P(F = n)	in		
	terms of α . (Can be implied by 2 nd M1 or 1 st A1)	· c 1			
	2^{Int} M1 for use of sum of probs = 1 and clear summation or use of arithmetic set	ies formul	a		
	(anow 1 error of missing term). (Can be implied by 1^{-1} A1)				
	$2^{nd} A_1$ for $\alpha = 0.02$ (must be event and some from correct working)				
	2 AT 101 $\alpha = 0.02$ (must be exact and come from contect working)				
(e)	B1ft for value resulting from $0.01 \pm 4 \times$ "their α " (provided α and the answer	are probs)			
(0)	Beware If their answer is the same as their (c) (or a rounded version of their (c)) score R0				
		-,,			
(f)	B1 for a suitable comment about the probability of hitting the target				
ALT	Allow idea that Peta's model suggests the dart may never hit the target but Thomas' says that				
	it will hit at least once (in the first 10 throws).				

Question	Scheme	Marks	AOs			
1(a)	$\frac{2}{3}$ G	B1	1.1b			
	$ \begin{array}{c} \frac{9}{10} \\ \frac{9}{10} \\ \frac{1}{5} \\ R \end{array} $	dB1	1.1b			
	$\frac{1}{10}$ R	(2)				
(b)	$\frac{9}{10} \times \frac{4}{5} \times \frac{2}{3}$	M1	1.1b			
	$=\frac{12}{25}(=0.48)$	A1	1.1b			
		(2)				
(c)	$\frac{9}{10} \times \frac{1}{5} + \frac{9}{10} \times \frac{4}{5} \times \frac{1}{3} \text{or} 1 - \left(\frac{1}{10} + \frac{9}{10} \times \frac{4}{5} \times \frac{2}{3}\right)$	M1	3.1b			
	$=\frac{21}{50}$ (= 0.42)	A1	1.1b			
		(2)				
(d)	$\left[P(\text{Red from } B \text{Red selected})\right] = \frac{\frac{9}{10} \times \frac{1}{5}}{\frac{1}{10} + \frac{9}{10} \times \frac{1}{5} + \frac{9}{10} \times \frac{4}{5} \times \frac{1}{3}} \left[= \frac{\frac{9}{50}}{\frac{13}{25}} \right]$	M1	3.1b			
	$=\frac{9}{26}$	A1	1.1b			
		(2)				
		(*	8 marks)			
	Notes					
	Allow decimals or percentages throughout this q	uestion.				
(a)	 B1: for correct shape (3 pairs) and at least one label on at least two pairs G(reen) and R(ed) allow G and G' or R and R' as labels, etc. condone 'extra' pairs if they are labelled with a probability of 0 dB1: (dep on previous B1) all correct i.e. for all 6 correct probabilities on the 					
	M1: Multiplication of 3 correct probabilities (allow ft from the	heir tree di	agram)			
(b)	A1: $\frac{12}{25}$ oe					
(c)	M1: Either addition of only two correct products (product of two probs + product of three probs) which may ft from their tree diagram or for $1 - (\frac{1}{10} + (b))$ A1: $\frac{21}{50}$ oe					
	M1: Correct ratio of probabilities					
(d)	or correct ft ratio of probabilities e.g. $\frac{\frac{19}{10} \times \frac{15}{1}}{1 - \frac{10}{10}}$ or $\frac{\frac{19}{10} \times \frac{15}{1}}{\frac{11}{10} + \frac{10}{10}}$	with nun	n < den			
	A1: $\frac{9}{26}$ (allow awrt 0.346)					

Qu 1	Scheme	Marks	AO
(a)	A, C or D, B or D, C	B1	1.2
		(1)	
(b)	$[p = 0.4 - 0.07 - 0.24 =] \underline{0.09}$	B1	1.1b
(0)	1 and R independent implies	(1)	1 1h
(0)	A and B independent implies $P(A) \times 0.4 = 0.24 \text{ or } (a + 0.16 + 0.24) \times 0.4 = 0.24$	N / 1	1.10
	$P(A) \times 0.4 = 0.24$ <u>or</u> $(q + 0.16 + 0.24) \times 0.4 = 0.24$	MI	
		A 1	
	so $P(A) = 0.6$ and $q = 0.20$	AICSO	1.1b
		(2)	
(d)(i)	P(P' C) = Q(A + r) + r + Q(A + r)		
	$P(B' C) = 0.64 \text{ gives } \frac{1}{r+p} = 0.64 \text{ or } \frac{1}{r+0.09''} = 0.64$	M1	3.1a
	r = 0.64r + 0.64 "p" so $0.36r = 0.0576$ so $r = 0.16$	A1	1.1b
Gii)	Using sum of probabilities = $1 e \sigma$ "0 6" + 0 07 + "0 25" + s = 1	M1	1 1h
(11)	so $s = 0.08$	Δ1	1.10 1.1h
	50 5 <u>0.00</u>	(4)	1.10
		(4)	
		(8 mark	(5)
	Notes		/
(a)	B1 for one correct pair. If more than one pair they must all be correct.		
	Condone in a correct probability statement such as $P(A \cap C) = 0$		
	or correct use of set notation e.g. $A \cap C = \emptyset$		
	BUT e.g. " $P(A)$ and $P(C)$ are mutually exclusive" alone is B0		
a .			
(b)	B1 for $p = 0.09$ (Maybe stated in Venn Diagram [VD])		
	[If values in vD and text conflict, take text of a value <u>used</u> in a late	er partj	
(c)	M1 for a correct equation in one variable for $P(A)$ or <i>a</i> using indep	endence	
	or for seeing both $P(A \cap B) = P(A) \times P(B)$ and $0.24 = 0.6 \times 0.16$	4	
	Alcso for $q = 0.20$ or exact equivalent (dep on correct use of independent)	ndence)	
Beware	Use of $P(A) = 1 - P(B) = 0.6$ leading to $q = 0.2$ scores M0A0	,	
(d)(i)	1 st M1 for use of $P(B' C) = 0.64$ leading to a correct equation in r and	l possibly	<i>p</i> .
	Can ft their <i>n</i> provided $0 < n < 1$	1 J.	L
	1^{st}A1 for $r = 0.16$ or exact equivalent		
(ii)	2^{nd} M1 for use of total probability = 1 to form a linear equation in s. A	llow p, q ,	r etc
	Can follow through their values provided each of p , q , r are in	[0, 1)	
	$2^{n\alpha}$ A1 for $s = 0.08$ or exact equivalent		

Qu 4	Scheme	Marks	AO			
(a)	$\frac{k}{10} + \frac{k}{20} + \frac{k}{30} + \frac{k}{40} + \frac{k}{50} = 1 \text{ or } \frac{1}{600} (60k + 30k + 20k + 15k + 12k) = 1$	M1	1.1b			
	So $k = \frac{600}{137}$ (*)	A1cso	1.1b			
(b)	(Cases are:) $D_1 = 30, D_2 = 50$ and $D_1 = 50, D_2 = 30$ and $D_1 = 40, D_2 = 40$	(2) M1	2.1			
	$P(D_1 + D_2 = 80) = \frac{k}{50} \times \frac{k}{30} \times 2 + \left(\frac{k}{40}\right)^2$	M1	3.4			
	= 0.0375619 awrt 0.0376	A1 (3)	1.1b			
(c)	Angles are: $a, a+d, a+2d, a+3d$	M1	3.1a			
	$S_4 = a + (a + d) + (a + 2d) + (a + 3d) = 360$	M1	2.1			
	2a + 3d = 180 (o.e.)	A1	2.2a			
	Smallest angle is $a > 50$ consider cases: d = 10 so $a = 75$ or $d = 20$ so $a = 60$ [$d = 30$ gives $a = 45$ no good]	M1	3.1b			
	$\begin{bmatrix} u & 10 & 50 & 10 & 50 \\ 0 & 10 & 50 & 0 & 0 \\ 0 & 10 & 50 & 0 & 0 \\ 0 & 10 & 50 & 0 \\ 0 & 10 & 50 & 0 \\ 0 & 10 & 50 & 0 \\ 0 & 10 & 50 & 0 \\ 0 & 10 & 50 & 0 \\ 0 & 10 & 50 & 0 \\ 0 & 10 & 50 & 0 \\ 0 & 10 & 50 & 0 \\ 0 & 10 & 50 & 0 \\ 0 & 10 & 50 & 0 \\ 0 & 10 & 50 & 0 \\ 0 & 10 & 50 & 0 \\ 0 & 10 & 50 & 0 \\ 0 & 10 & 50 & 0 \\ 0 & 10 & 10 & 0 \\ 0 & 10 & 10 & $					
	$P(D = 10 \text{ or } 20) = \frac{1}{20} = \frac{1}{137}$	A1	1.1b			
		(5)				
		(10 ma	rks)			
	Notes					
(a)	M1 for clear use of sum of probabilities = 1 (all terms seen) $M_1 = M_1 = M_1$					
Verify	A1 cso (*) M1 scored and no incorrect working seen. (Assume $k = {}^{600}$) to score the final A1 they must have a final comment ": $k =$	_ 600 "				
verny	(Assume $\kappa = \frac{1}{137}$) to score the rinar AT they must have a <u>rinar</u> comment $\ldots \kappa$	137				
(b)	1 st M1 for selecting at least 2 of the relevant cases (may be implied by their	correct pr	obs)			
	e.g. allow 30, 50 and 50,30 i.e. D_1 and D_2 labels not required	-	ŕ			
	2^{nd} M1 for using the model to obtain a correct expression for two different probabilities. May use letter k or their value for k.					
	Allow for $\frac{k}{50} \times \frac{k}{30} + \left(\frac{k}{40}\right)^2$ or $2 \times \left(\frac{k}{50} \times \frac{k}{30} + \left(\frac{k}{40}\right)^2\right)$					
	A1 for awrt 0.0376 (exact fraction is $\frac{705}{18769}$)					
രി	1^{st} M1 for recognising the 4 angles and finding expressions in terms of d and	their a				
(0)	2^{nd} M1 for using property of quad with these 4 angles (equation can be un-sin	nplified)				
	Allow these two marks for use of a (possible) value of d					
	e.g. $a + a + 10 + a + 20 + a + 30 = 360$ (If at least 3 cases seen allow A1 for e.g. $4a = 300$)					
	$\frac{\text{or}}{e \text{g}} \text{ (for } d = 20) \text{ 60 } 80 \text{ 100 } 120$					
	1^{st}A1 for $2a + 3d = 180$ condition (o.e.) [Must be in the form $pa + qd = N$]					
	3^{rd} M1 for examining cases and getting $d = 10$ and $d = 20$ only					
	$2^{nd} A1$ for $\frac{90}{137}$ or exact equivalent					
	The correct answer and no obviously incorrect working will score 5/5	1.				
	A final answer of awrt $0.657 (0.65693)$ with no obviously incorrect we	orking sco	res 4/5			

Questio	n Scheme	Marks	AOs				
4(a)	$P(A' B') = \frac{P(A' \cap B')}{P(B')} \text{ or } \frac{0.33}{0.55}$	M1	3.1a				
	$=\frac{3}{5}$ or 0.6	A1	1.1b				
		(2)					
(b)	e.g. $P(A) \times P(B) = \frac{7}{20} \times \frac{9}{20} = \frac{63}{400} \neq P(A \cap B) = 0.13 = \frac{52}{400}$ or $P(A' B') = 0.6 \neq P(A') = 0.65$	B1	2.4				
		(1)					
(c)		B1	2.5				
	В	M1	3.1a				
		A1	1.1b				
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	1.1b				
		A1	1.1b				
		(5)					
(d)	$P(B \cup C)' = 0.22 + 0.22 \text{ or } 1 - [0.56]$ or $1 - [0.13 + 0.23 + 0.09 + 0.11]$ o.e.	M1	1.1b				
	= 0.44	A1	1.1b				
		(2)					
		(1	0 marks)				
Notes:							
(a) M1: fo A1: a	r a correct ratio of probabilities formula and at least one correct va correct answer	lue.					
(b) fo	for a fully correct explanation: correct probabilities and correct comparisons.						
(c) B1: fo in	for box with <i>B</i> intersecting <i>A</i> and <i>C</i> but <i>C</i> not intersecting <i>A</i> .(Or accept three intersecting circles, but with zeros entered for $A \cap C$ and $A \cap B \cap C$)No box is B0						
M1: fo	for method for finding $P(B \cap C)$						
A1: fo	for 0.09 for 0.13 and their 0.00 in correct places and method for their 0.22						
A1: fu	lly correct						
(d) M1: fo	for a correct expression – ft their probabilities from their Venn diagram.						

A1: cao

Question	Scheme	Marks
Number	Schellit	17141 NS
2. (a)	<i>B</i> and <i>C</i> (only)	B1
ക	$P(A \cap C) = 0.6 \times 0.35$ so $[w = 1.0.21]$	(1) Blese
(0)	$F(A \cap C) = 0.0 \times 0.55$ so $[w -] 0.21$	(1)
(c)	x = P(C) - w = 0.14	B1
	y = P(A) - w - P(B) = 0.24	M1,A1
	$z = 1 - P(A \cup C) = \underline{0.26}$	B1ft
		(4)
(d)	[x + y =] <u>0.38</u>	B1ft
		(1)
(e)	$[P(B \cup C) = 0.15 + 0.35] = \underline{0.5}$	Blcao
		(1)
(f)	$\left[P\left(A \mid \left[B \cup C \right] \right) \right] = \frac{P(A \cap \left[B \cup C \right])}{P(B \cap C)} = \frac{0.15 + 0.21}{10.57}$	M1A1ft
	$P(B \cup C)$ "0.5"	
	= 0.72	AI (2)
		(3) [Total 11]
	Notes	
(a)	B1 for just <i>B</i> and <i>C</i> [NB Just writing $P(B \cap C) = 0$ is B0]	
	Di forjased ana e fréd vase anang f(d++e) o le doj	
(b)	B1cso for 0.21 clearly from $P(A) \times P(C)$ or 0.6 × 0.35 and no incorrect statement	nts seen
	1^{51} D1 $f_{22} = 0.14$	
(C)	1 B1 101 $x = 0.14$ M1 for a correct expression for y	
	A 1 for $y = 0.24$	
	2^{nd} B1ft for $z = 0.26$ or correct ft of their values to make sum = 1 (provided al	1 probs)
	These values may be seen in correct regions in the Venn diagram	r)
(d)	B1ft for their $x + y$ or 0.38	
(e)	B1 for 0.5 or exact equivalent	
ரி	M1 for a correct ratio of probabilities formula num of: $P(B \cup C \cap A)$ or $P(A \cup C \cap A)$	$A \cap [B \cup C])$
	with brackets and some correct probability, ft their (e) May be implied by corr	ect ratio.
	1^{st} A1ft for a numerator of $0.15 + 0.21$ and a denominator of their (e)	
	Can award M1A1ft for $0.15+0.21$ aven if their formula is incorrect	
	"their 0.5"	
	2^{nd} A1 for 0.72 or exact equivalent e.g. $\frac{18}{25}$	
	C	

Question	Scheme	Marks
Number 4 (a)	$[I \text{ at } \mathbf{P}(A) - n]$	
4. (a)	$\begin{array}{c} [\text{Let } \mathbf{P}(A) - p] \\ 0.4p + 0.7(1 - p) = 0.45 \\ 0.25 = 0.3p \\ p = \frac{5}{6} \end{array}$	M1A1 M1 A1
	$\frac{5}{6}$ A $\frac{2}{5}$ B A'	B1ft
	-16 A'	B1
(b)	$\left[P(A' \mid B')\right] = \frac{\frac{1}{6} \times 0.3}{0.55}$	(6) M1
	$=\frac{1}{11}$	A1 (2)
		[Total 8]
	Notes	
(a)	1 st M1 for 0.4 <i>p</i> or 0.7(1 – <i>p</i>) seen in an equation for <i>p</i> 1 st A1 for a fully correct equation for <i>p</i>	
ALT	1 st M1 for attempt at 2 sim' eq'ns in p and q Allow one error. $0.4p + 0.7q = \frac{9}{20} \text{ and } 0.6p + 0.3q = \frac{11}{20}$ 1 st A1 for any correct equation in p or q	
	2^{nd} M1 for simplifying their linear equation with at least 2 terms in <i>n</i> or <i>a</i> to <i>a</i>	a = bp or ba
	2^{nd} A1 for P(A) = $\frac{5}{6}$ or exact equive.g. 0.83 (may be seen on their tree diag	gram)
	1 st B1ft for 1 st 2 branches i.e. $\frac{5}{6}$ and $\frac{1}{6}$ (follow through their P(A))	·
	2 nd B1 for 2 nd 4 branches i.e. $\frac{3}{5}$ and $\frac{3}{10}$	
(b)	M1 for a ratio of probabilities ft their <u>numerator</u> from their tree diagram but de A1 for $\frac{1}{11}$ or exact equivalent e.g. $0.\dot{0}\dot{9}$	enom = 0.55
SC	$[\mathbf{P}(A) \neq \frac{5}{6}]$ award M1A0 for $\frac{\mathbf{P}(A') \times \frac{3}{10}}{\mathbf{P}(A) \times \frac{3}{5} + \mathbf{P}(A') \times \frac{3}{10}}$ ft their $\mathbf{P}(A)$ and $\mathbf{P}(A') = 1 - 1$	P(<i>A</i>)

Question Number	Scheme	Marks
3. (a)	$\begin{bmatrix} c & g & 12 & 23 \\ 0 & 0 & 13 \\ 14 & 10 & g \end{bmatrix}$ or $\begin{bmatrix} c & g & 5 \\ 0 & 12 & 23 \\ 0 & 14 & 10 \\ 14 & 10 \end{bmatrix}$	B1 B1 B1 B1
(b)(i)	$P(S) = \left[\frac{12+23+13}{80}\right] = \frac{48}{80} \text{ or } \frac{3}{5} \text{ or } 0.6$	(4) B1ft
(ii)	$P(S \mid C) = \frac{P(S \cap C)}{P(C)} = \frac{\frac{12}{80}}{\frac{20}{80}}$	(1) M1
	$=\frac{12}{20}$ or 0.6	Alcso
(iii)	$P(S) = P(S C) \text{ or } P(C) = 0.25, P(C \cap S) = 0.15 \text{ and } P(C) \times P(S) = 0.6 \times 0.25$ so S and C are independent	(2) B1ft dB1ft (2)
(c)	Need $P(S \mid G) = \frac{13}{2}$	(2) M1A1
	P(S C) = 0.6 > 0.565 so assistant selling <u>coats</u> has the better performance	A1 (3)
	Notes	[Total 12]
(a)	1^{st} B1 for 3 labelled circles with 12, 13 & $n(C \cap G) = 0$ marked or implied (e.g.R 2^{nd} B1 for 8 and 10 correctly placed 3^{rd} B1 for 23 correctly placed 4^{th} B1 for box and 14	RH diagram)
(b)(i)	B1ft for 0.6 or any exact equivalent (single fraction) or ft their values (ft blank	t as 0)
(ii)	M1 for a correct conditional prob. Correct expression and one correct ft prob. N A1cso for 0.6 which must come from a denominator of 20	Num < Den
(iii)	1 st B1ft for a full reason. If not $P(S) = P(S C)$ then <u>all</u> values must be stated, lab correct or correct ft from diagram. Correct not'n required so $P(S \cup C) = 0$. 2 nd dB1ft dep. on a correct reason for correct conclusion for their values	elled and 15 is B0B0
(c)	M1 for attempt at $P(S G)$ correct ratio of probabilities or numbers using their 1 st A1 for $\frac{13}{23}$ (accept awrt 0.565) [Sight of $P(S G) = \frac{13}{23}$ is M1A1] 2 nd A1 for a correct conclusion that chooses "coats" based on a correct compar- Allow incorrect $P(S C)$ provided > 0.565 to score 2 nd A1 and so all 3 ma Condone poor use of notation eg $S G$ with no P(). Probabilities may be described Condone comparison of $\frac{13}{23}$ with 0.6 even if $\frac{13}{23}$ is not labelled as $P(S G)$	⁻ figs ison arks ed in words.

Question	Scheme	Marks
4. (a)	0.4p + 0.15(1-p) = 0.26	M1
	0.25p = 0.11	dM1
	p = 0.44	A1
		(3)
(b)	$\frac{"0.56"q}{=0.175}$	MIAIft
	$"0.56"q + "0.44" \times 0.6$	10117111
	0.462q = 0.0462	dM1
	<i>q</i> = <u>0.1</u>	A1
		(4)
(c)	$P(C) = (1 - p) \times (1 - 0.15 - q) = "0.56" \times "0.75"$	MI
	= <u>0.42</u>	Al
(J)	D(R) (c) $ 0 44 $	(2)
(u)	$\left[P(R \mid C') = \right] = \frac{P(R)}{P(C')} = \frac{(a)}{1 + (c)} = \frac{0.44}{1 + (c)}$	MI
	P(C') = 1 - (c) = 0.58''	MI
	$=\frac{22}{2}=0.75862$ or awrt 0.759	A 1
	29	111
		(3)
		(12 marks)
	Notes	· ` ` ` •
(a)	1 st M1 for attempt at correct equation for p (Must have at least 2 term	s in <i>p</i>) and
	$2^{nd} dM1$ den on $1^{st} M1$ for solving their linear equation in <i>n</i> by reducing	a to $4n - B$
	with at least 1 of 4 or R correct	3 to Ap = D
	A 1 for $n = 0.44$ (or exact equivalent e.g. $\frac{11}{2}$)	
	101 p = 0.44 (01 cxuet equivalent e.g. 25)	
(b)	ra	
(0)	1 st M1 for a probability ratio of the form $\frac{rq}{rrr}$	
	$rq + (1-r) \times 0.0$	
	$2^{nd} dM1$ dep on $1^{st} M1$ for rearranging their equation into the form $4a$	= R
	with at least 1 of <i>A</i> or <i>B</i> correct or correct ft	- <i>D</i>
	2^{nd}A1 for $a = 0.1$ or an exact equivalent	
(c)	M1 for $(1 - \text{their } p) \times (1 - 0.15 - \text{their } q)$	
	A1 for 0.42 or an exact equivalent	
(d)	1 st M1 for a ratio of probabilities with 0.44 or 'their (a)' on num.	
	2^{nd} M1 for a ratio of probabilities with 0.58 or '1 – their (c)' on deno	om.
	A1 for $\frac{22}{29}$ or awrt 0.759	
	Correct answer only scores 3 out of 3.	_
	Note: If correct ft on num. and denom. leads to "num" $>$ "denom" t	hen
	maximum score is MUMIAU)	

Question	Scheme		Marks	
Number			- TVIMIND	
6. (a)	$[P(A \cup C) =] \frac{9}{10} \text{ oe}$		B1	
(b)	$\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) - \mathbf{P}(A) \times \mathbf{P}(B)$		(1 M1	.)
	$\frac{5}{8} = \frac{2}{5} + P(B) - \frac{2}{5}P(B)$		M1 A1	
	$\mathbf{P}(B) = \frac{3}{8} *$		Alcso	
	2		(4	1)
(C)	$[P(A B) = P(A) =]\frac{2}{5} oe$		B1	
	_		(1	l)
(d)		Diagram	B1	
	AB	0.15 and 0.25	M1	
	0.15 0.05			
	0.25 0 0.175	0.05 <u>and 0.05</u>	M1	
		0.175 <u>and</u> 0.325	M1	
	0.325 0.05		A1	
		-	(5) Total 11	5) I
	Notes		1000111	
(b)	1 st M1 for use of $P(A \cup B) = P(A) + P(B) - P(A)$	$\cap B)$		
	2^{nd} M1 for use of $P(A \cap B) = P(A) \times P(B)$ (But just	st seeing $\frac{2}{5} \times \frac{3}{8} = \frac{3}{20}$ on its own	is M0M0)	ł.
	1 st A1 a correct equation	11 . 1 .	l	
	2 ^{an} A1 cso (No wrong working seen dependent on a (allow a full verification method, however, substitut	If previous marks) from $P(B)=3/8$ into only one	P(B) to find	d
	the other $P(B)$ (e.g. using 3/20 to find 3/8) can score	M1M0A0A0)	. (2)	
(4)	B1 3 circles intersecting, see diagram above, (at lea	st 2 labelled) with the two zeros	os showing	5
(u)	or 3 circles, see diagram below, (at least 2 labelled)	where <i>B</i> intersects <i>A</i> and <i>C</i> bu	t A and C	
	do not intersect		I	
	I st MI 0.15 placed in $(A \cap B \cap C)$ and 0.25 place	$\operatorname{cd} \operatorname{in} (A \cap B^{r} \cap C^{r})$		
	2^{10} M1 0.3 – their 0.25' and 1 – (their 0.15' + their	$11 \text{ tr} (0.25^{\circ} + \frac{1}{2})$	l	
	3^{rd} M1 $\frac{3}{8}$ - ("their 0.15" + "their <u>0.05</u> "), i.e. P(B) =	$=\frac{3}{8} \frac{\text{and}}{2} \frac{1}{2}$ - "their 0.175", i.e	$P(C) = \frac{1}{2}$	
	For the 3^{rd} M mark, blank regions inside P(B) and P	(<i>C</i>) are not treated as 0s and so	ore M0	
	A1 fully correct <u>2</u>			
	With box A 40			
		\bigwedge .	ł	
	$\left(\begin{array}{c} \frac{-2}{40} \\ \frac{-2}{40} \end{array}\right) \frac{2}{40}$	$\left(\frac{1}{40}\right)$ $\frac{13}{40}$		
		X /		

Question	Scheme	Marks
3(a)	$[\mathbf{P}(\mathbf{Famala})] = 1^{30}$	D1
	$[\Gamma(\Gamma e mate) -]\frac{1}{90}$ oe	DI
		(1)
(b)	$P(Male < 4 \text{ years}) = \frac{P(Male \cap < 4 \text{ years})}{P(Male \cap < 4 \text{ years})} = \frac{16}{(90)} = \frac{16}{16} \text{ op}$	N/1 A 1
	$\frac{[1 (\text{Wate} < 4 \text{ years}) -]}{P(<4 \text{ years})} - \frac{\frac{16+9}{100}}{25} - \frac{1}{25} \text{ C}$	MIAI
		(2)
(c)	$P(Male \cap < 10 \text{ years}) = \frac{20+16}{(90)} = 36$	
	$[P(Male < 10 \text{ years}) =] \frac{P(<10 \text{ years})}{P(<10 \text{ years})} = \frac{(90)}{9+16+14+20} = \frac{20}{59}$	M1A1
	((10 years) (90)	(2)
(h)	16 60	(2)
(u)	$P(Male < 4 years) = \frac{10}{25}$, $P(Male) = \frac{00}{00}$ <u>or</u>	
	16 25	
	$P(\langle 4 \text{ years} \text{Male}) = \frac{10}{60}, P(\langle 4 \text{ years}) = \frac{25}{00} \underline{\text{or}}$	M1
	16 60 25	
	$P(Male \cap \langle 4 years \rangle) = \frac{10}{90}$, $P(Male) = \frac{00}{90}$, $P(\langle 4 years \rangle) = \frac{23}{90}$	
	90 90 90 90 P(M < 4) + P(M) or P(< 4 M) + P(<4) or	M1
	$P(Male \cap < 4 \text{ vears}) \neq P(M) \times P(< 4)$	1111
	so not independent	A1
		(3)
		Total 8
	Notes	
(a)	B1 for $\frac{30}{30}$ or exact equivalent	
	90°	
(b)	M1 for a correct ratio expression with at least one correct probability	
	substituted <u>or</u> for a correct ratio of probabilities. num>denom is M0	
	A1 $\frac{16}{25}$ or 0.64 (Correct answer scores 2 out of 2).	
	25 M1 for a compact ratio supression with at least one compact much shility	
(C)	substituted or for a correct ratio of probabilities num>denom is M0	
	36	
	A1 $\frac{50}{59}$ or condone awrt 0.610 (must be 3sf) (Correct answer gets 2 out of 2).	
(d)	1 st M1 for stating all of the required numerical probabilities for a correct test	
	which must be labelled. The probabilities must be correct or correct ft from (b)	
	(If attempting the first test $P(Male < 4 \text{ years}) = \frac{16}{16}$, was found in part(b) and	
	(in attempting the first test, $1 (\text{final}e) < 4 \text{ years})^2 \frac{1}{25}$ was found in part(b) and	
	need not be fully restated here).	
	2^{nd} M1 for <u>use</u> of a correct test. Must see the product if attempting the 3^{rd} test.	
	A1 for correct test with all probabilities correct and a correct conclusion.	
	NB Use of A and B throughout scores M0M0A0 unless A and B are explicitly	
	defined.	

Question	Scheme	Marks
4.(a)	$[P(\text{both blue}) = \frac{1}{20} \times \frac{1}{20} =]\frac{1}{400} \text{ oe}$	B1
		(1)
(b)	P(exactly 1 red) = $2 \times \frac{1}{20} \times \frac{19}{20}$, = $\frac{19}{200}$ oe	M1, A1
		(2)
(c)	P(2 yellow and 1 green)= $3 \times \frac{4}{9} \times \frac{5}{8} \times \frac{4}{7} = \frac{10}{21}$ oe	B1 M1 A1
		(3)
(d)	P(All beads are yellow) = $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}$	M1
	P(At least 1 bead is green) = 1 - P(All beads are yellow)	
	1 5 4 3 2 121	M1 A 1
	$1 - \frac{1}{9} \times \frac{1}{8} \times \frac{1}{7} \times \frac{1}{6} - \frac{1}{126}$	MIAI
		(3) Total 9
	Notes	
(a)	B1 $\frac{1}{400}$ or 0.0025	
(b)	M1 for a correct equivalent expression $\frac{1}{20} \times \frac{19}{20} + \frac{19}{20} \times \frac{1}{20}$	
	A1 $\frac{19}{200}$ or 0.095	
(c)	B1 for $3 \times \dots$ or for the sum of exactly 3 identical products attempted M1 for any one product correct	
	A1 $\frac{10}{21}$ (allow awrt 0.476 from correct working)	
(d)	$1^{\text{st}} \text{M1} \frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}$	
	2^{nd} M1 Use of $1 - p$ (where p is a product of 4 probabilities)	
	A1 $\frac{121}{126}$ (condone awrt 0.960 must be at least 3sf from correct working)	
	OR	
	1 st M1 List all 15 favourable outcomes <u>and</u> at least one correct product	
	$(YYGG) \times 4 [(YYGY), (YGYY), (GYYG)]$ $(YYGG) \times 6 [(YGYG), (YGGY), (GYYG), (GYGY), (GGYY)]$	
	$(GGYG) \times 4$ [(GGGY), (YGGG), (GYGG)] (GGGG)	
	2 nd M1 Sum all 15 correct probabilities	
	A1 $\frac{1}{126}$ (condone awrt 0.960 must be at least 3sf from correct working)	
		,,

Question	Scheme	Marks
6. (a)	$P(S) = 0.31 + p$, $P(D) = 0.35$, $P(S \cap D) = 0.14$	M1
	(0.31 + p)(0.35) = 0.14 oe	M1
	P(S) = 0.4 or 0.31 + p = 0.4 or 0.35p = 0.0315	A1
	p = 0.09	A1
		(4)
(b)	$P(S \cup M \cup D) = 1$ so $q = 1 - (0.17 + 0.10 + 0.15 + 0.06 + 0.04) - p$ or $0.48 - p$	M1
	<i>q</i> = <u>0.39</u>	A1ft
		(2)
(c)(i)	$[P(D \mid S \cap M] =]\frac{P(D \cap S \cap M)}{P(D \cap S \cap M)} = \frac{0.10}{10}$	M1
	$P(S \cap M) = 0.27$	1411
	$-\frac{10}{10}$ or awrt 0 370	A 1
	$=\frac{1}{27}$ of awre <u>0.570</u>	AI
(ii)	$P(D \mid S' \cap M) = 0.15$	241
	$[P(D \mid S \cap M]] = \frac{P(S' \cap M)}{P(S' \cap M)} = \frac{1}{0.54}$	MI
	5	
	$=\frac{1}{18}$ or awrt $\frac{0.278}{18}$	Al
		(4)
(d)	27 order $S \cap M$ so expect $27 \times \frac{10}{5} D$ or 36 order $S' \cap M$ so expect $36 \times \frac{5}{5} D$	M1
	So expect 20 (desserts)	Alcao
	So expect <u>20 (desserts)</u>	(2)
		[12]
	Notes	
(a)	1 st M1 for attempting P(S), P(D) and P(S \cap D) with at least 2 correct.	
	These may be seen in a conditional probability.	
	NB $P(S \mid D) = \frac{0.14}{2}$ and $P(D \mid S) = \frac{0.14}{2}$	
	$(10 + 1) = \frac{1}{0.35}$ and $(10 + 3) = \frac{1}{0.31 + p}$	
	2 nd M1 using the independence condit' and their values to form a suitable equation f	for p or $P(S)$
	1 st A1 for $P(S) = 0.4 \text{ or } 0.31 + p = 0.4 \text{ or } 0.35p = 0.0315$ (i.e. one move from $p =$)
(b)	M1 for using sum of probabilities = 1 and ft their p	
	All for $0.48 - \text{their } p$ (provided $0 < \text{their } p < 0.48$)	
(c)	1 st M1 for a correct ratio of probabilities or a correct ratio expression with at least or	e correct
	probability substituted. (M0 if numerator is $P(D) \times P(S \cap M)$ or numerator>c	lenominator)
		,
	1 AI for $\frac{1}{27}$ or awrt 0.3/0	
	2 nd M1 for a correct ratio of probabilities or a correct ratio expression with at least or	ne correct
	probability substituted. (M0 if numerator is $P(D) \times P(S' \cap M)$ or numerator>	denominator)
	$2^{nd} \wedge 1$ for 5 or a struct 0.278	
	$\frac{2}{18}$ $\frac{10}{18}$ $\frac{-10}{18}$ $\frac{-10}{18}$ $\frac{-10}{18}$	
(d)	M1 for at least one correct calculation ft their probabilities from (c).	
	1.e. either $27 \times \text{their}(c)(1)$ or $36 \times \text{their}(c)(1)$	

Question Number	Scheme	Marks
2. (a)		B1 (1)
(b) (i) (ii)	$[P(C \cap D) = 0]$ $P(C \cup D) = P(C) + P(D) = \frac{1}{2}$ $P(C \mid D)[=\frac{P(C \cap D)}{P(D)}] = 0$ $P(E \mid C) = P(E) + P(C) = P(E \cap C)$	(1) B1 B1 (3)
(c)(i)	$P(F \cup G) = P(F) + P(G) - P(F \cap G)$ $\frac{3}{8} = \frac{1}{6} + P(G) - \frac{1}{6} \times P(G)$ $P(G) = \frac{1}{4}$	M1 M1 A1 B1
	$P(F \mid G)[=P(F)] = -\frac{1}{6}$ Notes	(4) [8 marks]
(a)	If a 2 nd diagram is drawn then award B0 unless the incorrect diagram is crossed out	
(b)	1 st B1 for writing or using $P(C \cap D) = 0$ anywhere in (b)(may be implied by correct $P(C \mid D)$) $P(C \cup D) = P(C) + P(D) - P(C \cap D) = \left[\frac{1}{5} + \frac{3}{10}\right] = \frac{1}{2}$ does imply 1 st B1 2 nd B1 for $P(C \cup D) = 0.5$ (o.e.) (may just be labelled (b)(i) $\frac{1}{2}$) This does <u>not</u> imply 1 st B1 3 rd B1 for $P(C \mid D) = 0$ this will imply 1 st B1 too	
(c)(i)	1 st M1 for use of addition formula (3 terms) with correct substitution of at least one term Assuming or stating $P(F \cap G) = 0$ scores M0 2 nd M1 for <u>use</u> of independence $P(F \cap G) = P(F) \times P(G) = \frac{1}{6} \times P(G)$ (i.e. must be used) Use of e.g. x for $P(G)$ is fine NB $\frac{3}{5} = \frac{1}{5} \times P(G)$ is M0M0	
ALT	Let $y = P(F \cap G)$ then $P(G) = y + \frac{3}{8} - \frac{1}{6}$ scores 1st M1 and $y = \frac{1}{6}(y + \frac{3}{8} - \frac{1}{6})$ o.e. g	gets 2 nd M1
	A1 for $\frac{1}{4}$ o.e.	
(ii)	B1 for $P(F G') = \frac{1}{6}$ (may be labelled (c)(ii) $\frac{1}{6}$) Accept exact equivalents.	

Question Number	Scheme	Marks
2. (a)	(The event that) the integer selected is <u>prime</u> <u>and</u> <u>ends in a 3</u> (and is between 1 and 50 inclusive)	B1
		(1)
(b)	$\frac{15}{50}$ (or equivalent e.g. 0.30) [condone 30%]	B1 (1)
(c)	$\frac{12}{50}$ (or equivalent e.g. 0.24) [condone 24%]	B1 (1)
(d)	$\left[P(A C) = \right] \frac{P(A \cap C)}{P(C)} = \frac{\frac{7}{50}}{\frac{30}{50}} =, \frac{7}{\underline{30}}$	M1, <u>A1</u> (2)
(e)	$\frac{15}{50} \neq \frac{7}{30}$, so not independent.	M1, A1 (2)
(f)	$\left[P(B (A \cap C)) = \right] \frac{P(B \cap A \cap C)}{P(A \cap C)} = \frac{\frac{2}{50}}{\frac{7}{50}} =, \frac{2}{\frac{7}{50}}$	M1, <u>A1</u> (2)
		9 marks
(d)	M1 for a correct ratio expression (may be in words) with at least one correct pr	obbility
	substituted or correct ratio expression and $\frac{7}{n}$ or $\frac{m}{20}$ where $7 < n$ or $m < 30$)
	or fully correct ratio of probabilities.	
	A1 for $\frac{7}{30}$ or any exact equivalent e.g. 0.23 but 0.233 is M1A0 (Correct ans o	nly = M1A1)
(e)	M1 for correctly comparing 'their (b)' with 'their (d)', can be in words or symbols	pols
	e.g. $P(A) \neq P(A \mid C)$ in symbols. A1 dependent on a correct (b) and (d) (or awrt 0.233 in (d)) and for concluding <u>not</u> independent	g
	For a correct test using correctly labelled $P(A) = \frac{15}{50}$, $P(C) = \frac{30}{50}$ and $P(A = \frac{15}{50})$	$\Gamma(C) = \frac{7}{50}$
SC	with all correct probabilities and $\frac{15}{50} \times \frac{30}{50} = \frac{9}{50} \neq \frac{7}{50}$ (o.e.) seen leading to	
	"not independent" score M0A1	
(f)	M1 for a correct ratio expression (may be in words) with at least one correct pr	obbility
	substituted or correct ratio expression and $\frac{r}{7}$ or $\frac{2}{t}$ where $r < 7$ or $2 < t$	
	or fully correct ratio of probabilities	
	A1 for $\frac{2}{7}$ or an exact equivalent. Allow awrt 0.286 here as well.(Correct ans. c	only = M1A1)

Question Number	Scheme	Marks
5 (2)	Age Computer use	
5. (u)	0.80 Use computer every day	
	p (0.20) Does not use computer every day	B1
	(1-p) 0.55 Use computer every day	B1
	$(1 \ p)$ ≥ 50	
	(0.45) Does not use computer every day	(2)
(b)	$p \times 0.80 + (1 - p) \times 0.55 = 0.70$ p = 0.6	M1 A1 (2)
(c)	$\left[P(<50 \text{ use computer daily})\right] = \frac{P(<50 \cap \text{ use computer daily})}{P(\text{ use computer daily})} = \frac{'0.6' \times 0.80}{0.70}$	M1
	$=\frac{48}{70}$	A10e
		(2) [6 marks]
	Notes	
(a)	Allow undefined letters for labels e.g. $U(use)$ and U' or N and NE Allow labels on branches and probabilities at the ends Condone 80% and 55% etc on tree diagram and in (b) 1 st B1 for correct shape (2 branches then 4 branches) and correct labels on first set of branches (p , < 50 and \geq 50 but condone > 50) 2 nd B1 for correct labels on second set of branches (0.80, 0.55, daily and not daily) Allow 0.8 p and 0.55(1 – p) on or at the end of the appropriate branches. NB they do not require the probabilities in brackets for either of these two marks.	
(b)	M1 for a correct equation to find <i>p</i> using their tree diagram.A1 for 0.6 [condone 60%] (Correct answer only will score M1A1)	
(c)	M1 for a correct expression with 0.70 substituted correctly and numerator < de or correct ratio of probabilities f.t. their <i>p</i> provided 0	nominator
	A1 for $\frac{48}{70}$ or an exact equivalent e.g. $\frac{24}{35}$ (Correct answer only is M1A1) Allow awrt 0.686 following a correct expression. [68.6% is A0]	

Question Number	Scheme	Marks
4.(a)	0.7 Pass 0.3 Fail 0.5 Pass 0.5 Pass 0.3 Pass 0.5 Fail 0.3 Pass 0.7 Fail 0.3 Pass 0.7 Fail 0.3 Pass 0.7 Fail Fail Fail Fail Fail	B1 B1
(b)	$1 - 0.3 \times 0.5 \times 0.7 \times 0.9 \underline{\text{or}} 0.7 + (0.3 \times 0.5) + (0.3 \times 0.5 \times 0.3) + (0.3 \times 0.5 \times 0.7 \times 0.1)$ $= \underline{0.9055}$	(2) M1 A1
(c)	$\left[P(P_1 \cup P_2 \text{Pass}) = \right] \frac{0.7 + "0.3" \times 0.5}{(b)}, = \frac{0.85}{"0.9055"} = 0.938707 = \text{awrt } 0.939$	(2) M1, A1ft A1
(d)	$p + (1-p)(p-0.2) \underline{\text{or}} 1 - (1-p)(1.2-p) \text{(o.e.)}$ e.g. $p + p - p^2 + 0.2p - 0.2 = 0.95 \rightarrow p^2 - 2.2p + 1.15 = 0 (*)$	(3) M1 dM1A1cso
(e)	$p = \frac{2.2 \pm \sqrt{2.2^2 - 4 \times 1.15}}{2} \text{or Complete the sq:} (p - 1.1)^2 - 1.1^2 + 1.15 = 0$ $= \frac{2.2 \pm 0.4898}{2} \text{or} \frac{2.2 \pm \sqrt{0.24}}{2} \text{or} 1.1 \pm \sqrt{0.06} \text{ or} (1.34), 0.855$	(3) M1 A1
	p = 0.85505102 p = 0.855	A1 (3)
(a)	Notes 1 st B1 for correctly placing 0.3 and 0.5	
(b)	 2nd B1 for correctly placing 0.7, 0.1 and 0.9 Apart from (d), a correct answer with no incorrect working scores full marks. M1 for a correct expression (ft from their tree diagram) A1 for 0.9055 or exact equivalent e.g. ¹⁸¹¹/₂₀₀₀ Accept 0.906 <u>only</u> if correct expr' seen 	
(c)	M1 for a correct ratio of probs ft their 0.3 and their answer to (b)[if < 1]. Num > Den M0 A1ft for correct numerator and their part (b) on denominator A1 for awrt 0.939 or accept exact fraction eg $\frac{1700}{1811}$	
(d)	1^{st} M1for a correct expression for P(pass) in terms of $p[$ condone $p - (p-1)(p-0.2)$ etc] 2^{nd} dM1dep. on 1^{st} M1 for expanding brackets and forming an equation in p Allow one slip A_{1aso}	
(e)	M1 for attempt to solve given equation, correct expression. Condone just + not \pm 1 st A1 for correct expression and simplified square root or 1.34 and 0.855 2 nd A1 for <i>p</i> = 0.855 only (penalise any extra value > 1) Correct ans only scores 3/3	
Ans. only	For $\frac{1}{10}(11-\sqrt{6})$ or 0.855 score M1A1A0 (not to 3dp) but for 0.855 can see	ore M1A1A1

4. (a)(i)	x + 0.1 [P(x + 0.1) is B0]	B1
(ii)	$P(B A) = \frac{P(B \cap A)}{P(A)} = \frac{0.1}{x + 0.1}$	M1 A1 (3)
(b)	x+y+0.1 (o.e.) [P($x+y+0.1$) is B0]	B1
(c)	$x+y+0.1+0.32 = 1 \underline{\text{or}} x+y+0.1 = 0.68 \underline{\text{or}} \text{``(b)''} + 0.32 = 1 \text{o.e.}$ x+0.1 = 2(y+0.1) Eliminating x gives 3y = 0.48 x = <u>0.42</u> y = <u>0.16</u>	(1) M1 M1 M1 A1 A1
		(5) (9 marks)
	Notes	
(a)(ii)	M1 for a correct ratio of probabilities formula with at least one correct pro-	obability
	value (may ft their (a)(i) in the denominator) \underline{or} a prob ratio of the for	$rm \frac{0.1}{(a)(i)}$
	If num' > denom' score M0. NB P(A) = $0.68 - y$ and P(B A) = $\frac{0.1}{0.68 - y}$ is	s B0M1A0
	A1 for $\frac{0.1}{x+0.1}$ as their final answer	
(b)	B1 for any correct expression in x and y e.g. $0.1 + x + 0.1 + y - 0.1$ Condone $x + y + 0.1 = 1 - 0.32$ or 0.68 since LHS is a correct express	ion
(c)	1 st M1 for using sum of probs. = 1 to form a "correct" linear equ'n in x and y $[x + y = 0.58]$ Ft their (b) and or their (a)(i) e.g. "(a)(i)" +0.32 + y = 1 2 nd M1 for using P(A) = 2P(B) to form a "correct" linear equ'n in x and $y[x - 2y = 0.1]$ Ft their P(A) from part (a) If they use 2P(A) = P(B) or swap x and y score 2 nd M0 but allow access to 3 rd M 3 rd M1 for an attempt to solve their 2 linear equations. Implied by 1 st 2 Ms and correct ans. Requires correct algebraic steps leading to an equation in one variable. If there are not 2 equations this cannot be scored (but see SC)	
	1^{st}A1 for $x = 0.42$ (following correct working and dep. on $1^{\text{st}} 2 \text{ Ms}$) 2^{nd}A1 for $y = 0.16$ (following correct working and dep. on $1^{\text{st}} 2 \text{ Ms}$)	
Beware	0.42 = 0.32 + 0.1 so answer only does <u>not</u> score full marks	
SC	P(A) = 0.68 - y = 2(y + 0.1) score M2 (2 nd and 3 rd Ms) and 2 nd A1 when $y = 0.16$ seen Sight of $x + y + 0.1 = 0.68$ (o.e.)(scores 1 st M1) and then 1 st A1 if $x = 0.42$ follows.	
or	P(A) = x + 0.1 = 2(0.68 - x) score M2 (2 nd and 3 rd Ms) and 1 st A1 when x Sight of $x + y + 0.1 = 0.68$ (o.e.)(scores 1 st M1) and then 2 nd A1 if $y = 0.16$	= 0.42 seen 6 follows.

Question Number	Scheme	Marks
5. (a)	R	B1
	$ \begin{array}{c} S \\ 25 \\ 25 \\ (32) \\ (32) \\ (32) \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 25 \\ 25 \\ (33) \\ \end{array} \begin{array}{c} 0 \\ 30 \\ 12 \\ 25 \\ (33) \\ \end{array} \begin{array}{c} 0 \\ 30 \\ 25 \\ (33) \\ \end{array} \right) $	B1 B1 B1
(b)	F and S or R and S	(4) B1 (1)
(c)	$P\left(\left[F \cup R \cup S\right]'\right) = \frac{33}{100} \text{ or } 0.33$	B1 (1)
(d)	$P(R) = \frac{30 + 12}{100} = \frac{21}{50} \text{or } \underline{0.42}$	(1) B1
(e)	$P(F \cup S) = \frac{30+25}{100} = \frac{11}{20} \text{ or } \underline{0.55}$	(1) B1
(f)	$\left[P(F \mid R) \right] = \frac{P(F \cap R)}{P(R)} = \frac{"0.30"}{"0.42"}$	(1) M1
	$=\frac{30}{42}$ or $\frac{5}{7}$ (o.e.)	A1
		(2) Total 10
	Notes	1000110
(a)	In the diagram do not treat a blank space as zero. Allow probabilities of 1 st B1 for 3 labelled loops and a box. The 33 is not required for any marks in (2^{nd} B1 for $F \subset R$ or indicated by zeros 3 rd B1 for 30 and 12 correctly placed and $p(F) = 30$ and $p(F' \cap R) = 12$	r integers (a)
	4 th B1 for <i>S</i> a separate loop, or indicated by zeros, and the 25	
(b)	B1 for a correct pair. If there is more than one pair then each pair must be correct. Do not allow $P(F)$ etc or e.g. $P(R \cap S) = 0$	
(c),(d),(e)	B1 cao for each answer. Accept any exact equivalent (fractions or decimals) for the probabilities	
(f)	M1 ft their "30" and their answer to (d). For a correct ratio of their probabilities or a correct ratio expression and at least one correct probability. If num > den score M0	
	A1 for $\frac{5}{7}$ or any exact equivalent. Must be proper fraction not $\frac{0.3}{0.42}$	
	NB $\frac{0.3}{0.42} = 0.714$ is A0 since it is not a proper fraction and the answer is not exact	
	Condone $P(R F) = \frac{30}{42}$ and allow M1A1 for the correct answer	
	but $P(R F) = \frac{P(R \cap F)}{P(F)} = \frac{0.30}{0.42} = \frac{30}{42}$ is M0A0	

Question Number	Scheme	Marks
7. (a)	$[P(M L) =] \frac{P(M \cap L)}{P(L)} = \frac{\frac{3}{5} \times \frac{1}{5}}{\frac{3}{10}}$	M1
(b)	$= \underline{0.40} (o.e)$ $x = \left[P(L \mid F) \right] = \frac{P(L \cap F)}{P(F)} = \frac{\frac{3}{10} - \frac{3}{5} \times \frac{1}{5}}{1 - \frac{3}{5}} \text{or} \frac{3}{5} \times \frac{1}{5} + \left(1 - \frac{3}{5} \right) \times x = \frac{3}{10}$	A1 (2) M1
	$x = \frac{0.3 - 0.12}{0.40}$ or $0.4x = 0.3 - 0.12$	M1
(c)	$\begin{bmatrix} P(M \cap R) \end{bmatrix} = 0.6 - P(M \cap L) \qquad \text{or} \qquad 0.6 \times (1 - 0.2)$	(3) M1
	= 0.48 (o.e.)	A1 (2)
(d)	P(one is left handed and the other right handed) = $2 \times \frac{3}{10} \times \frac{7}{10}$, = $\frac{21}{50}$ or 0.42	M1, A1
		Total 9
	Notes M_1 for a fully correct ratio $a = 0.12$ or a correct ratio currection and one correct	reat prah
(a)	If numerator > denominator then M0 A1 for 0.40 or any exact equivalent	lect prob.
(b)	1 st M1 for an equation for x with at least 2 of : $\left(\frac{3}{5} \times \frac{1}{5}\right) \underline{\text{or}} \frac{3}{10} \underline{\text{or}} (1-\frac{3}{5}) \text{ correct}$ BUT $\frac{\frac{2}{5} \times \frac{3}{10}}{\frac{2}{5}}$ is M0 $\underline{\text{or}}$ allow M1 for P($L \cap F$) = 0.18 2 nd M1 for a fully correct expression for $x = -$ or $0.4x =$	
	A1 for 0.45 or any exact equivalent	
(c)	M1 for a correct expression with 0.6 follow through their $P(M \cap L) = 0.12$ A1 for 0.48 or any exact equivalent	
(d)	M1 for a fully correct expression including the 2. Allow $1 - 0.3$ instead of 0 A1 for 0.42 or any exact equivalent	.7
	NB You may see Venn or tree diagram drawn but marks are given when used in correct expressions as above $\boxed{M \underbrace{0.48}_{0.12} \underbrace{0.18}_{0.22}}_{0.22} \underbrace{\frac{3}{5}}_{25} \underbrace{M}_{0.2} \underbrace{\frac{(0.8)}{0.2}}_{25}}_{2} \underbrace{K}_{12} \underbrace{K}$	values are
	xL	