

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE A Level Mathematics Pure Mathematics Paper 2 (9MA0/02)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2018

Publications Code 9MA0_02_1806_MS

All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is awarded.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 100.
- 2. These mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- **bod** benefit of doubt
- **ft** follow through
- the symbol $\sqrt{}$ will be used for correct ft
- **cao** correct answer only
- **cso** correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- **awrt** answers which round to
- SC: special case
- **o.e.** or equivalent (and appropriate)
- d or dep dependent
- **indep** independent
- **dp** decimal places
- **sf** significant figures
- ***** The answer is printed on the paper or ag- answer given
- 4. All M marks are follow through.

A marks are 'correct answer only' (cao), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread, however, the subsequent A marks affected are treated as A ft, but answers that don't logically make sense e.g. if an answer given for a probability is >1 or <0, should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Where a candidate has made multiple responses <u>and indicates which response they wish</u> <u>to submit</u>, examiners should mark this response.

If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.

- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternative answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used. If no such alternative answer is provided but the response is deemed to be valid, examiners must escalate the response for a senior examiner to review.

General Principles for Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c) = (x+p)(x+q)$$
, where $|pq| = |c|$, leading to $x = ...$

 $(ax^2+bx+c) = (mx+p)(nx+q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*)

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

www.yesterdaysmathsexam.com

Questi	on Scheme	Marks	AOs
1	$g(x) = \frac{2x+5}{x-3}, \ x \ge 5$		
(a)	$g(5) = \frac{2(5)+5}{5-3} = 7.5 \implies gg(5) = \frac{2("7.5")+5}{"7.5"-3}$	M1	1.1b
Way	$gg(5) = \frac{40}{9} \left(\text{ or } 4\frac{4}{9} \text{ or } 4.4 \right)$	A1	1.1b
		(2)	
(a) Way 2	$gg(x) = \frac{2\left(\frac{2x+5}{x-3}\right)+5}{\left(\frac{2x+5}{x-3}\right)-3} \implies gg(5) = \frac{2\left(\frac{2(5)+5}{(5)-3}\right)+5}{\left(\frac{2(5)+5}{(5)-3}\right)-3}$	M1	1.1b
	$gg(5) = \frac{40}{9} \left(\text{ or } 4\frac{4}{9} \text{ or } 4.4 \right)$	A1	1.1b
		(2)	
(b)	{Range:} $2 < y \le \frac{15}{2}$	B1	1.1b
		(1)	
(c) Way 1	$y = \frac{2x+5}{x-3} \Rightarrow yx-3y = 2x+5 \Rightarrow yx-2x = 3y+5$	M1	1.1b
	$x(y-2) = 3y+5 \implies x = \frac{3y+5}{y-2} \left\{ \text{or } y = \frac{3x+5}{x-2} \right\}$	M1	2.1
	$g^{-1}(x) = \frac{3x+5}{x-2}, 2 < x \le \frac{15}{2}$	A1ft	2.5
		(3)	
(c) Way 2	$y = \frac{2x - 6 + 11}{x - 3} \Rightarrow y = 2 + \frac{11}{x - 3} \Rightarrow y - 2 = \frac{11}{x - 3}$	M1	1.1b
	$x-3 = \frac{11}{y-2} \Rightarrow x = \frac{11}{y-2} + 3 \left\{ \text{or } y = \frac{11}{x-2} + 3 \right\}$	M1	2.1
	$g^{-1}(x) = \frac{11}{x-2} + 3, 2 < x \le \frac{15}{2}$	A1ft	2.5
		(3)	
	Notos for Question 1	(6	marks)
(a)	notes for Question 1		
M1:	Full method of attempting $g(5)$ and substituting the result into g		
Note:	te: Way 2: Attempts to substitute $x = 5$ into $\frac{2\left(\frac{2x+5}{x-3}\right)+5}{\left(\frac{2x+5}{x-3}\right)-3}$, o.e. Note that $gg(x) = \frac{9x-5}{14-x}$		
A1:	Obtains $\frac{40}{9}$ or $4\frac{4}{9}$ or 4.4 or an exact equivalent		
Note:	Give A0 for 4.4 or 4.444 without reference to $\frac{40}{9}$ or $4\frac{4}{9}$ or 4.4		

	Notes for Question 1 Continued	
(b)	•	
B1:	States $2 < y \le \frac{15}{2}$ Accept any of $2 < g \le \frac{15}{2}$, $2 < g(x) \le \frac{15}{2}$, $\left(2, \frac{15}{2}\right]$	
Note:	Accept $g(x) > 2$ and $g(x) \le \frac{15}{2}$ o.e.	
(c) Way 1		
M1:	Correct method of cross multiplication followed by an attempt to collect terms in x or terms in a swapped y	
M1:	A complete method (i.e. as above and also factorising and dividing) to find the inverse	
A1ft:	Uses correct notation to correctly define the inverse function g^{-1} , where the domain of	
	g ⁻¹ stated correctly or correctly followed through (using correct notation) on the values shown in	
	their range in part (b). Allow $g^{-1}: x \rightarrow x$. Condone $g^{-1} = x$. Do not accept $y = x$.	
Note:	Correct notation is required when stating the domain of $g^{-1}(x)$. Allow $2 < x \le \frac{15}{2}$ or $\left(2, \frac{15}{2}\right]$	
	Do not allow any of e.g. $2 < g \le \frac{15}{2}$, $2 < g^{-1}(x) \le \frac{15}{2}$	
Note:	Do not allow A1ft for following through their range in (b) to give a domain for g^{-1} as $x \in \mathbb{R}$	
(c) Way 2		
M1:	Writes $y = \frac{2x+5}{x-3}$ in the form $y = 2 \pm \frac{k}{x-3}$, $k \neq 0$ and rearranges to isolate y and 2 on one side	
	of their equation. Note: Allow the equivalent method with x swapped with y	
M1:	A complete method to find the inverse	
A1ft:	As in Way 1	
Note:	If a candidate scores no marks in part (c), but	
	• states the domain of g^{-1} correctly, or	
	• states a domain of g^{-1} which is correctly followed through on the values shown in their	
	range in part (b) then give special case (SC) M1 M0 A0	

www.yesterdaysmathsexam.com

Questi	on Scheme	Marks	AOs
	$\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}, \ \overrightarrow{OB} = 4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}, \ \overrightarrow{OC} = a\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}, \ a < 0$		
2	$\overrightarrow{AB} = \overrightarrow{BD}, \ \left \overrightarrow{AB} \right = 4$		
(a)	E.g. $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB}$		
	or $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{OB} - \overrightarrow{OA} = 2\overrightarrow{OB} - \overrightarrow{OA}$		
	or $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AB}$		
	$= \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \left\{ = \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} \right\}$ or $= \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ -2 \\ 3 \\ -4 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \left\{ = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} \right\}$	M1	3.1a
	$= \begin{pmatrix} 6\\-7\\10 \end{pmatrix} \text{ or } 6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$	A1	1.1b
		(2)	
(b)	$(a-2)^{2} + (5-3)^{2} + (-2-4)^{2}$	M1	1.1b
	$\left\{ \overrightarrow{AC} = 4 \implies \right\} (a-2)^2 + (5-3)^2 + (-2-4)^2 = (4)^2$	13.4.1	0.1
	$\Rightarrow (a-2)^2 = 8 \Rightarrow a = \dots \text{ or } \Rightarrow a^2 - 4a - 4 = 0 \Rightarrow a = \dots$	dMI	2.1
	(as $a < 0 \Longrightarrow$) $a = 2 - 2\sqrt{2}$ (or $a = 2 - \sqrt{8}$)	A1	1.1b
		(3)	
	(5 marks		marks)
(a)	Notes for Question 2		
M1:	Complete <i>applied</i> strategy to find a vector expression for \overrightarrow{OD}		
A1:	See scheme		
Note:	Give M0 for subtracting the wrong way wrong to give e.g. $(4\mathbf{i} - 2\mathbf{i} + 3\mathbf{k}) + (2\mathbf{i} + 3\mathbf{i} - 4\mathbf{k}) - (4\mathbf{i} - 2\mathbf{i} + 3\mathbf{k}) = (4\mathbf{i} - 2\mathbf{i} + 3\mathbf{k}) + (-2\mathbf{i} + 5\mathbf{i} - 7\mathbf{k})$) = (2i + 3i)	$-4\mathbf{k}$)
Note:	Writing e.g. $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{AB}$ or $\overrightarrow{OD} = \overrightarrow{OB} - \overrightarrow{OA}$ with no other work is M0) (<u></u> : 3 j)
Note:	Finding <i>coordinates</i> , i.e. $(6, -7, 10)$ without reference to the correct position	vectors is A	0
Note:	Allow M1A1 for writing down $6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$ with no working		
Note:	M1 can be implied for at least two correct components in their position vector	of D	
(b)			
M1:	Finds the difference between OA and OC , then squares and adds each of the	e 3 compone	ents
	Note: Ignore labelling		
dM1:	Complete method of <i>correctly</i> applying Pythagoras' Theorem on $ AC = 4$ and $ $	d using a co	rrect
Neta	method of solving their resulting quadratic equation to find at least one of $a = C_{ondone at least one of either swift 4.8 or swift -0.82 for the dM mode$	=	
	Condition at reast one of entries awit 4.6 of awit -0.85 for the divi mark		
AL. Note:	Writing $a = 2 \pm 2\sqrt{2}$, without ovidence of rolecting $a = 2 \pm 2\sqrt{2}$ is A0		
Note:	Allow exact alternatives such as 2. $\sqrt{2}$ or $\frac{4-\sqrt{32}}{\sqrt{32}}$ for A1 and increasing the	nuliad	
Note:	Writing $a = -0.828$ without reference to a correct exact value is A0	ppnea	
note:	writing $u = -0.020$, writiout reference to a confect exact value is AU		

Questi	on Scl	neme	Marks	AOs
3	Statement: "If <i>m</i> and <i>n</i> are in	rational numbers, where $m \neq n$,		
(a)	E.g. $m =$	$\sqrt{3}$, $n = \sqrt{12}$	M1	1.1b
	$\{mn = \} $	$\sqrt{3}(\sqrt{12}) = 6$		
	\Rightarrow statement untrue or 6 i	s not irrational or 6 is rational	A1	2.4
			(2)	
(b)(i), (ii) Way	y = x + 3 $y = x + 3$	V shaped graph {reasonably} symmetrical about the y-axis with vertical interpret (0, 3) or 3 stated or marked on the positive y-axis	B1	1.1b
	$\left \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \hline \end{array} \right \left\{ -3 \right\} O \left[\begin{array}{c} \end{array} \right] \\ O \left[\begin{array}{c} \end{array} \\ \end{array} \\ \hline \end{array} \right \left\{ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \hline \\ \hline$	Superimposes the graph of $y = x+3 $ on top of the graph of $y = x + 3$	M1	3.1a
the graph of $y = x + 3$ is either the same or above the graph of $y = x+3 $ {for corresponding values of x} or when $x \ge 0$, both graphs are equal (or the same) when $x < 0$, the graph of $y = x + 3$ is above the graph of $y = x+3 $		A1	2.4	
			(3)	
(b)(ii) Way 2	2 Reason 1 When $x \ge 0$, $ x +3 = x+3 $	Any one of Reason 1 or Reason 2	M1	3.1a
	$\frac{\text{Reason 2}}{\text{When } x < 0, x + 3 > x + 3 }$	Both Reason 1 and Reason 2	A1	2.4
			(5	marks)
(a)	Notes 1	or Question 3		
M1:	States or uses any pair of <i>different</i> num E.g. $\sqrt{3}$, $\sqrt{12}$; $\sqrt{2}$, $\sqrt{8}$; $\sqrt{5}$, $-\sqrt{5}$;	bers that will disprove the statement. $\frac{1}{\pi}$, 2π ; $3e$, $\frac{4}{5e}$;		
A1:	Uses correct reasoning to disprove the	given statement, with a correct conclus	ion	
Note:	Writing $(3e)\left(\frac{4}{5e}\right) = \frac{12}{5} \Rightarrow$ untrue is sufficient for M1A1			
(b)(i)				
B1:	See scheme			
(b)(ii)	For constructing a method of comparing	a lul + 2 mith lu + 2 . Sag aghama		
	For constructing a method of comparing	y x + 3 with $ x + 3 $. See scheme.		
AI:	Explains fully why $ x +3 \ge x+3 $. Se	e scneme.		
Note:	Do not allow either $x > 0$, $ x + 3 \ge x $	$ x + 3 \ge 0$, $ x + 3 \ge x+3 $ as a valid	l reason	
Note	x=0 (or where necessary $x=-3$) nec	ed to be considered in their solutions fo	r Al	
Note:	Do not allow an incorrect statement su	ch as $x \le 0$, $ x + 3 > x+3 $ for A1		

	Notes for Question 3 Continued		
(b)(ii)			
Note:	Allow M1A1 for $x > 0$, $ x + 3 = x + 3 $ and for $x \le 0$, $ x + 3 \ge x + 3 = x + 3 \le x + 3 = x + 3 \ge x + 3 = x $		
Note:	Allow M1 for any of		
	• x is positive, $ x +3 = x+3 $		
	• x is negative, $ x +3 > x+3 $		
	• $x > 0, x + 3 = x + 3 $		
	• $x \le 0, x + 3 \ge x+3 $		
	• $x > 0$, $ x + 3$ and $ x + 3 $ are equal		
	• $x \ge 0$, $ x + 3$ and $ x + 3 $ are equal		
	• when $x \ge 0$, both graphs are equal		
	• for positive values $ x + 3$ and $ x + 3 $ are the same		
	Condone for M1		
	• $x \le 0, x +3 > x+3 $		
	• $x < 0, x + 3 \ge x + 3 $		
(b)(ii)	• For $x > 0$, $ x + 3 = x + 3 $		
Way 3	• For $-3 < x < 0$, as $ x + 3 > 3$ and $\{0 < \} x+3 < 3$,	M1	3.1a
	then $ x + 3 > x + 3 $		
	• For $x \le -3$, as $ x + 3 = -x + 3$ and $ x + 3 = -x - 3$,	A1	24
	then $ x + 3 > x + 3 $	231	<i>2</i> .т

Question	Scheme	Marks	AOs
4	(i) $\sum_{r=1}^{16} (3+5r+2^r) = 131798$; (ii) $u_1, u_2, u_3,, : u_{n+1} = \frac{1}{u_n}, u_1 = \frac{2}{3}$		
(i) Way 1	$\left\{\sum_{r=1}^{16} (3+5r+2^r) = \right\} \sum_{r=1}^{16} (3+5r) + \sum_{r=1}^{16} (2^r)$	M1	3.1a
	$-\frac{16}{(2(8)+15(5))}+\frac{2(2^{16}-1)}{(2(8)+15(5))}$	M1	1.1b
	$=\frac{-2}{2}(2(0)+13(0))+\frac{-2}{2}$	M1	1.1b
	= 728 + 131070 = 131798 *	A1*	2.1
		(4)	
(i) Way 2	$\left\{\sum_{r=1}^{16} (3+5r+2^r) = \right\} \sum_{r=1}^{16} 3 + \sum_{r=1}^{16} (5r) + \sum_{r=1}^{16} (2^r)$	M1	3.1a
	$(2 + 16) + 16 (2(5) + 15(5)) + 2(2^{16} - 1)$	M1	1.1b
	$= (3 \times 16) + \frac{1}{2}(2(3) + 15(3)) + \frac{1}{2-1}$	M1	1.1b
	=48+680+131070=131798 *	A1*	2.1
		(4)	
		M1	3.1a
(i)	Sum = 10 + 17 + 26 + 39 + 60 + 97 + 166 + 299 + 560 + 1077 + 2106	M1	1.1b
Way 3	+4159+8260+16457+32846+65619=131798 *	M1	1.1b
		Al*	2.1
		(4)	
(ii)	$\left\{u_1=\frac{2}{3}\right\}, u_2=\frac{3}{2}, u_3=\frac{2}{3}, \dots$ (can be implied by later working)	M1	1.1b
	$\left\{\sum_{r=1}^{100} u_r = \right\} \ 50\left(\frac{2}{3}\right) + 50\left(\frac{3}{2}\right) \text{ or } 50\left(\frac{2}{3} + \frac{3}{2}\right)$	M1	2.2a
	$=\frac{325}{3} \left(\text{or } 108\frac{1}{3} \text{ or } 108.3 \text{ or } \frac{1300}{12} \text{ or } \frac{650}{6} \right)$	A1	1.1b
		(3)	
		(7	marks)

Notes for	Question	4
-----------	----------	---

(1)	
	_16
M1:	Uses a correct methodical strategy to enable the given sum, $\sum (3+5r+2^r)$ to be found
	r=1
	Allow M1 for any of the following:
	• expressing the given sum as either
	$\sum_{r=1}^{16} (3+5r) + \sum_{r=1}^{16} (2^r), \sum_{r=1}^{16} 3 + \sum_{r=1}^{16} (5r) + \sum_{r=1}^{16} (2^r) \text{or} \sum_{r=1}^{16} 3 + 5\sum_{r=1}^{16} r + \sum_{r=1}^{16} (2^r)$
	• attempting to find both $\sum_{r=1}^{10} (3+5r)$ and $\sum_{r=1}^{10} (2^r)$ separately
	• (3×16) and attempting to find both $\sum_{r=1}^{16} (5r)$ and $\sum_{r=1}^{16} (2^r)$ separately
M1:	Way 1: Correct method for finding the sum of an AP with $a = 8, d = 5, n = 16$
	Way 2: (3×16) and a correct method for finding the sum of an AP
M1:	Correct method for finding the sum of a GP with $a = 2, r = 2, n = 16$
A1*:	For all steps fully shown (with correct formulae used) leading to 131798
Note:	Way 1: Give 2^{nd} M1 for writing $\sum_{r=1}^{n} (3+5r)$ as $\frac{16}{2}(8+83)$
Note:	Way 2: Give 2 nd M1 for writing $\sum_{r=1}^{16} 3 + \sum_{r=1}^{16} (5r)$ as $48 + \frac{16}{2}(5+80)$ or $48 + 680$
Note:	Give 3 rd M1 for writing $\sum_{r=1}^{16} (2^r)$ as $\frac{2(1-2^{16})}{1-2}$ or $2(2^{16}-1)$ or $(2^{17}-2)$
(i)	
Way 3	
M1:	At least 6 correct terms and 16 terms shown
M1: M1:	At least 6 correct terms and 16 terms shown At least 10 correct terms (may not be 16 terms)
M1: M1: M1:	At least 6 correct terms and 16 terms shown At least 10 correct terms (may not be 16 terms) At least 15 correct terms (may not be 16 terms)
M1: M1: M1: A1*:	At least 6 correct terms and 16 terms shown At least 10 correct terms (may not be 16 terms) At least 15 correct terms (may not be 16 terms) All 16 terms correct and an indication that the sum is 131798
M1: M1: M1: A1*: (ii)	At least 6 correct terms and 16 terms shown At least 10 correct terms (may not be 16 terms) At least 15 correct terms (may not be 16 terms) All 16 terms correct and an indication that the sum is 131798
M1: M1: M1: A1*: (ii) M1:	At least 6 correct terms and 16 terms shownAt least 10 correct terms (may not be 16 terms)At least 15 correct terms (may not be 16 terms)All 16 terms correct and an indication that the sum is 131798For some indication that the next two terms of this sequence are $\frac{3}{2}, \frac{2}{3}$
M1: M1: M1: A1*: (ii) M1: M1:	At least 6 correct terms and 16 terms shown At least 10 correct terms (may not be 16 terms) At least 15 correct terms (may not be 16 terms) All 16 terms correct and an indication that the sum is 131798 For some indication that the next two terms of this sequence are $\frac{3}{2}$, $\frac{2}{3}$ For deducing that the sum can be found by applying $50\left(\frac{2}{3}\right) + 50\left(\frac{3}{2}\right)$ or $50\left(\frac{2}{3} + \frac{3}{2}\right)$, o.e.
M1: M1: M1: A1*: (ii) M1: M1: A1:	At least 6 correct terms and 16 terms shown At least 10 correct terms (may not be 16 terms) At least 15 correct terms (may not be 16 terms) All 16 terms correct and an indication that the sum is 131798 For some indication that the next two terms of this sequence are $\frac{3}{2}$, $\frac{2}{3}$ For deducing that the sum can be found by applying $50\left(\frac{2}{3}\right) + 50\left(\frac{3}{2}\right)$ or $50\left(\frac{2}{3} + \frac{3}{2}\right)$, o.e. Obtains $\frac{325}{3}$ or $108\frac{1}{3}$ or 108.3 or an exact equivalent
M1: M1: M1: A1*: (ii) M1: M1: A1: Note:	At least 6 correct terms and 16 terms shown At least 10 correct terms (may not be 16 terms) At least 15 correct terms (may not be 16 terms) All 16 terms correct and an indication that the sum is 131798 For some indication that the next two terms of this sequence are $\frac{3}{2}$, $\frac{2}{3}$ For deducing that the sum can be found by applying $50\left(\frac{2}{3}\right) + 50\left(\frac{3}{2}\right)$ or $50\left(\frac{2}{3} + \frac{3}{2}\right)$, o.e. Obtains $\frac{325}{3}$ or $108\frac{1}{3}$ or 108.3 or an exact equivalent Allow 1 st M1 for $u_2 = \frac{3}{2}$ (or equivalent) and $u_3 = \frac{2}{3}$ (or equivalent)
M1: M1: M1: A1*: (ii) M1: M1: A1: Note: Note:	At least 6 correct terms and 16 terms shown At least 10 correct terms (may not be 16 terms) At least 15 correct terms (may not be 16 terms) All 16 terms correct and an indication that the sum is 131798 For some indication that the next two terms of this sequence are $\frac{3}{2}, \frac{2}{3}$ For deducing that the sum can be found by applying $50\left(\frac{2}{3}\right) + 50\left(\frac{3}{2}\right)$ or $50\left(\frac{2}{3} + \frac{3}{2}\right)$, o.e. Obtains $\frac{325}{3}$ or $108\frac{1}{3}$ or 108.3 or an exact equivalent Allow 1 st M1 for $u_2 = \frac{3}{2}$ (or equivalent) and $u_3 = \frac{2}{3}$ (or equivalent) Allow 1 st M1 for the first 3 terms written as $\frac{2}{3}, \frac{3}{2}, \frac{2}{3},$
M1: M1: M1: A1*: (ii) M1: M1: A1: Note: Note:	At least 6 correct terms and 16 terms shown At least 10 correct terms (may not be 16 terms) At least 15 correct terms (may not be 16 terms) All 16 terms correct and an indication that the sum is 131798 For some indication that the next two terms of this sequence are $\frac{3}{2}, \frac{2}{3}$ For deducing that the sum can be found by applying $50\left(\frac{2}{3}\right) + 50\left(\frac{3}{2}\right)$ or $50\left(\frac{2}{3} + \frac{3}{2}\right)$, o.e. Obtains $\frac{325}{3}$ or $108\frac{1}{3}$ or 108.3 or an exact equivalent Allow 1 st M1 for $u_2 = \frac{3}{2}$ (or equivalent) and $u_3 = \frac{2}{3}$ (or equivalent) Allow 1 st M1 for the first 3 terms written as $\frac{2}{3}, \frac{3}{2}, \frac{2}{3},$
M1: M1: M1: A1*: (ii) M1: M1: A1: Note: Note: Note: Note:	At least 6 correct terms and 16 terms shown At least 10 correct terms (may not be 16 terms) At least 15 correct terms (may not be 16 terms) All 16 terms correct and an indication that the sum is 131798 For some indication that the next two terms of this sequence are $\frac{3}{2}, \frac{2}{3}$ For deducing that the sum can be found by applying $50\left(\frac{2}{3}\right) + 50\left(\frac{3}{2}\right)$ or $50\left(\frac{2}{3} + \frac{3}{2}\right)$, o.e. Obtains $\frac{325}{3}$ or $108\frac{1}{3}$ or 108.3 or an exact equivalent Allow 1 st M1 for $u_2 = \frac{3}{2}$ (or equivalent) and $u_3 = \frac{2}{3}$ (or equivalent) Allow 1 st M1 for the first 3 terms written as $\frac{2}{3}, \frac{3}{2}, \frac{2}{3}, \dots$ Allow 1 st M1 for the 2 nd and 3 rd terms written as $\frac{3}{2}, \frac{2}{3}, \dots$ in the correct order Condone $\frac{2}{3}$ written as 0.66 or awrt 0.67 for the 1 st M1 mark

Questi	on Scheme	Marks	AOs
5	The equation $2x^3 + x^2 - 1 = 0$ has exactly one real root		
(a)	$\left\{ \mathbf{f}(x) = 2x^3 + x^2 - 1 \Longrightarrow \right\} \mathbf{f}'(x) = 6x^2 + 2x$	B1	1.1b
	$\left\{ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \Longrightarrow \right\} \left\{ x_{n+1} \right\} = x_n - \frac{2x_n^3 + x_n^2 - 1}{6x_n^2 + 2x_n}$	M1	1.1b
	$= \frac{x_n(6x_n^2 + 2x_n) - (2x_n^3 + x_n^2 - 1)}{6x_n^2 + 2x_n} \implies x_{n+1} = \frac{4x_n^3 + x_n^2 + 1}{6x_n^2 + 2x_n} *$	A1*	2.1
		(3)	
(b)	${x_1 = 1 \Rightarrow} x_2 = \frac{4(1)^3 + (1)^2 + 1}{6(1)^2 + 2(1)}$ or $x_2 = 1 - \frac{2(1)^3 + (1)^2 - 1}{6(1)^2 + 2(1)}$	M1	1.1b
	$\Rightarrow x_2 = \frac{3}{4}, \ x_3 = \frac{2}{3}$	A1	1.1b
		(2)	
(c)	 Accept any reasons why the Newton-Raphson method cannot be used with x₁ = 0 which refer or <i>allude</i> to either the stationary point or the tangent. E.g. There is a stationary point at x = 0 	B1	2.3
	 Tangent to the curve (or y = 2x³ + x² - 1) would not meet the x-axis Tangent to the curve (or y = 2x³ + x² - 1) is horizontal 		
		(1)	
	(6 marks)		
	Notes for Question 5	(0	mur no)
(a)			
B1:	States that $f'(x) = 6x^2 + 2x$ or states that $f'(x_n) = 6x_n^2 + 2x_n$ (Condone $\frac{dy}{dx} = 6x^2 + 2x$)		
M1:	Substitutes $f(x_n) = 2x_n^3 + x_n^2 - 1$ and their $f'(x_n)$ into $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$		
A1*:	A correct intermediate step of making a common denominator which leads to t	he given an	iswer
Note:	Allow B1 if $f'(x) = 6x^2 + 2x$ is applied as $f'(x_n)$ (or $f'(x)$) in the NR formula $\{x_{n+1}\} = x_n - \frac{f(x_n)}{f'(x_n)}$		
	Allow B1 if $f'(x) = 6x^2 + 2x$ is applied as $f'(x_n)$ (or $f'(x)$) in the NR formula	$\left\{x_{n+1}\right\} = x_n$	$-\frac{1}{\mathbf{f}'(x_n)}$
Note:	Allow B1 if $f'(x) = 6x^2 + 2x$ is applied as $f'(x_n)$ (or $f'(x)$) in the NR formula Allow M1A1 for	$\left\{x_{n+1}\right\} = x_n$	$-\frac{1}{\mathbf{f}'(x_n)}$
Note:	Allow B1 if $f'(x) = 6x^2 + 2x$ is applied as $f'(x_n)$ (or $f'(x)$) in the NR formula Allow M1A1 for • $x_{n+1} = x - \frac{2x^3 + x^2 - 1}{6x^2 + 2x} = \frac{x(6x^2 + 2x) - (2x^3 + x^2 - 1)}{6x^2 + 2x} \Rightarrow x_{n+1} = \frac{4x_n^3 + x_n^3}{6x_n^2 + 2x}$	$\left\{x_{n+1}\right\} = x_n$ $\frac{x_{n+1}}{2} = x_n$	$-\frac{1}{\mathbf{f}'(x_n)}$
Note: Note	Allow B1 if $f'(x) = 6x^2 + 2x$ is applied as $f'(x_n)$ (or $f'(x)$) in the NR formula Allow M1A1 for • $x_{n+1} = x - \frac{2x^3 + x^2 - 1}{6x^2 + 2x} = \frac{x(6x^2 + 2x) - (2x^3 + x^2 - 1)}{6x^2 + 2x} \Rightarrow x_{n+1} = \frac{4x_n^3 + x_n^3}{6x_n^2 + 2x^2}$ Condone $x = x - \frac{2x^3 + x^2 - 1}{"6x^2 + 2x"}$ for M1	$\left\{x_{n+1}\right\} = x_n$ $\frac{x_{n+1}^2 + 1}{2x_n}$	$-\frac{1}{\mathbf{f}'(x_n)}$
Note: Note Note	Allow B1 if $f'(x) = 6x^2 + 2x$ is applied as $f'(x_n)$ (or $f'(x)$) in the NR formula Allow M1A1 for • $x_{n+1} = x - \frac{2x^3 + x^2 - 1}{6x^2 + 2x} = \frac{x(6x^2 + 2x) - (2x^3 + x^2 - 1)}{6x^2 + 2x} \Rightarrow x_{n+1} = \frac{4x_n^3 + x_n^3}{6x_n^2 + 2x}$ Condone $x = x - \frac{2x^3 + x^2 - 1}{"6x^2 + 2x"}$ for M1 Condone $x_n - \frac{2x_n^3 + x_n^2 - 1}{"6x_n^2 + 2x_n"}$ or $x - \frac{2x^3 + x^2 - 1}{"6x^2 + 2x"}$ (i.e. no $x_{n+1} =$) for M1	$\left\{x_{n+1}\right\} = x_n$ $\frac{x_{n+1}^2 + 1}{2x_n}$	$-\frac{1}{\mathbf{f}'(x_n)}$
Note: Note Note:	Allow B1 if $f'(x) = 6x^2 + 2x$ is applied as $f'(x_n)$ (or $f'(x)$) in the NR formula Allow M1A1 for • $x_{n+1} = x - \frac{2x^3 + x^2 - 1}{6x^2 + 2x} = \frac{x(6x^2 + 2x) - (2x^3 + x^2 - 1)}{6x^2 + 2x} \Rightarrow x_{n+1} = \frac{4x_n^3 + x_n^3}{6x_n^2 + 2x}$ Condone $x = x - \frac{2x^3 + x^2 - 1}{"6x^2 + 2x"}$ for M1 Condone $x_n - \frac{2x_n^3 + x_n^2 - 1}{"6x_n^2 + 2x_n"}$ or $x - \frac{2x^3 + x^2 - 1}{"6x^2 + 2x"}$ (i.e. no $x_{n+1} =$) for M1 Give M0 for $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ followed by $x_{n+1} = 2x_n^3 + x_n^2 - 1 - \frac{2x_n^3 + x_n^3}{6x_n^2 + 2x}$	$\left\{x_{n+1}\right\} = x_n$ $\frac{x_{n+1}^2 + 1}{2x_n}$ $\frac{x_{n+1}^2 - 1}{2x_n}$	$-\frac{1}{\mathbf{f}'(x_n)}$

Notes for Question 5 Continued

Γ

(b)	
M1:	An attempt to use the given or their formula once. Can be implied by $\frac{4(1)^3 + (1)^2 + 1}{6(1)^2 + 2(1)}$ or 0.75 o.e.
Note:	Allow one slip in substituting $x_1 = 1$
A1:	$x_2 = \frac{3}{4}$ and $x_3 = \frac{2}{3}$
Note:	Condone $x_2 = \frac{3}{4}$ and $x_3 = awrt 0.667$ for A1
Note:	Condone $\frac{3}{4}, \frac{2}{3}$ listed in a correct order ignoring subscripts
(c)	
B1:	See scheme
Note:	Give B0 for the following isolated reasons: e.g.
	• You cannot divide by 0
	• The fraction (or the NR formula) is undefined at $x = 0$
	• At $x = 0$, $f'(x_1) = 0$
	• x_1 cannot be 0
	• $6x^2 + 2x$ cannot be 0
	• the denominator is 0 which cannot happen
	• if $x_1 = 0$, $6x^2 + 2x = 0$

Questi	on Scheme	Marks	AOs
6	(a) $f(x) = -3x^3 + 8x^2 - 9x + 10, x \in \mathbb{R}$		
(a)	(i) $\{f(2) = -24 + 32 - 18 + 10 \Rightarrow\} f(2) = 0$	B1	1.1b
	(ii) {f(x) = } (x-2)(-3x ² +2x-5) or (2-x)(3x ² -2x+5)	M1	2.2a
		A1 (2)	1.1b
(b)	$2y^6 + 8y^4 - 0y^2 + 10 = 0 \implies (y^2 - 2)(-2y^4 + 2y^2 - 5) = 0$	(3)	
(0)	$-5y + 6y - 9y + 10 = 0 \implies (y - 2)(-5y + 2y - 5) = 0$ Gives a partial explanation by		
	• explaining that $-3y^4 + 2y^2 - 5 = 0$ has no {real} solutions with a		
	reason e.g. $b^2 - 4ac = (2)^2 - 4(-3)(-5) = -56 < 0$	M1	2.4
	• or stating that $v^2 = 2$ has 2 {real} solutions or $v = \pm\sqrt{2}$ {only}		
	C = 1 (a) $C = 1 $ (b) $C = 1 $ (c) $C =$	A 1	2.1
	Complete proof that the given equation has exactly two {real} solutio		2.1
		(2)	
(c)	$3\tan^3\theta - 8\tan^2\theta + 9\tan\theta - 10 = 0; \ 7\pi \le \theta < 10\pi$		
	{Deduces that} there are 3 solutions	<u>B1</u>	2.2a
		(1)	morke
	Notes for Ouestion 6	(() IIIai KS)
(a)(i)			
B1:	f(2) = 0 or 0 stated by itself in part (a)(i)		
(a)(ii)			
M1:	Deduces that $(x-2)$ or $(2-x)$ is a factor and attempts to find the other quadratic factor by		
	• using long division to obtain either $\pm 3x^2 \pm kx +, k = \text{value} \neq 0$ or		
	$\pm 3x^2 \pm \alpha x + \beta$, $\beta = \text{value} \neq 0$, α can be 0		
	• factorising to obtain their quadratic factor in the form $(\pm 3x^2 \pm kx \pm c)$, $k = \text{value} \neq 0$,		
	<i>c</i> can be 0, or in the form $(\pm 3x^2 \pm \alpha x \pm \beta)$, $\beta = \text{value} \neq 0$, α can be 0		
A1:	$(x-2)(-3x^2+2x-5)$, $(2-x)(3x^2-2x+5)$ or $-(x-2)(3x^2-2x+5)$ sta	ed together as	a product
(b)			
M1:	See scheme		
A1:	See scheme. Proof must be correct <i>with no errors</i> , e.g. giving an incorrect	discriminant v	alue
Note:	Correct calculation e.g. $(2)^2 - 4(-3)(-5)$, $4 - 60$ or -50 must be given for	the first explai	nation
Note:	Note that M1 can be allowed for	$-3v^4 \pm 2v^2 - 5^2$,
	• a confect follow through calculation for the discriminant of then	-3y + 2y - 3	0.1
	which would lead to a value < 0 together with an explanation that	-3y + 2y - 3	b = 0 has
	 or for the omission of < 0 		
Note:	< 0 must also been stated in a discriminant method for A1		
Note:	Do not allow A1 for incorrect working, e.g. $(2)^2 - 4(-3)(-5) = -54 < 0$		
Note:	$y^2 = 2 \implies y = \pm 2$, so 2 solutions is not allowed for A1, but can be condom	d for M1	
Note:	Using the formula on $-3y^4 + 2y^2 - 5 = 0$ or $-3x^2 + 2x - 5 = 0$		
	gives y^2 or $x = \frac{-2 \pm \sqrt{-56}}{-6}$ or $\frac{-1 \pm \sqrt{-14}}{-3}$		

Notes for Question 6 Continued		
Note:	Completing the square on $-3x^2 + 2x - 5 = 0$	
	gives $x^2 - \frac{2}{3}x + \frac{5}{3} = 0 \implies \left(x - \frac{1}{3}\right)^2 - \frac{1}{9} + \frac{5}{3} = 0 \implies x = \frac{1}{3} \pm \sqrt{\frac{-14}{9}}$	
Note:	Do not recover work for part (b) in part (c)	
(c)		
B1:	See scheme	
Note:	Give B0 for stating θ = awrt 23.1, awrt 26.2, awrt 29.4 without reference to 3 solutions	

Question	S	Scheme	Marks	AOs
7	(i) $4\sin x = \sec x, \ 0 \le x < \frac{\pi}{2};$	(ii) $5\sin\theta - 5\cos\theta = 2, \ 0 \le \theta < 360^\circ$		
(i) Way 1	For s	$\sec x = \frac{1}{\cos x}$	B1	1.2
	$\{4\sin x = \sec x \Longrightarrow\} 4\sin x \cot x$	$\cos x = 1 \Longrightarrow 2\sin 2x = 1 \Longrightarrow \sin 2x = \frac{1}{2}$	M1	3.1a
	$x = \frac{1}{2} \arcsin\left(\frac{1}{2}\right)$ or $\frac{1}{2}$	$\left(\pi - \arcsin\left(\frac{1}{x}\right)\right) \Rightarrow x = \frac{\pi}{x}, \frac{5\pi}{x}$	dM1	1.1b
	2 (2) 2		A1 (4)	1.1b
(i) Way 2	For s	$\sec x = \frac{1}{\cos x}$	B1	1.2
v	$\{4\sin x = \sec x \Longrightarrow\} 4\sin x$	$1 x \cos x = 1 \Rightarrow 16 \sin^2 x \cos^2 x = 1$		
	$16\sin^2 x(1-\sin^2 x) = 1$	$16(1-\cos^2 x)\cos^2 x = 1$		
	$16\sin^4 x - 16\sin^2 x + 1 = 0$	$16\cos^4 x - 16\cos^2 x + 1 = 0$	M1	3.1a
	$\sin^2 x$ or $\cos^2 x = \frac{16 \pm \sqrt{192}}{32}$	$\frac{\overline{2}}{4} \left\{ = \frac{2 \pm \sqrt{3}}{4} \text{ or } 0.933, 0.066 \right\}$		
	$r = \arcsin\left(\frac{2\pm\sqrt{3}}{2\pm\sqrt{3}}\right)$ or r	$= \arccos\left(\begin{array}{c} 2\pm\sqrt{3} \\ -\pi & 5\pi \end{array}\right)$	dM1	1.1b
	$x = \operatorname{arcsin}\left(\sqrt{\frac{4}{4}}\right)$ or x	$= \arccos\left(\sqrt{\frac{4}{4}}\right) \xrightarrow{\rightarrow} x - \frac{12}{12}, \frac{12}{12}$	A1	1.1b
			(4)	
(ii)	Complete strategy, i.e. • Expresses $5\sin\theta - 5\cos\theta$ finds both <i>R</i> and α , and p • Applies $(5\sin\theta - 5\cos\theta)$ $\cos^2\theta + \sin^2\theta = 1$ and $\sin \sin 2\theta = k$, $ k < 1$, $k \neq 0$	$\theta = 2$ in the form $R\sin(\theta - \alpha) = 2$, proceeds to $\sin(\theta - \alpha) = k$, $ k < 1$, $k \neq 0$ $k^{2} = 2^{2}$, followed by applying both $k_{2}\theta = 2\sin\theta\cos\theta$ to proceed to	M1	3.1a
	$R = \sqrt{50}$ $\tan \alpha = 1 \Longrightarrow \alpha = 45^{\circ}$	$(5\sin\theta - 5\cos\theta)^2 = 2^2 \Rightarrow$ $25\sin^2\theta + 25\cos^2\theta - 50\sin\theta\cos\theta = 4$ $\Rightarrow 25 - 25\sin 2\theta = 4$	M1	1.1b
	$\sin(\theta - 45^\circ) = \frac{2}{\sqrt{50}}$	$\sin 2\theta = \frac{21}{25}$	A1	1.1b
	dependent o	on the first M mark		
	e.g. $\theta = \arcsin\left(\frac{2}{\sqrt{50}}\right) + 45^{\circ}$	e.g. $\theta = \frac{1}{2} \left(\arcsin\left(\frac{21}{25}\right) \right)$	dM1	1.1b
	$\theta = $ awrt θ	51.4°, awrt 208.6°	A1	2.1
	Note: Working in radians do	pes not affect any of the first 4 marks		
			(5)	marks)

Questi	on	Scheme	Marks	AOs
7		(ii) $5\sin\theta - 5\cos\theta = 2, \ 0 \le \theta < 360^{\circ}$		
(ii) Alt 1	(ii) Alt 1 Complete strategy, i.e. • Attempts to apply $(5\sin\theta)^2 = (2+5\cos\theta)^2$ or $(5\sin\theta-2)^2 = (5\cos\theta)^2$ followed by applying $\cos^2\theta + \sin^2\theta = 1$ and solving a quadratic equation in either $\sin\theta$ or $\cos\theta$ to give at least one of $\sin\theta = k$ or $\cos\theta = k k < 1, k \neq 0$		M1	3.1a
		e.g. $25\sin^2\theta = 4 + 20\cos\theta + 25\cos^2\theta$ $\Rightarrow 25(1 - \cos^2\theta) = 4 + 20\cos\theta + 25\cos^2\theta$ or e.g. $25\sin^2\theta - 20\sin\theta + 4 = 25\cos^2\theta$ $\Rightarrow 25\sin^2\theta - 20\sin\theta + 4 = 25(1 - \sin^2\theta)$	— M1	1.1b
		$50\cos^2 \theta + 20\cos \theta - 21 = 0 \qquad 50\sin^2 \theta - 20\sin \theta - 21 = 0$		
		$\cos\theta = \frac{-20 \pm \sqrt{4600}}{100}$, o.e. $\sin\theta = \frac{20 \pm \sqrt{4600}}{100}$, o.e.	A1	1.1b
		dependent on the first M marke.g. $\theta = \arccos\left(\frac{-2 + \sqrt{46}}{10}\right)$ e.g. $\theta = \arcsin\left(\frac{2 + \sqrt{46}}{10}\right)$	dM1	1.1b
$\theta = $ awrt 61.4°, awrt 208.6° A1		2.1		
(*)		Notes for Question 7		
(I) B1:	For	recalling that $\sec x = \frac{1}{\cos x}$		
M1:	 Correct strategy of Way 1: applying sin 2x = 2sin x cos x and proceeding to sin 2x = k, k ≤ 1, k ≠ 0 Way 2: squaring both sides, applying cos² x + sin² x = 1 and solving a quadratic equation in either sin² x or cos² x to give sin² x = k or cos² x = k, k < 1, k ≠ 0 			
dM1:	Uses the correct order of operations to find at least one value for x in either radians or degrees			
A1:	Clear reasoning to achieve both $x = \frac{\pi}{12}, \frac{5\pi}{12}$ and no other values in the range $0 \le x < \frac{\pi}{2}$			
Note:	Give dM1 for $\sin 2x = \frac{1}{2} \Rightarrow$ any of $\frac{\pi}{12}, \frac{5\pi}{12}, 15^{\circ}, 75^{\circ}, \text{ awrt } 0.26 \text{ or awrt } 1.3$			
Note:	Give special case, SC B1M0M0A0 for writing down any of $\frac{\pi}{12}$, $\frac{5\pi}{12}$, 15° or 75° with no working			

Notes for Question 7 Continued

Γ

(ii)	
(II) M1:	See scheme
Note:	Alternative strategy: Expresses $5\sin\theta - 5\cos\theta = 2$ in the form $R\cos(\theta + \alpha) = -2$,
	finds both R and α , and proceeds to $\cos(\theta + \alpha) = k$, $ k < 1$, $k \neq 0$
M1:	Either
	• uses $R\sin(\theta - \alpha)$ to find the values of both R and α
	• attempts to apply $(5\sin\theta - 5\cos\theta)^2 = 2^2$, uses $\cos^2\theta + \sin^2\theta = 1$ and proceeds to find an
	equation of the form $\pm \lambda \pm \mu \sin 2\theta = \pm \beta$ or $\pm \mu \sin 2\theta = \pm \beta$; $\mu \neq 0$
	• attempts to apply $(5\sin\theta)^2 = (2+5\cos\theta)^2$ or $(5\sin\theta-2)^2 = (5\cos\theta)^2$ and
	uses $\cos^2 \theta + \sin^2 \theta = 1$ to form an equation in $\cos \theta$ only or $\sin \theta$ only
A1:	For $\sin(\theta - 45^\circ) = \frac{2}{\sqrt{50}}$, o.e., $\cos(\theta + 45^\circ) = -\frac{2}{\sqrt{50}}$, o.e. or $\sin 2\theta = \frac{21}{25}$, o.e.
	or $\cos\theta = \frac{-20 \pm \sqrt{4600}}{100}$, o.e. or $\cos\theta = \text{awrt } 0.48$, $\text{awrt} - 0.88$
	or $\sin \theta = \frac{20 \pm \sqrt{4600}}{100}$, o.e., or $\sin \theta = \text{awrt } 0.88$, $\text{awrt} - 0.48$
Note:	$\sin(\theta - 45^\circ)$, $\cos(\theta + 45^\circ)$, $\sin 2\theta$ must be made the subject for A1
dM1:	dependent on the first M mark
	Uses the correct order of operations to find at least one value for x in either degrees or radians
Note:	dM1 can also be given for $\theta = 180^{\circ} - \arcsin\left(\frac{2}{\sqrt{50}}\right) + 45^{\circ}$ or $\theta = \frac{1}{2}\left(180^{\circ} - \arcsin\left(\frac{21}{25}\right)\right)$
A1:	Clear reasoning to achieve both θ = awrt 61.4°, awrt 208.6° and no other values in
	the range $0 \le \theta < 360^{\circ}$
Note:	Give M0M0A0M0A0 for writing down any of θ = awrt 61.4°, awrt 208.6° with no working
Note:	Alternative solutions: (to be marked in the same way as Alt 1):
	• $5\sin\theta - 5\cos\theta = 2 \implies 5\tan\theta - 5 = 2\sec\theta \implies (5\tan\theta - 5)^2 = (2\sec\theta)^2$
	$\Rightarrow 25\tan^2\theta - 50\tan\theta + 25 = 4\sec^2\theta \Rightarrow 25\tan^2\theta - 50\tan\theta + 25 = 4(1 + \tan^2\theta)$
	$\Rightarrow 21\tan^2\theta - 50\tan\theta + 21 = 0 \Rightarrow \tan\theta = \frac{50 \pm \sqrt{736}}{42} = \frac{25 \pm 2\sqrt{46}}{21} = 1.8364, 0.5445$
	$\Rightarrow \theta = \text{awrt } 61.4^\circ, \text{ awrt } 208.6^\circ \text{ only}$
	• $5\sin\theta - 5\cos\theta = 2 \implies 5 - 5\cot\theta = 2\csc\theta \implies (5 - 5\cot\theta)^2 = (2\csc\theta)^2$
	$\Rightarrow 25 - 50\cot\theta + 25\cot^2\theta = 4\csc^2\theta \Rightarrow 25 - 50\cot\theta + 25\cot^2\theta = 4(1 + \cot^2\theta)$
	$\Rightarrow 21\cot^2\theta - 50\cot\theta + 21 = 0 \Rightarrow \cot\theta = \frac{50 \pm \sqrt{736}}{42} = \frac{25 \pm 2\sqrt{46}}{21} = 1.8364, 0.5445$
	$\Rightarrow \theta = \text{awrt } 61.4^\circ, \text{ awrt } 208.6^\circ \text{ only}$

Question	Scheme	Marks	AOs
8 (a)	$H = Ax(40 - x) $ {or $H = Ax(x - 40)$ }	M1	3.3
Way 1	$x = 20, H = 12 \Longrightarrow 12 = A(20)(40 - 20) \Longrightarrow A = \frac{3}{100}$	dM1	3.1b
	$H = \frac{3}{100}x(40 - x) \text{ or } H = -\frac{3}{100}x(x - 40)$	A1	1.1b
		(3)	
(a)	$H = 12 - \lambda (x - 20)^2$ {or $H = 12 + \lambda (x - 20)^2$ }	M1	3.3
Way 2	$x = 40, H = 0 \Longrightarrow 0 = 12 - \lambda (40 - 20)^2 \Longrightarrow \lambda = \frac{3}{100}$	dM1	3.1b
	$H = 12 - \frac{3}{100}(x - 20)^2$	A1	1.1b
		(3)	
(a) Way 3	$H = ax^{2} + bx + c (\text{or deduces } H = ax^{2} + bx)$ Both $x = 0, H = 0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ and either $x = 40, H = 0 \Rightarrow 0 = 1600a + 40b$ or $x = 20, H = 12 \Rightarrow 12 = 400a + 20b$ or $\frac{-b}{2a} = 20 \{\Rightarrow b = -40a\}$	M1	3.3
	$b = -40a \implies 12 = 400a + 20(-40a) \implies a = -0.03$ so $b = -40(-0.03) = 1.2$	dM1	3.1b
	$H = -0.03x^2 + 1.2x$	A1	1.1b
		(3)	
(b)	$\{H = 3 \implies\} 3 = \frac{3}{100}x(40 - x) \implies x^2 - 40x + 100 = 0$ or $\{H = 3 \implies\} 3 = 12 - \frac{3}{100}(x - 20)^2 \implies (x - 20)^2 = 300$	M1	3.4
	e.g. $x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)}$ or $x = 20 \pm \sqrt{300}$	dM1	1.1b
	$\{\text{chooses } 20 + \sqrt{300} \Rightarrow\}$ greatest distance = awrt 37.3 m	A1	3.2a
		(3)	
(c)	 Gives a limitation of the model. Accept e.g. the ground is horizontal the ball needs to be kicked from the ground the ball is modelled as a particle the horizontal bar needs to be modelled as a line there is no wind or air resistance on the ball there is no spin on the ball no obstacles in the trajectory (or path) of the ball the trajectory of the ball is a perfect parabola 	B1	3.5b
		(1)	
		(7 marks)

Notes for Question 8
Translates the situation given into a suitable equation for the model. E.g.
Way 1: {Uses (0, 0) and (40, 0) to write} $H = Ax(40 - x)$ o.e. {or $H = Ax(x - 40)$ }
Way 2: {Uses (20, 12) to write} $H = 12 - \lambda (x - 20)^2$ or $H = 12 + \lambda (x - 20)^2$
Way 3: Writes $H = ax^2 + bx + c$, and uses $(0, 0)$ to deduce $c = 0$ and an attempt at using either
(40, 0) or (20, 12)
Special Case: Allow SC M1dM0A0 for not deducing $c = 0$ but attempting to apply both (40, 0)
and (20, 12)
Applies a complete strategy with appropriate constraints to find all constants in their model.
Way 1: Uses (20, 12) on their model and finds $A = \dots$
Way 2: Uses either $(40, 0)$ or $(0, 0)$ on their model to find $\lambda =$
Way 3: Uses (40, 0) and (20, 12) on their model to find $a = \dots$ and $b = \dots$
Finds a correct equation linking <i>H</i> to <i>x</i>
$F = \frac{3}{r(40-r)} + \frac{3}{H-12} - \frac{3}{r(r-20)^2} $ or $H = -0.03r^2 + 1.2r$
E.g. $H = \frac{100}{100}x(40-x)$; $H = 12 - \frac{100}{100}(x-20)$ of $H = -0.05x + 1.2x$
Condone writing <i>y</i> in place of <i>H</i> for the M1 and dM1 marks.
Give final A0 for $y = -0.03x^2 + 1.2x$
Give special case M1dM0A0 for writing down any of $H = 12 - (x - 20)^2$ or $H = x(40 - x)$
or $H = x(x - 40)$
Give M1 dM1 for finding $-0.03x^2 + 1.2x$ or $a = -0.03$, $b = 1.2$, $c = 0$ in an implied
$ax^2 + bx$ or $ax^2 + bx + c$ (with no indication of $H =$)
Substitutes $H = 3$ into their quadratic equation and proceeds to obtain a 3TQ
or a quadratic in the form $(x \pm \alpha)^2 = \beta$; α , $\beta \neq 0$
E.g. $1.2x - 0.03x^2 = 3$ or $40x - x^2 = 100$ are acceptable for the 1 st M mark
Give M0 dM0 A0 for (their A) $x^2 = 3 \Rightarrow x =$ or their (their A) $x^2 + (\text{their } k) = 3 \Rightarrow x =$
Correct method of solving their quadratic equation to give at least one solution
Interprets their solution in the original context by selecting the larger correct value and states
<i>correct units for their value</i> . E.g. Accept awrt 37.3 m or $(20 + \sqrt{300})$ m or $(20 + 10\sqrt{3})$ m
Condone the use of inequalities for the method marks in part (b)
See scheme
Give no credit for the following reasons
• <i>H</i> (or the height of ball) is negative when $x > 40$
 Dounce of the ball should be considered after nitting the ground Model will not be true for a different rugby ball
 Ball may not be kicked in the same way each time.

www.yesterdaysmathsexam.com

9 $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$; as $h \to 0$, $\frac{\sin h}{h} \to 1$ and $\frac{\cos h - 1}{h} \to 0$ $\frac{\cos(\theta + h) - \cos\theta}{h}$ B12.1 $\frac{\cos(\theta + h) - \cos\theta}{h}$ M11.1b $\frac{1}{2} - \frac{\sin h}{h} \sin \theta + \frac{(\cosh h - 1)}{h} \cos \theta$ M11.1b $\frac{1}{2} - \frac{\sin h}{h} \sin \theta + \frac{(\cosh h - 1)}{h} \cos \theta$ M12.1 $\sin h \to 0$, $-\frac{\sin h}{h} \sin \theta + \frac{(\cosh h - 1)}{h} \cos \theta$ M12.1 $\sin \frac{1}{2} - \frac{\sin h}{h} \sin \theta + \frac{(\cosh h - 1)}{h} \cos \theta$ M12.1 $\sin \frac{1}{2} - \frac{\sin h}{h} \sin \theta + \frac{(\cosh h - 1)}{h} \cos \theta$ M12.1 $\sin \frac{1}{2} - 1$	Question		Scheme	Marks	AOs
$\frac{\cos(\theta + h) - \cos\theta}{h} \qquad B1 \qquad 2.1$ $= \frac{\cos\theta\cos h - \sin\theta\sin h - \cos\theta}{h} \qquad MI \qquad 1.1b$ $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta \qquad MI \qquad 2.1$ $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta \qquad MI \qquad 2.1$ $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta \rightarrow -1\sin\theta + 0\cos\theta \qquad MI \qquad 2.1$ $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta \rightarrow -1\sin\theta + 0\cos\theta \qquad MI \qquad 2.1$ $= \frac{\cos\theta}{d\theta}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\cos\theta}{d\theta}(\cos\theta) = -\cos\theta + A1^{*} \qquad 2.5$ $= \frac{\cos\theta}{d\theta}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\sin\theta}{h} + \frac{\cos\theta}{h}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\cos\theta}{d\theta}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\sin\theta}{h} + \frac{\cos\theta}{h}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\sin\theta}{h} + \frac{\cos\theta}{h}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\sin\theta}{h} + \frac{\cos\theta}{h}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\sin\theta}{h}(\cos\theta) = -\frac{\sin\theta}{h} + \frac{\cos\theta}{h}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\cos\theta}{d\theta}(\cos\theta) = -\frac{\sin\theta}{h} + \frac{\cos\theta}{h}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\cos\theta}{d\theta}(\cos\theta) = -\frac{\sin\theta}{h} + \frac{\cos\theta}{h}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\cos\theta}{h}(\cos\theta) = -\frac{\sin\theta}{h} + \frac{\cos\theta}{h}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\cos\theta}{h}(\cos\theta) = -\frac{\sin\theta}{h} + \frac{\cos\theta}{h}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\cos\theta}{h}(\cos\theta) = -\frac{\sin\theta}{h} + \frac{\cos\theta}{h}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\cos\theta}{h}(\cos\theta) = -\frac{\sin\theta}{h} + \frac{\cos\theta}{h}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\cos\theta}{h}(\cos\theta) = -\frac{\sin\theta}{h} + \frac{\cos\theta}{h}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\cos\theta}{h}(\cos\theta) = -\frac{\sin\theta}{h} + \frac{\cos\theta}{h}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\cos\theta}{h}(\cos\theta) = -\frac{\sin\theta}{h} + \frac{\cos\theta}{h}(\cos\theta) = -\sin\theta + A1^{*} \qquad 2.5$ $= \frac{\cos\theta}{h}(\cos\theta) = -\frac{\sin\theta}{h} + \frac{\cos\theta}{h}($	9		$\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = -\sin\theta; \text{ as } h \to 0, \frac{\sin h}{h} \to 1 \text{ and } \frac{\cos h - 1}{h} \to 0$		
$ \begin{array}{ c c c c c } \hline & \begin{array}{ c c c } \hline & & & & & & & & & & & & & & & & & & $			$\frac{\cos(\theta+h)-\cos\theta}{h}$	B1	2.1
$ \begin{array}{ c c c c c } \hline & \hline $			$\cos\theta\cos h - \sin\theta\sin h - \cos\theta$	M1	1.1b
$ \begin{array}{ c c c c c } \hline & = -\frac{\sin h}{h}\sin \theta + \left(\frac{\cos h-1}{h}\right)\cos \theta & = \\ \hline & \text{As } h \rightarrow 0, -\frac{\sin h}{h}\sin \theta + \left(\frac{\cos h-1}{h}\right)\cos \theta \rightarrow -1\sin \theta + 0\cos \theta & \\ \hline & \text{As } h \rightarrow 0, -\frac{\sin h}{h}\sin \theta + \left(\frac{\cos h-1}{h}\right)\cos \theta \rightarrow -1\sin \theta + 0\cos \theta & \\ \hline & \text{A1}^{*} & 2.5 & \\ \hline & \text{A1}^{*} & \cos (\theta + h) - \cos \theta & \\ \hline & \text{A1}^{*} & \cos (\theta + h) - \cos \theta & \\ \hline & \text{A1}^{*} & \text{Cos} (\theta + h) - \cos \theta & \\ \hline & \text{A1}^{*} & \text{Cos} (\theta + h) - \theta & \text{o.e. Note: } \cos(\theta + h) \text{ to give } \cos \theta \cos h \pm \sin \theta \sin h \\ \hline & \text{A1}^{*} & \text{Achieves } & \frac{\cos \theta \cos h - \sin \theta \sin h - \cos \theta}{h} & \text{or } \cos \theta \cos h \pm \sin \theta \sin h \\ \hline & \text{A1}^{*} & \text{Cos} & \text{Uses the compound angle formula for \cos(\theta + h) to give \cos \theta \cos h \pm \sin \theta \sin h \\ \hline & \text{A1}^{*} & \text{Cos} & \text{Uses correct mathematical language of limiting arguments to prove } \\ \hline & \text{A1}^{*} & \text{cso. Uses correct mathematical language of limiting arguments to prove } \\ \hline & \text{A1}^{*} & \text{cso. Uses correct mathematical language of limiting arguments to prove } \\ \hline & \text{Ad}^{*} & (\cos \theta) & = \\ \hline & \text{A1}^{*} & \text{Cos} & \text{As } h \rightarrow 0, \text{ gradient of chord tends to the gradient of the curve, so derivative is -\sin \theta \\ & \text{Gradient of chord } = -\frac{\sin h}{h}\sin \theta + \left(\frac{\cosh h-1}{h}\right)\cos \theta & \text{As } h \rightarrow 0, \text{ gradient of chord tends to the gradient of the curve, so derivative is -\sin \theta \\ & \text{Gradient of chord } = -\frac{\sin h}{h}\sin \theta + \left(\frac{\cosh h-1}{h}\right)\cos \theta & \text{As } h \rightarrow 0, \text{ gradient of curve is - \sin \theta \\ \hline & \text{Note:} & \text{Do not allow the final A1 for stating } \frac{\sin h}{h} = 1 \text{ or } \left(\frac{\cosh h-1}{h}\right) = 0 \text{ and attempting to apply these} \\ \hline & \text{Note:} & \text{In this question $\partial \theta$ may be used in place of h \\ \hline & \text{Note:} & \text{Condone } f'(\theta) \text{ where } f(\theta)$			= h	A1	1.1b
As $h \rightarrow 0$, $-\frac{\sin h}{h}\sin \theta + \left(\frac{\cos h - 1}{h}\right)\cos \theta \rightarrow -1\sin \theta + 0\cos \theta$ dM12.1so $\frac{d}{d\theta}(\cos \theta) = -\sin \theta$ A1*2.5(5)Notes for Question 9B1:Gives the correct fraction such as $\frac{\cos(\theta + h) - \cos \theta}{h}$ or $\frac{\cos(\theta + \delta \theta) - \cos \theta}{\delta \theta}$ Allow $\frac{\cos(\theta + h) - \cos \theta}{(\theta + h) - \theta}$ o.e. Note: $\cos(\theta + h)$ or $\cos(\theta + \delta \theta)$ may be expandedM1:Uses the correct fraction such as $\frac{\cos(\theta + h) - \cos \theta}{h}$ or $\cos(\theta + \delta \theta)$ may be expandedM1:Uses the correct fraction such as $\frac{\cos(\theta + h) - \cos \theta}{h}$ or $\cos(\theta + \delta \theta)$ may be expandedM1:Uses the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta \cos h \pm \sin\theta \sin h$ At iter is $\cos \theta \cos h - \sin \theta \sin h - \cos \theta$ or equivalentM1:Uses the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta \cos h \pm \sin \theta \sin h$ At iter is $\cos^2 \cos h - \sin^2 \theta \sin h - \cos \theta$ Achieves $\frac{\cos \theta \cos h - \sin \theta \sin h - \cos \theta}{h}$ or equivalentM1:Uses correct mathematical language of limiting argumentsMust is loate $\frac{\sin h}{h}$ and $\left(\frac{\cos h - 1}{h}\right)$, and replace $\frac{\sin h}{h}$ with 1 and replace $\left(\frac{\cos h - 1}{h}\right)$ with 0Attract $\frac{d}{d\theta}(\cos \theta) = \frac{\sin h}{h \rightarrow 0} \left(-\frac{\sinh h}{h} \sin \theta + \left(\frac{\cosh - 1}{h}\right)\cos \theta\right) = -1\sin \theta + 0\cos \theta = -\sin \theta$ Note:Giradient of chord $= -\frac{\sin h}{h} \sin \theta + \left(\frac{\cosh - 1}{h}\right)\cos \theta = -1\sin \theta + 0\cos \theta = -\sin \theta$ Note:Gir final A0 for the following example which shows <i>no limiting arguments</i> : when $h = 0$, $\frac{d}{d\theta}(\cos \theta) = -\frac{\sin h}{h} \sin \theta + \left(\frac{\cosh - 1}{h}\right)\cos \theta = -1\sin \theta + 0\cos \theta = -\sin \theta$ <			$= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$		
so $\frac{d}{d\theta}(\cos\theta) = -\sin\theta *$ A1*2.5(5)Notes for Question 9B1:Gives the correct fraction such as $\frac{\cos(\theta+h)-\cos\theta}{h}$ or $\frac{\cos(\theta+\delta\theta)-\cos\theta}{\delta\theta}$ Allow $\frac{\cos(\theta+h)-\cos\theta}{(\theta+h)-\theta}$ o.e.Note: $\cos(\theta+h)$ or $\cos(\theta+\delta\theta)$ may be expandedM1:Uses the compound angle formula for $\cos(\theta+h)$ to give $\cos\theta \cosh h \pm \sin\theta \sin h$ A1:Achieves $\frac{\cos\theta \cosh h - \sin\theta \sin h - \cos\theta}{h}$ or equivalent dH degendent on both the B and M marks being awardedComplete attempt to apply the given limits to the gradient of their chordNote:cos $\theta \cos h - \sin\theta$ in $h - \cos\theta$ A cos $\theta \cos h - \sin\theta$ in $h - \cos\theta$ Achieves $\frac{\cos\theta \cos h - \sin\theta \sin h - \cos\theta}{h}$ or equivalent dHdegendent on both the B and M marks being awarded Complete attempt to apply the given limits to the gradient of their chordNote:Cos Uses correct mathematical language of limiting arguments to prove $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$ Note:Acceptable responses for the final A mark include:• $\frac{d}{d\theta}(\cos\theta) = \frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h}\right) \cos \theta$ As $h \to 0$, gradient of chord tends to the gradient of the curve, so derivative is $s - \sin\theta$ • Gradient of chord $= -\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h}\right) \cos \theta$ As $h \to 0$, gradient of curve is $-\sin\theta$ • Ote:Cive final A0 for the following example which shows <i>no limiting arguments</i> : when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sin h}{h} \sin \theta + \left(\cos h $			As $h \to 0$, $-\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h}\right) \cos \theta \to -1\sin \theta + 0\cos \theta$	dM1	2.1
(5)(5)Notes for Question 9B1:Gives the correct fraction such as $\frac{\cos(\theta + h) - \cos\theta}{h}$ or $\frac{\cos(\theta + \delta\theta) - \cos\theta}{\delta\theta}$ Allow $\frac{\cos(\theta + h) - \cos\theta}{(\theta + h) - \theta}$ o.e. Note: $\cos(\theta + h)$ or $\cos(\theta + \delta\theta)$ may be expandedMI:Uses the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta \cos h \pm \sin\theta \sin h$ Allow $\frac{\cos(\theta - h) - \cos\theta}{(\theta + h) - \theta}$ or equivalentAllow $\frac{\cos\theta \cos h - \sin\theta \sin h - \cos\theta}{(\theta + h) - \theta}$ or equivalentAlliedependent on both the B and M marks being awarded Complete attempt to apply the given limits to the gradient of their chordNote:They must isolate $\frac{\sin h}{h}$ and $\left(\frac{\cos h - 1}{h}\right)$, and replace $\frac{\sin h}{h}$ with 1 and replace $\left(\frac{\cos h - 1}{h}\right)$ with 0Allew cos correct mathematical language of limiting arguments to prove $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$ Note:Acceptable responses for the final A mark include:• $\frac{d}{d\theta}(\cos\theta) = \lim_{h \to 0} \left(-\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h} \right) \cos \theta \right) = -1\sin \theta + 0\cos \theta = -\sin \theta$ • Gradient of chord $= -\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h} \right) \cos \theta$. As $h \to 0$, gradient of chord tends to the gradient of the curve, so derivative is $-\sin \theta$ • Oute:Give final A0 for the following example which shows <i>no limiting arguments</i> : when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h} \right) \cos \theta = -1\sin \theta + 0\cos \theta = -\sin \theta$ Note:Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h} \right) = 0$ and attempting to apply theseNote:In this question $\delta\theta$ may be used in place of h Note:<			so $\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = -\sin\theta *$	A1*	2.5
(5 marksNotes for Question 9B1:Gives the correct fraction such as $\frac{\cos(\theta + h) - \cos\theta}{h}$ or $\frac{\cos(\theta + \delta\theta) - \cos\theta}{\delta\theta}$ Allow $\frac{\cos(\theta + h) - \cos\theta}{(\theta + h) - \theta}$ o.e. Note: $\cos(\theta + h)$ or $\cos(\theta + \delta\theta)$ may be expandedM1:Uses the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta \cos h \pm \sin\theta \sin h$ A1:Achieves $\frac{\cos\theta \cos h - \sin\theta \sin h - \cos\theta}{h}$ or equivalentdM1:Uses the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta \cos h \pm \sin\theta \sin h$ A1:Achieves $\frac{\cos\theta \cos h - \sin\theta \sin h - \cos\theta}{h}$ or equivalentdM1:Uses the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta \cos h \pm \sin\theta \sin h$ A1:Achieves $\frac{\cos\theta \cos h - \sin\theta \sin h - \cos\theta}{h}$ or equivalentdM1:Uses the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta \cos h \pm \sin\theta \sin h$ A1:Achieves $\frac{\cos\theta \cos h - \sin\theta \sin h - \cos\theta}{h}$ or equivalentdependent on both the B and M marks being awardedComplete attempt to apply the given limits to the gradient of their chordNote:They must isolate $\frac{\sin h}{h}$ and $\left(\frac{\cos h - 1}{h}\right)$, and replace $\frac{\sin h}{h}$ with 1 and replace $\left(\frac{\cos h - 1}{h}\right)$ with 0Allow:Acceptable responses for the final A mark include:• $\frac{d}{d\theta}(\cos\theta) = \frac{1 \sin h}{h \Rightarrow 0} + \left(\frac{\cos h - 1}{h}\right) \cos\theta$ $-1 \sin \theta + 0 \cos \theta = -\sin \theta$ • Of callent of chord $= -\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h}\right) \cos \theta$ $-\sin \theta$ • Gradient of chord $= -$				(5)	
Notes for Question 9B1:Gives the correct fraction such as $\frac{\cos(\theta + h) - \cos\theta}{h}$ or $\frac{\cos(\theta + \delta\theta) - \cos\theta}{\delta\theta}$ Allow $\frac{\cos(\theta + h) - \cos\theta}{(\theta + h) - \theta}$ o.e.Note: $\cos(\theta + h)$ or $\cos(\theta + \delta\theta)$ may be expandedM1:Uses the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta \cos h \pm \sin\theta \sin h$ A1:Achieves $\frac{\cos\theta \cos h - \sin\theta \sin h - \cos\theta}{h}$ or equivalentM1:Uses the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta \cos h \pm \sin\theta \sin h$ A1:Achieves $\frac{\cos\theta \cosh h - \sin\theta \sin h - \cos\theta}{h}$ or equivalentM1:dependent on both the B and M marks being awarded Complete attempt to apply the given limits to the gradient of their chordNote:They must isolate $\frac{\sin h}{h}$ and $\left(\frac{\cos h - 1}{h}\right)$, and replace $\frac{\sin h}{h}$ with 1 and replace $\left(\frac{\cos h - 1}{h}\right)$ with 0A1*:cso. Uses correct mathematical language of limiting arguments to prove $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$ Note:Acceptable responses for the final A mark include:• $\frac{d}{d\theta}(\cos\theta) = \frac{\lim_{h \to 0} \left(-\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta\right} = -1\sin\theta + 0\cos\theta = -\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta$. As $h \to 0$, gradient of chord tends to the gradient of the curve, so derivative is $-\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta$. As $h \to 0$, gradient of curve is $-\sin\theta$ Note:Give final A0 for the following example which shows $no limiting arguments$: when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta = -1\sin\theta + 0\cos\theta = -\sin\theta$ Note:Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply these				(5	marks)
B1: Gives the correct fraction such as $\frac{\cos(\theta + h) - \cos\theta}{h}$ or $\frac{\cos(\theta + \delta\theta) - \cos\theta}{\delta\theta}$ Allow $\frac{\cos(\theta + h) - \cos\theta}{(\theta + h) - \theta}$ o.e. Note: $\cos(\theta + h)$ or $\cos(\theta + \delta\theta)$ may be expanded M1: Uses the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta \cos h \pm \sin\theta \sin h$ A1: Achieves $\frac{\cos\theta \cos h - \sin\theta \sin h - \cos\theta}{h}$ or equivalent M1: dependent on both the B and M marks being awarded Complete attempt to apply the given limits to the gradient of their chord Note: They must isolate $\frac{\sin h}{h}$ and $\left(\frac{\cosh h - 1}{h}\right)$, and replace $\frac{\sinh h}{h}$ with 1 and replace $\left(\frac{\cosh h - 1}{h}\right)$ with 0 A1*: cso. Uses correct mathematical language of limiting arguments to prove $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$ Note: Acceptable responses for the final A mark include: • $\frac{d}{d\theta}(\cos\theta) = \frac{\lim_{h \to 0} \left(-\frac{\sinh h}{h}\sin\theta + \left(\frac{\cosh h - 1}{h}\right)\cos\theta\right) = -1\sin\theta + 0\cos\theta = -\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of chord tends to the gradient of the curve, so derivative is $-\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of curve is $-\sin\theta$ Note: Give final A0 for the following example which shows <i>no limiting arguments</i> : when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh h - 1}{h}\right)\cos\theta = -1\sin\theta + 0\cos\theta = -\sin\theta$ Note: Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cosh h - 1}{h}\right) = 0$ and attempting to apply these Note: Condone $f'(\theta)$ where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$			Notes for Question 9		
Allow $\frac{\cos(\theta+h)-\cos\theta}{(\theta+h)-\theta}$ o.e. Note: $\cos(\theta+h)$ or $\cos(\theta+\delta\theta)$ may be expandedM1:Uses the compound angle formula for $\cos(\theta+h)$ to give $\cos\theta \cos h \pm \sin\theta \sin h$ A1:Achieves $\frac{\cos\theta \cos h - \sin\theta \sin h - \cos\theta}{h}$ or equivalentdM1:dependent on both the B and M marks being awarded Complete attempt to apply the given limits to the gradient of their chordNote:They must isolate $\frac{\sin h}{h}$ and $\left(\frac{\cos h - 1}{h}\right)$, and replace $\frac{\sinh h}{h}$ with 1 and replace $\left(\frac{\cosh h - 1}{h}\right)$ with 0A1*:cso. Uses correct mathematical language of limiting arguments to prove $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$ Note:Acceptable responses for the final A mark include:• $\frac{d}{d\theta}(\cos\theta) = \frac{\lim_{h \to 0} \left(-\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh h - 1}{h}\right)\cos\theta\right) = -1\sin\theta + 0\cos\theta = -\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh h - 1}{h}\right)\cos\theta$ > 0, gradient of chord tends to the gradient of the curve, so derivative is $-\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh h - 1}{h}\right)\cos\theta = -1\sin\theta + 0\cos\theta = -\sin\theta$ Note:Give final A0 for the following example which shows no limiting arguments: when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sinh h}{h}\sin\theta + \left(\frac{\cosh h - 1}{h}\right)\cos\theta = -1\sin\theta + 0\cos\theta = -\sin\theta$ Note:Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply theseNote:In this question $\delta\theta$ may be used in place of h Note:Condone f'(θ) where f(θ) = $\cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$	B1:	Giv	es the correct fraction such as $\frac{\cos(\theta + h) - \cos\theta}{h}$ or $\frac{\cos(\theta + \delta\theta) - \cos\theta}{\delta\theta}$		
M1:Uses the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta \cos h \pm \sin\theta \sin h$ A1:Achieves $\frac{\cos\theta \cos h - \sin\theta \sin h - \cos\theta}{h}$ or equivalentdM1:dependent on both the B and M marks being awarded Complete attempt to apply the given limits to the gradient of their chordNote:They must isolate $\frac{\sin h}{h}$ and $\left(\frac{\cos h - 1}{h}\right)$, and replace $\frac{\sin h}{h}$ with 1 and replace $\left(\frac{\cos h - 1}{h}\right)$ with 0A1*:cso. Uses correct mathematical language of limiting arguments to prove $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$ Note:Acceptable responses for the final A mark include:• $\frac{d}{d\theta}(\cos\theta) = \lim_{h \to 0} \left(-\frac{\sinh h}{h} \sin\theta + \left(\frac{\cosh h - 1}{h}\right)\cos\theta\right) = -1\sin\theta + 0\cos\theta = -\sin\theta$ • Gradient of chord $= -\frac{\sinh h}{h}\sin\theta + \left(\frac{\cosh h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of chord tends to the gradient of the curve, so derivative is $-\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of curve is $-\sin\theta$ Note:Give final A0 for the following example which shows no limiting arguments: when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh h - 1}{h}\right)\cos\theta = -1\sin\theta + 0\cos\theta = -\sin\theta$ Note:Do not allow the final A1 for stating $\frac{\sinh h}{h} = 1$ or $\left(\frac{\cosh h - 1}{h}\right) = 0$ and attempting to apply theseNote:In this question $\delta\theta$ may be used in place of h Note:Condone f'(θ) where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$		Allo	by $\frac{\cos(\theta+h)-\cos\theta}{(\theta+h)-\theta}$ o.e. Note: $\cos(\theta+h)$ or $\cos(\theta+\delta\theta)$ may be expa	nded	
A1:Achieves $\frac{\cos\theta \cos h - \sin\theta \sin h - \cos\theta}{h}$ or equivalentdM1:dependent on both the B and M marks being awarded Complete attempt to apply the given limits to the gradient of their chordNote:They must isolate $\frac{\sin h}{h}$ and $\left(\frac{\cos h - 1}{h}\right)$, and replace $\frac{\sin h}{h}$ with 1 and replace $\left(\frac{\cos h - 1}{h}\right)$ with 0A1*:cso. Uses correct mathematical language of limiting arguments to prove $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$ Note:Acceptable responses for the final A mark include:• $\frac{d}{d\theta}(\cos\theta) = \lim_{h \to 0} \left(-\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta\right) = -1\sin\theta + 0\cos\theta = -\sin\theta$ •• <t< th=""><th>M1:</th><th>Use</th><th>s the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta\cos h \pm \sin\theta\sin$</th><th>h h</th><th></th></t<>	M1:	Use	s the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta\cos h \pm \sin\theta\sin$	h h	
dM1:dependent on both the B and M marks being awarded Complete attempt to apply the given limits to the gradient of their chordNote:They must isolate $\frac{\sin h}{h}$ and $\left(\frac{\cos h - 1}{h}\right)$, and replace $\frac{\sin h}{h}$ with 1 and replace $\left(\frac{\cos h - 1}{h}\right)$ with 0A1*:cso. Uses correct mathematical language of limiting arguments to prove $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$ Note:Acceptable responses for the final A mark include:• $\frac{d}{d\theta}(\cos\theta) = \frac{\lim_{h \to 0} \left(-\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta\right) = -1\sin\theta + 0\cos\theta = -\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of chord tends to the gradient of the curve, so derivative is $-\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of curve is $-\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$ and $h \to 0$, gradient of curve is $-\sin\theta$ • Note:Give final A0 for the following example which shows <i>no limiting arguments</i> : when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta = -1\sin\theta + 0\cos\theta = -\sin\theta$ Note:Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply theseNote:In this question $\delta\theta$ may be used in place of h Note:Condone f'(θ) where f(θ) = $\cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$	A1:	Achieves $\frac{\cos\theta\cos h - \sin\theta\sin h - \cos\theta}{h}$ or equivalent			
Note:They must isolate $\frac{\sin h}{h}$ and $\left(\frac{\cos h-1}{h}\right)$, and replace $\frac{\sin h}{h}$ with 1 and replace $\left(\frac{\cos h-1}{h}\right)$ with 0A1*:cso. Uses correct mathematical language of limiting arguments to prove $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$ Note:Acceptable responses for the final A mark include: • $\frac{d}{d\theta}(\cos\theta) = \frac{\lim_{h \to 0} \left(-\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h-1}{h}\right)\cos\theta\right) = -1\sin\theta + 0\cos\theta = -\sin\theta$ • Gradient of chord = $-\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h-1}{h}\right)\cos\theta$. As $h \to 0$, gradient of chord tends to the gradient of the curve, so derivative is $-\sin\theta$ • Gradient of chord = $-\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh h-1}{h}\right)\cos\theta$. As $h \to 0$, gradient of curve is $-\sin\theta$ • Gradient of chord = $-\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh h-1}{h}\right)\cos\theta$. As $h \to 0$, gradient of curve is $-\sin\theta$ • Note:Give final A0 for the following example which shows <i>no limiting arguments</i> : when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh h-1}{h}\right)\cos\theta = -1\sin\theta + 0\cos\theta = -\sin\theta$ Note:Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h-1}{h}\right) = 0$ and attempting to apply theseNote:In this question $\delta\theta$ may be used in place of h Note:Condone f'(θ) where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$	dM1:	dependent on both the B and M marks being awarded Complete attempt to apply the given limits to the gradient of their chord			
A1*:cso. Uses correct mathematical language of limiting arguments to prove $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$ Note:Acceptable responses for the final A mark include:• $\frac{d}{d\theta}(\cos\theta) = \lim_{h \to 0} \left(-\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta \right) = -1\sin\theta + 0\cos\theta = -\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta$. As $h \to 0$, gradient of chord tends to the gradient of the curve, so derivative is $-\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta$. As $h \to 0$, gradient of curve is $-\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta$. As $h \to 0$, gradient of curve is $-\sin\theta$ • Mote:Give final A0 for the following example which shows no limiting arguments: when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta = -1\sin\theta + 0\cos\theta = -\sin\theta$ Note:Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply theseNote:In this question $\delta\theta$ may be used in place of h Note:Condone f'(θ) where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$	Note:	They must isolate $\frac{\sin h}{h}$ and $\left(\frac{\cos h - 1}{h}\right)$, and replace $\frac{\sin h}{h}$ with 1 and replace $\left(\frac{\cos h - 1}{h}\right)$ with 0			
Note:Acceptable responses for the final A mark include:• $\frac{d}{d\theta}(\cos\theta) = \lim_{h \to 0} \left(-\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta\right) = -1\sin\theta + 0\cos\theta = -\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of chord tends to the gradient of the curve, so derivative is $-\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of chord tends to the gradient of the curve, so derivative is $-\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of curve is $-\sin\theta$ • Note:Give final A0 for the following example which shows no limiting arguments: when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sin h}{h}\sin\theta + \left(\frac{\cosh - 1}{h}\right)\cos\theta = -1\sin\theta + 0\cos\theta = -\sin\theta$ Note:Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply theseNote:In this question $\delta\theta$ may be used in place of h Note:Condone f'(θ) where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$	A1*:	cso. Uses correct mathematical language of limiting arguments to prove $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$			
$ \mathbf{\cdot} \frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = \lim_{h \to 0} \left(-\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h} \right) \cos \theta \right) = -1\sin \theta + 0\cos \theta = -\sin \theta $ $ \mathbf{\cdot} \text{ Gradient of chord} = -\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h} \right) \cos \theta. \text{ As } h \to 0, \text{ gradient of chord tends to the gradient of the curve, so derivative is -\sin \theta \mathbf{\cdot} \text{ Gradient of chord} = -\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h} \right) \cos \theta. \text{ As } h \to 0, \text{ gradient of chord tends to the gradient of chord} = -\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h} \right) \cos \theta. \text{ As } h \to 0, \text{ gradient of curve is } -\sin \theta \mathbf{\cdot} \text{ Gradient of chord} = -\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h} \right) \cos \theta. \text{ As } h \to 0, \text{ gradient of curve is } -\sin \theta \mathbf{Note:} \text{Give final A0 for the following example which shows no limiting arguments:} \\ \text{when } h = 0, \ \frac{d}{d\theta} (\cos \theta) = -\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h} \right) \cos \theta = -1\sin \theta + 0\cos \theta = -\sin \theta \mathbf{Note:} \text{Do not allow the final A1 for stating } \frac{\sin h}{h} = 1 \text{ or } \left(\frac{\cos h - 1}{h} \right) = 0 \text{ and attempting to apply these } \mathbf{Note:} \text{In this question } \delta\theta \text{ may be used in place of } h \mathbf{Note:} \text{Condone } f'(\theta) \text{ where } f(\theta) = \cos \theta \text{ or } \frac{dy}{d\theta} \text{ where } y = \cos \theta \text{ used in place of } \frac{d}{d\theta} (\cos \theta) $	Note:	Acceptable responses for the final A mark include:			
• Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of chord tends to the gradient of the curve, so derivative is $-\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of <i>curve</i> is $-\sin\theta$ Note: Give final A0 for the following example which shows <i>no limiting arguments</i> : when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta = -1\sin\theta + 0\cos\theta = -\sin\theta$ Note: Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply these Note: In this question $\delta\theta$ may be used in place of h Note: Condone $f'(\theta)$ where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$		•	$\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = \lim_{h \to 0} \left(-\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta \right) = -1\sin\theta + 0\cos\theta$	$s\theta = -\sin\theta$,
the gradient of the curve, so derivative is $-\sin\theta$ • Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of <i>curve</i> is $-\sin\theta$ Note: Give final A0 for the following example which shows <i>no limiting arguments</i> : when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta = -1\sin\theta + 0\cos\theta = -\sin\theta$ Note: Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply these Note: In this question $\delta\theta$ may be used in place of h Note: Condone $f'(\theta)$ where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$		•	Gradient of chord = $-\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient	t of chord t	ends to
• Gradient of chord $= -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of <i>curve</i> is $-\sin\theta$ Note: Give final A0 for the following example which shows <i>no limiting arguments</i> : when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta = -1\sin\theta + 0\cos\theta = -\sin\theta$ Note: Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply these Note: In this question $\delta\theta$ may be used in place of h Note: Condone f'(θ) where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$			the gradient of the curve, so derivative is $-\sin\theta$		
Note:Give final A0 for the following example which shows no limiting arguments: when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta = -1\sin\theta + 0\cos\theta = -\sin\theta$ Note:Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply theseNote:In this question $\delta\theta$ may be used in place of hNote:Condone f'(θ) where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$		•	Gradient of chord = $-\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient	nt of <i>curve</i>	is $-\sin\theta$
when $h = 0$, $\frac{d}{d\theta}(\cos\theta) = -\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta = -1\sin\theta + 0\cos\theta = -\sin\theta$ Note:Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply theseNote:In this question $\delta\theta$ may be used in place of h Note:Condone f'(θ) where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$	Note:	Giv	e final A0 for the following example which shows <i>no limiting arguments</i> :		
Note:Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply theseNote:In this question $\delta\theta$ may be used in place of hNote:Condone f'(θ) where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$		whe	$\ln h = 0, \ \frac{\mathrm{d}}{\mathrm{d}\theta} (\cos\theta) = -\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta = -1\sin\theta + 0\cos\theta$	$=-\sin\theta$	
Note:In this question $\delta\theta$ may be used in place of hNote:Condone $f'(\theta)$ where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$	Note:	Do	Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply these		
Note: Condone $f'(\theta)$ where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$	Note:	In t	his question $\delta \theta$ may be used in place of h		
	Note:	Condone $f'(\theta)$ where $f(\theta) = \cos \theta$ or $\frac{dy}{d\theta}$ where $y = \cos \theta$ used in place of $\frac{d}{d\theta}(\cos \theta)$			

	Notes for Question 9 Continued
Note:	Condone x used in place of θ if this is done consistently
Note:	Give final A0 for
	• $\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos x) = \lim_{h \to 0} \left(-\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h} \right) \cos \theta \right) = -1\sin \theta + 0\cos \theta = -\sin \theta$
	• $\frac{\mathrm{d}}{\mathrm{d}\theta} = \dots$
	• Defining $f(x) = \cos\theta$ and applying $f'(x) =$
	• $\frac{\mathrm{d}}{\mathrm{d}x}(\cos\theta)$
Note:	Give final A1 for a correct limiting argument in x, followed by $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$
	e.g. $\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos x) = \lim_{h \to 0} \left(-\frac{\sin h}{h} \sin x + \left(\frac{\cos h - 1}{h}\right) \cos x \right) = -1\sin x + 0\cos x = -\sin x$
	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = -\sin\theta$
Note:	Applying $h \to 0$, $\sin h \to h$, $\cos h \to 1$ to give e.g.
	$\lim \left(\cos\theta\cos h - \sin\theta\sin h - \cos\theta\right) = \left(\cos\theta(1) - \sin\theta(h) - \cos\theta\right) - \sin\theta(h)$
	$h \to 0 \left(\frac{h}{h} \right) = \left(\frac{h}{h} \right) = \frac{h}{h} = -\sin\theta$
	is final M0 A0 for incorrect application of limits
Note:	$\lim_{h \to \infty} \left(\cos\theta \cos h - \sin\theta \sin h - \cos\theta \right) \qquad \lim_{h \to \infty} \left(\sin h \sin \theta + \left(\cos h - 1 \right) \cos\theta \right)$
	$ h \to 0 \left(\frac{h}{h} \right)^{-1} = h \to 0 \left(\frac{h}{h} \sin \theta + \left(\frac{h}{h} \right)^{-1} \cos \theta \right) $
	lim lim
	$= \underbrace{h \to 0}_{h \to 0} (-(1)\sin\theta + 0\cos\theta) = -\sin\theta. \text{ So for not removing}_{h \to 0}$
	when the limit was taken is final A0
Note:	<u>Alternative Method</u> : Considers $\frac{\cos(\theta+h) - \cos(\theta-h)}{(\theta+h) - (\theta-h)}$ which simplifies to $\frac{-2\sin\theta\sin h}{2h}$

www.yesterdaysmathsexam.com

Question	Sch	eme	Marks	AOs
10 (a)	$\frac{\mathrm{d}r}{\mathrm{d}t} \propto \pm \frac{1}{r^2}$ or $\frac{\mathrm{d}r}{\mathrm{d}t}$	$=\pm \frac{k}{r^2}$ (for k or a numerical k)	M1	3.3
	$\int r^2 \mathrm{d}r = \int \pm k \mathrm{d}r$	$dt \Rightarrow \dots \qquad (\text{for } k \text{ or a numerical } k)$	M1	2.1
	$\frac{1}{3}r^3 = \pm kt \ \{+$	- <i>c</i> }	A1	1.1b
	t=0, r=5 and t=4, r=3 gives $\frac{1}{3}r^3 = -\frac{49}{6}t + \frac{125}{3}$,	t=0, r=5 and t=240, r=3 gives $\frac{1}{3}r^3 = -\frac{49}{360}t + \frac{125}{3}$,	M1	3.1a
	where <i>r</i> , in mm, is the radius {of the mint} and <i>t</i> , in minutes, is the time from when it {the mint} was placed in the mouth	where <i>r</i> , in mm, is the radius {of the mint} and <i>t</i> , in seconds, is the time from when it {the mint} was placed in the mouth	A1	1.1b
			(5)	
(b)	$r = 0 \Longrightarrow 0 = -\frac{49}{6}t + \frac{125}{3} =$	$\Rightarrow 0 = -49t + 250 \implies t = \dots$	M1	3.4
	time = 5 minu	ites 6 seconds	A1	1.1b
			(2)	
(c)	 Suggests a suitable limitation of the Model does not consider he Model does not consider wiil Model is limited for times uil Not valid for times greater in Mint may not retain the shared radius) as it is being sucked The model indicates that the it dissolves Model does not consider the Model does not consider radius Mint could be swallowed be 	model. E.g. w the mint is sucked hether the mint is bitten up to 5 minutes 6 seconds, o.e. than 5 minutes 6 seconds, o.e. pe of a sphere (or have uniform l e radius of the mint is negative after e temperature in the mouth te of saliva production efore it dissolves in the mouth	B1	3.5b
			(1)	
			(8	marks)

	Notes for Question 10
(a)	
M1:	Translates the description of the model into mathematics. See scheme.
M1:	Separates the variables of their differential equation which is in the form $\frac{dr}{dt} = f(r)$ and some
	attempt at integration. (e.g. attempts to integrate at least one side).
	e.g. $\int r^2 dr = \int \pm k dt$ and some attempt at integration.
	Condone the lack of integral signs
Note:	You can imply the M1 mark for $r^2 dr = -k dt \Rightarrow \frac{1}{3}r^3 = -kt$
Note:	A numerical value of k (e.g. $k = \pm 1$) is allowed for the first two M marks
A1:	Correct integration to give $\frac{1}{3}r^3 = \pm kt$ with or without a constant of integration, c
M1:	For a complete process of using the boundary conditions to find both their unknown constants and finds an equation linking r and t So applies either • $t=0, r=5$ and $t=4, r=3$, or
	t = 0, r = 5 and $t = 240, r = 3$
	• $i = 0, i = 5$ and $i = 2\pi 0, i = 5$, on their integrated equation to find their constants k and c and obtains an equation linking r and t
A1:	Correct equation, with variables r and t fully defined including correct reference to units.
1111	$1 \cdot 49 \cdot 125$
	• $-r^3 = -\frac{t}{6}t + \frac{t}{3}$, {or an equivalent equation,} where r, in mm, is the radius {of the mint}
	and t , in minutes, is the time from when it {the mint} was placed in the mouth
	• $\frac{1}{3}r^3 = -\frac{49}{360}t + \frac{125}{3}$, {or an equivalent equation,} where r, in mm, is the radius {of the
	mint and <i>t</i> , in seconds, is the time from when it {the mint} was placed in the mouth
Note:	Allow correct equations such as
	• in minutes, $r = \sqrt[3]{\frac{250 - 49t}{2}}$, $r^3 = -\frac{49}{2}t + 125$ or $t = \frac{250 - 2r^3}{49}$
	• in seconds, $r = \sqrt[3]{\frac{15000 - 49t}{120}}$, $r^3 = -\frac{49}{120}t + 125$ or $t = \frac{15000 - 120r^3}{49}$
Note:	t defined as "the time from the start" is not sufficient for the final A1
(b)	
M1:	Sets $r = 0$ in their part (a) equation which links r with t and rearranges to make $t =$
A1:	5 minutes 6 seconds cao (Note: 306 seconds with no reference to 5 minutes 6 seconds is A0)
Note:	Give M0 if their equation would solve to give a negative time or a negative time is found
Note:	You can mark part (a) and part (b) together
(c)	
B1:	See scheme
Note:	Do not accept by itself
	 mini may not dissorve at a constant rate rate of decrease of mint must be constant
	250
	• $0 \le t < \frac{250}{49}$, $r \ge 0$; without any written explanation
	• reference to a mint having $r > 5$

Questi	on Scheme	Marks	AOs
11	$\frac{1+11x-6x^2}{(x-3)(1-2x)} \equiv A + \frac{B}{(x-3)} + \frac{C}{(1-2x)}$		
(a)	$1+11x-6x^{2} \equiv A(1-2x)(x-3) + B(1-2x) + C(x-3) \Longrightarrow B =, C =$	M1	2.1
Way	A = 3	B1	1.1b
	Uses substitution or compares terms to find either $B =$ or $C =$	M1	1.1b
	B = 4 and $C = -2$ which have been found using a correct identity	A1	1.1b
		(4)	
(a) Way 2	{long division gives} $\frac{1+11x-6x^2}{(x-3)(1-2x)} \equiv 3 + \frac{-10x+10}{(x-3)(1-2x)}$		
	$-10x + 10 \equiv B(1-2x) + C(x-3) \Longrightarrow B = \dots, C = \dots$	M1	2.1
	A = 3	B1	1.1b
	Uses substitution or compares terms to find either $B =$ or $C =$	M1	1.1b
	B = 4 and $C = -2$ which have been found using $-10x + 10 \equiv B(1-2x) + C(x-3)$	A1	1.1b
		(4)	
(b)	$f(x) = 3 + \frac{4}{(x-3)} - \frac{2}{(1-2x)} \{ = 3 + 4(x-3)^{-1} - 2(1-2x)^{-1} \}; x > 3$		
	$f'(x) = A(x-2)^{-2} - A(1-2x)^{-2} - \begin{pmatrix} 4 & 4 \end{pmatrix}$	M1	2.1
	$1 (x) = -4(x-3)^{2} - 4(1-2x) \left\{ = -\frac{1}{(x-3)^{2}} - \frac{1}{(1-2x)^{2}} \right\}$	A1ft	1.1b
	Correct $f'(x)$ and as $(x-3)^2 > 0$ and $(1-2x)^2 > 0$, then $f'(x) = -(+ ve) - (+ ve) < 0$, so $f(x)$ is a decreasing function	A1	2.4
		(3)	
	· · · · · · · · · · · · · · · · · · ·	(7	marks)
	Notes for Question 11		
(a) M1:	Way 1: Uses a correct identity $1+11x-6x^2 \equiv A(1-2x)(x-3)+B(1-2x)+C(1-2x)$	$\frac{1}{2}(x-3)$ in a	
	complete method to find values for B and C . Note: Allow one slip in convin	$x_{1+11x-6}$	$5r^2$
	Way 2: Uses a correct identity $-10x+10 \equiv B(1-2x)+C(x-3)$ (which has the second sec	been found fi	rom
	long division) in a complete method to find values for <i>B</i> and <i>C</i>		
B1:	A=3		
M1:	Attempts to find the value of either <i>B</i> or <i>C</i> from their identity This can be achieved by <i>either</i> substituting values into their identity or by correcting on <i>C</i> identity		
	and solving the resulting equations simultaneously	iiparing coci	merents
A1:	See scheme		
Note:	Way 1: Comparing terms: $x^2: -6 = -2A; x: 11 = 7A - 2B + C; \text{constant}: 1 = -3A + B - 3C$		
	Way 1: Substituting: $x=3:-20=-5B \Rightarrow B=4$; $x=\frac{1}{2}:5=-\frac{5}{2}C \Rightarrow C=-\frac{5}{2}C$	-2	
Note:	Way 2: Comparing terms: $x: -10 = -2B + C$; constant: $10 = B - 3C$	Vay 2: Comparing terms: $x: -10 = -2B + C$; constant: $10 = B - 3C$	
	Way 2: Substituting: $x=3:-20=-5B \Rightarrow B=4$; $x=\frac{1}{2}:5=-\frac{5}{2}C \Rightarrow C=-\frac{5}{2}C$	-2	

Note:	A=3, B=4, C=-2 from no working scores M1B1M1A1
Note:	The final A1 mark is effectively dependent upon both M marks

	Notes for Question 11 Continued		
(a) ctd			
Note:	Writing $1+11x-6x^2 \equiv B(1-2x)+C(x-3) \Longrightarrow B=4$, $C=-2$ will get 1 st M0, 2 nd M1, 1 st A0		
Note:	Way 1: You can imply a correct identity $1+11x-6x^2 \equiv A(1-2x)(x-3)+B(1-2x)+C(x-3)$		
	from cooring $\frac{1+11x-6x^2}{1-2x} = \frac{A(1-2x)(x-3)+B(1-2x)+C(x-3)}{1-2x}$		
	$\frac{1}{(x-3)(1-2x)} = \frac{1}{(x-3)(1-2x)}$		
Note:	Way 2: You can imply a correct identity $-10x+10 \equiv B(1-2x)+C(x-3)$		
	from seeing $\frac{-10x+10}{(x-3)(1-2x)} \equiv \frac{B(1-2x)+C(x-3)}{(x-3)(1-2x)}$		
(b)			
M1:	Differentiates to give $\{f'(x) = \} \pm \lambda (x-3)^{-2} \pm \mu (1-2x)^{-2}; \lambda, \mu \neq 0$		
A1ft:	$f'(x) = -4(x-3)^{-2} - 4(1-2x)^{-2}$, which can be simplified or un-simplified		
Note:	Allow A1ft for $f'(x) = -(\text{their } B)(x-3)^{-2} + (2)(\text{their } C)(1-2x)^{-2}$; (their B), (their C) $\neq 0$		
A1:	$f'(x) = -4(x-3)^{-2} - 4(1-2x)^{-2}$ or $f'(x) = -\frac{4}{(x-3)^2} - \frac{4}{(1-2x)^2}$ and a correct explanation		
	e.g. $f'(x) = -(+ve) - (+ve) < 0$, so $f(x)$ is a decreasing {function}		
Note:	The final A mark can be scored in part (b) from an incorrect $A =$ or from $A = 0$ or no value of		
	A found in part (a)		

N	otes	for (Question	11	Continued	- /	Alternatives
---	------	-------	----------	----	-----------	-----	--------------

(a)					
Note:	Be aware of the following alternative solutions, by initially dividing by " $(x-3)$ " or " $(1-2x)$ "				
	$1+11x-6x^2$ $-6x-7$ 20 210 20				
	• $\frac{1}{(x-3)(1-2x)} \equiv \frac{1}{(1-2x)} - \frac{1}{(x-3)(1-2x)} \equiv 3 - \frac{1}{(1-2x)} - \frac{1}{(x-3)(1-2x)}$				
	$\frac{20}{20} = \frac{D}{20} + \frac{E}{20} \Rightarrow 20 = D(1-2r) + F(r-3) \Rightarrow D = -4 E = -4$	-8			
	$(x-3)(1-2x)$ $(x-3)$ $(1-2x)$ $\rightarrow 20-D(1-2x)+D(x-5)$ $\rightarrow D=-4$, $D=-4$	0			
	$\Rightarrow 3 - \frac{10}{(1-2x)} - \left(\frac{-4}{(x-3)} + \frac{-8}{(1-2x)}\right) \equiv 3 + \frac{4}{(x-3)} - \frac{2}{(1-2x)}; A = 3, B = 4, C = -2$				
	$1+11x-6x^2$ $3x-4$ 5 5 5				
	• $\frac{1}{(x-3)''(1-2x)''} = \frac{1}{(x-3)} + \frac{1}{(x-3)(1-2x)} = 3 + \frac{1}{(x-3)} + \frac{1}{(x-3)(1-2x)}$				
	$\frac{5}{2} = \frac{D}{2} + \frac{E}{2} \Rightarrow 5 = D(1-2x) + E(x-3) \Rightarrow D = -1 E = -2$				
	(x-3)(1-2x) $(x-3)$ $(1-2x)$				
	$\Rightarrow 3 + \frac{5}{(x-3)} + \left(\frac{-1}{(x-3)} + \frac{-2}{(1-2x)}\right) \equiv 3 + \frac{4}{(x-3)} - \frac{2}{(1-2x)}; A=3, B=4, C=-2$				
(b)					
	Alternative Method 1:				
	$f(x) = \frac{1+11x-6x^2}{(x-3)(1-2x)}, \ x > 3 \implies f(x) = \frac{1+11x-6x^2}{-2x^2+7x-3}; \ \begin{cases} u = 1+11x-6x^2 & v = -2x^2+7x^2 \\ u' = 11-12x & v' = -4x+7x^2 \end{cases}$	7x-3			
	$f'(x) = \frac{(-2x^2 + 7x - 3)(11 - 12x) - (1 + 11x - 6x^2)(-4x + 7)}{(-2x^2 + 7x - 3)^2}$ Uses quotient rule to find f'(x)	M1			
	Correct differentiation	A1			
	$f'(x) = \frac{-20((x-1)^2 + 1)}{(-2x^2 + 7x - 3)^2}$ and a correct explanation,	A1			
	e.g. $f'(x) = -\frac{(+ ve)}{(+ ve)} < 0$, so $f(x)$ is a decreasing {function}				
	Alternative Method 2:				
	Allow M1A1A1 for the following solution:				
	Given $f(x) = 3 + \frac{4}{(x-3)} - \frac{2}{(1-2x)} = 3 + \frac{4}{(x-3)} + \frac{2}{(2x-1)}$				
	as $\frac{4}{(x-2)}$ decreases when $x > 3$ and $\frac{2}{(2x-1)}$ decreases when $x > 3$				
	(x-3) (2x-1)				

Questi	ion Scheme		AOs	
12	$1 - \cos 2\theta \equiv \tan \theta \sin 2\theta, \ \theta \neq \frac{(2n+1)\pi}{2}, \ n \in \mathbb{Z}$			
(a) Way 2	$\tan\theta\sin 2\theta = \left(\frac{\sin\theta}{\cos\theta}\right)(2\sin\theta\cos\theta)$	M1	1.1b	
	$=\left(\frac{\sin\theta}{2}\right)(2\sin\theta\cos\theta) = 2\sin^2\theta = 1-\cos 2\theta^*$	M1	1.1b	
	$(\cos\theta)^{(25000,0000)}$	A1*	2.1	
(a)		(3)		
(a) Way 2	$\frac{1 - \cos 2\theta = 1 - (1 - 2\sin^2 \theta) = 2\sin^2 \theta}{1 - \cos^2 \theta}$	M1	1.1b	
	$= \left(\frac{\sin\theta}{\cos\theta}\right)(2\sin\theta\cos\theta) = \tan\theta\sin2\theta *$	M1 A1*	1.1b	
		(3)	2.1	
	$(\sec^2 x - 5)(1 - \cos 2x) = 3\tan^2 x \sin 2x, \ -\frac{\pi}{2} < x < \frac{\pi}{2}$			
(b)	$(\sec^2 x - 5)\tan x \sin 2x = 3\tan^2 x \sin 2x$			
Way 2	or $(\sec^2 x - 5)(1 - \cos 2x) = 3\tan x(1 - \cos 2x)$			
	Deduces $x = 0$	B1	2.2a	
	Uses $\sec^2 x = 1 + \tan^2 x$ and cancels/factorises out $\tan x$ or $(1 - \cos 2x)$			
	e.g. $(1 + \tan^2 x - 3\tan x - 5)\tan x = 0$	M1	2.1	
	or $(1 + \tan^2 x - 3\tan x - 5)(1 - \cos 2x) = 0$	1011	2.1	
	or $1 + \tan^2 x - 5 = 3\tan x$		1	
	$\tan^2 x - 3\tan x - 4 = 0$	A1	1.1b	
	$(\tan x - 4)(\tan x + 1) = 0 \Longrightarrow \tan x = \dots$	M1	1.1b	
	$x = -\frac{\pi}{2}, 1.326$	Al	1.1b	
	4	A1 (6)	1.10	
	I		marks)	
	Notes for Question 12	· · · · ·		
(a)	Way 1			
M1:	Applies $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\sin 2\theta = 2\sin \theta \cos \theta$ to $\tan \theta \sin 2\theta$			
M1:	Cancels as scheme (may be implied) and attempts to use $\cos 2\theta = 1 - 2\sin^2 \theta$			
A1*:	For a correct proof showing all steps of the argument			
(a) Way 2				
M1:	For using $\cos 2\theta = 1 - 2\sin^2 \theta$			
Note:	If the form $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ or $\cos 2\theta = 2\cos^2 \theta - 1$ is used, the mark cannot be awarded			
	until $\cos^2 \theta$ has been replaced by $1 - \sin^2 \theta$			
M1:	Attempts to write their $2\sin^2\theta$ in terms of $\tan\theta$ and $\sin 2\theta$ using $\tan\theta = \frac{\sin^2\theta}{\cos^2\theta}$	$\frac{\partial \theta}{\partial \theta}$ and		
A 1 4	$\sin 2\theta = 2\sin \theta \cos \theta$ within the given expression			
Al*:	For a correct proof showing all steps of the argument If a proof mosts in the middle, and there show LUS $-2\sin^2 \theta = 4$ DUS $-2\sin^2 \theta$	$p^2 \rho \cdot 4 \cdots$		
inote:	If a proof meets in the middle; e.g. they show LHS = $2 \sin \theta$ and RHS = $2 \sin \theta$	$H \sigma$; then s	ome	
	indication must be given that the proof is complete. E.g. $1 - \cos 2\theta \equiv \tan \theta \sin \theta$	20, QED, b	OX	

	Notes for Ques	tion	12 Continued		
(b)					
B1:	Deduces that the given equation yields a s	oluti	on $x = 0$		
M1:	For using the key step of $\sec^2 x = 1 + \tan^2 x$	¢and	cancels/factorises out $\tan x$ or	$(1-\cos 2x)$)
	or $\sin 2x$ to produce a quadratic factor or	quad	ratic equation in just tan x		
Note:	Allow the use of $\pm \sec^2 x = \pm 1 \pm \tan^2 x$ for	M1			
A1:	Correct 3TQ in $\tan x$. E.g. $\tan^2 x - 3\tan x$	-4=	= 0		
Note:	E.g. $\tan^2 x - 4 = 3\tan x$ or $\tan^2 x - 3\tan x$	c = 4	are acceptable for A1		
M1:	For a correct method of solving their 3TQ	in ta	an x		
A1:	Any one of $-\frac{\pi}{4}$, awrt -0.785, awrt 1.326	5, -4	5°, awrt 75.964°		
A1:	Only $x = -\frac{\pi}{4}$, 1.326 cao stated in the ran	nge -	$-\frac{\pi}{2} < x < \frac{\pi}{2}$		
Note:	Alternative Method (Alt 1)				
	$(\sec^2 x - 5)\tan x \sin 2x$	=3ta	$n^2 x \sin 2x$		
	or $(\sec^2 x - 5)(1 - \cos 2x) = 3\tan x(1 - \cos 2x)$				
	Deduces $x = 0$			B1	2.2a
	$\sec^2 x - 5 = 3\tan x \Rightarrow \frac{1}{\cos^2 x} - 5 = 3\left(\frac{\sin x}{\cos x}\right)$ $1 - 5\cos^2 x = 3\sin x \cos x$ $1 - 5\left(\frac{1 + \cos 2x}{2}\right) = \frac{3}{2}\sin 2x$	$\left(\frac{x}{x}\right)$	Complete process (as shown) of using the identities for $\sin 2x$ and $\cos 2x$ to proceed as far as $\pm A \pm B \cos 2x = \pm C \sin 2x$	M1	2.1
	$-\frac{3}{2} - \frac{5}{2}\cos 2x = \frac{3}{2}\sin 2x$ $\{3\sin 2x + 5\cos 2x = -3\}$		$-\frac{3}{2} - \frac{5}{2}\cos 2x = \frac{3}{2}\sin 2x$ o.e.	A1	1.1b
	$\sqrt{34}\sin(2x+1.03) = -3$	E fo	xpresses their answer in the form $R\sin(2x+\alpha) = k$; $_{k \neq 0}$ with values for <i>R</i> and α	M1	1.1b
	sin(2x+1.03) =	=	3 3 3 3		
	π	376		A1	1.1b
	$x = -\frac{1}{4}, 1.520$			A1	1.1b

www.yesterdaysmathsexam.com

Questi	ion Scheme	Marks	AOs				
12	$C: y = x \ln x; \ l \text{ is a normal to } C \text{ at } P(e, e)$						
15	Let x_A be the <i>x</i> -coordinate of where <i>l</i> cuts the <i>x</i> -axis						
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \ln x + x \left(\frac{1}{2}\right) \{= 1 + \ln x\}$	M1	2.1				
	$\frac{dx}{dx} = \frac{dx}{dx} + dx$	A1	1.1b				
	$x = e, m_T = 2 \implies m_N = -\frac{1}{2} \implies y - e = -\frac{1}{2}(x - e)$	N (1	2.1				
	$y=0 \Rightarrow -e = -\frac{1}{2}(x-e) \Rightarrow x =$	M1	3.1a				
	<i>l</i> meets <i>x</i> -axis at $x = 3e$ (allow $x = 2e + e \ln e$)	A1	1.1b				
	{Areas:} either $\int_{1}^{e} x \ln x dx = [\dots]_{1}^{e} = \dots$ or $\frac{1}{2}$ ((their x_A) – e	e)e M1	2.1				
	$\left\{\int x \ln x \mathrm{d}x = \right\} \frac{1}{2}x^2 \ln x - \int \frac{1}{x} \left(\frac{x^2}{2}\right) \{\mathrm{d}x\}$	M1	2.1				
	$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	dM1	1.1b				
	$\left\{ = \frac{1}{2}x^{2} \ln x - \int \frac{1}{2}x^{2} \left\{ dx \right\} \right\} = \frac{1}{2}x^{2} \ln x - \frac{1}{4}x^{2}$	A1	1.1b				
	Area $(R_1) = \int_1^e x \ln x dx = [\dots]_1^e = \dots;$ Area $(R_2) = \frac{1}{2}((\text{their } x_A) - e)$)e M1	3.1a				
	and so, Area(R) = Area(R ₁) + Area(R ₂) {= $\frac{1}{4}e^2 + \frac{1}{4} + e^2$ }						
	Area $(R) = \frac{5}{4}e^2 + \frac{1}{4}$	A1	1.1b				
	Notes for Ouestion 12	(10)					
M1·	Notes for Question 15 Differentiates by using the product rule to give $\ln x + r(\text{their } g'(x))$ when	$re g(x) = \ln x$					
A1.	Correct differentiation of $v = x \ln x$, which can be un-simplified or simplified						
M1:	Complete strategy to find the x coordinate where their normal to C at $P(e, e)$ meets the x-axis						
	i.e. Sets $y=0$ in $y-e=m_y(x-e)$ to find $x=$						
Note:	$m_r \text{ is found by using calculus and } m_N \neq m_r$						
A1:	A1: <i>l</i> meets <i>x</i> -axis at $x = 3e$, allowing un-simplified values for <i>x</i> such as $x = 2e + elne$						
Note:	Allow $x = awrt 8.15$						
M1:	Scored for either						
	• Area under curve = $\int_{1}^{e} x \ln x dx = [\dots]_{1}^{e} = \dots$, with limits of e and	nd 1 and some at	ttempt to				
	J_1 substitute these and subtract						
	• or Area under line $=\frac{1}{2}((\text{their } x_A) - e)e$, with a valid attempt to find x_A						
M1:	Integration by parts the correct way around to give $Ax^2 \ln x - \int B\left(\frac{x^2}{x}\right) \{dx\}; A \neq 0, B > 0$						
dM1:	dependent on the previous M mark						
	Integrates the second term to give $\pm \lambda x^2$; $\lambda \neq 0$						
A1:	$\frac{1}{2}x^{2}\ln x - \frac{1}{4}x^{2}$						
M1:	Complete strategy of finding the area of R by finding the sum of two key areas. See scheme.						
A1:	$\frac{5}{4}e^2 + \frac{1}{4}$						

	Notes for Question 13 Continued				
Note:	Area(R_2) can also be found by integrating the line <i>l</i> between limits of e and their x_A				
	i.e. Area $(R_2) = \int_{e}^{\text{their } x_A} \left(-\frac{1}{2}x + \frac{3}{2}e \right) dx = \left[\dots \right]_{e}^{\text{their } x_A} = \dots$				
Note:	Calculator approach with no algebra, differentiation or integration seen:				
	• Finding <i>l</i> cuts through the <i>x</i> -axis at awrt 8.15 is 2^{nd} M1 2^{nd} A1				
	• Finding area between curve and the x-axis between $x=1$ and $x=e$				
	to give awrt 2.10 is 3 rd M1				
	• Using the above information (must be seen) to apply				
	Area(R) = 2.0972 + 7.3890 = 9.4862 is final M1				
	Therefore, a maximum of 4 marks out of the 10 available.				

www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
14	$N = \frac{900}{3 + 7e^{-0.25t}} = 900(3 + 7e^{-0.25t})^{-1}, t \in \mathbb{R}, t \ge 0; \frac{dN}{dt} = \frac{N(300 - N)}{1200}$		
(a)	90	B1	3.4
		(1)	
(b)	$\frac{\mathrm{d}N}{\mathrm{d}t} = -900(3 + 7\mathrm{e}^{-0.25t})^{-2} \left(7(-0.25)\mathrm{e}^{-0.25t}\right) \left\{ = \frac{900(0.25)(7)\mathrm{e}^{-0.25t}}{1000} \right\}$	M1	2.1
Way 1	dt $(3+7e^{-0.25t})^2$	A1	1.1b
	$\Rightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{900(0.25)\left(\left(\frac{900}{N} - 3\right)\right)}{\left(\frac{900}{N}\right)^2}$	dM1	2.1
	correct algebra leading to $\frac{dN}{dt} = \frac{N(300 - N)}{1200}$ *	A1*	1.1b
		(4)	
(b)	$\frac{\mathrm{d}N}{\mathrm{d}t} = -900(3 + 7\mathrm{e}^{-0.25t})^{-2} \left(7(-0.25)\mathrm{e}^{-0.25t}\right) \left\{ = \frac{900(0.25)(7)\mathrm{e}^{-0.25t}}{(3 + 7\mathrm{e}^{-0.25t})^2} \right\}$	M1	2.1
Way 2		A1	1.1b
	$\frac{N(300-N)}{1200} = \frac{\left(\frac{900}{3+7e^{-0.25t}}\right)\left(300-\frac{900}{3+7e^{-0.25t}}\right)}{1200}$	dM1	2.1
	LHS = $\frac{1575e^{-0.25t}}{(3+7e^{-0.25t})^2}$ o.e., RHS = $\frac{900(300(3+7e^{-0.25t})-900)}{1200(3+7e^{-0.25t})^2} = \frac{1575e^{-0.25t}}{(3+7e^{-0.25t})^2}$ o.e. and states hence $\frac{dN}{dt} = \frac{N(300-N)}{1200}$ (or LHS = RHS) *	A1*	1.1b
		(4)	
(c)	Deduces $N = 150$ (can be implied)	B1	2.2a
	so $150 = \frac{900}{3 + 7e^{-0.25T}} \implies e^{-0.25T} = \frac{3}{7}$	M1	3.4
	$T = 4\ln(3)$ or $T = a \text{ wrt } 34 \text{ (months)}$		1.1b
	(7)	A1	1.1b
		(4)	-
(d)	either one of 299 or 300	B1	3.4
		(1)	morta
		(10	marks)

	Notes for Question 14
14 (b)	
M1:	Attempts to differentiate using
	• the chain rule to give $\frac{dN}{dt} = \pm A e^{-0.25t} (3 + 7e^{-0.25t})^{-2}$ or $\frac{\pm A e^{-0.25t}}{(3 + 7e^{-0.25t})^2}$ o.e.
	• the quotient rule to give $\frac{dN}{dt} = \frac{(3+7e^{-0.25t})(0) \pm Ae^{-0.25t}}{(3+7e^{-0.25t})^2}$
	• implicit differentiation to give $N(3+7e^{-0.25t}) = 900 \implies (3+7e^{-0.25t}) \frac{dN}{dt} \pm ANe^{-0.25t} = 0$, o.e.
	where $A \neq 0$
Note:	Condone a slip in copying $(3+7e^{-0.25t})$ for the M mark
A1:	A correct differentiation statement
Note:	Implicit differentiation gives $(3+7e^{-0.25t})\frac{dN}{dt} - 1.75Ne^{-0.25t} = 0$
dM1:	Way 1: Complete attempt, by eliminating <i>t</i> , to form an equation linking $\frac{dN}{dt}$ and <i>N</i> only
	Way 2: Complete substitution of $N = \frac{900}{3 + 7e^{-0.25t}}$ into $\frac{dN}{dt} = \frac{N(300 - N)}{1200}$
Note:	Way 1: e.g. substitutes $3 + 7e^{-0.25t} = \frac{900}{N}$ and $e^{-0.25t} = \frac{900}{N}$ or substitutes $e^{-0.25t} = \frac{\frac{900}{N} - 3}{7}$ into
	their $\frac{dN}{dt} =$ to form an equation linking $\frac{dN}{dt}$ and N
A1*:	Way 1: Correct algebra leading to $\frac{dN}{dt} = \frac{N(300 - N)}{1200} *$
	Way 2: See scheme
(c)	
B1:	Deduces or shows that $\frac{dN}{dt}$ is maximised when $N = 150$
M1:	Uses the model $N = \frac{900}{3 + 7e^{-0.25t}}$ with their $N = 150$ and proceeds as far as $e^{-0.25t} = k$, $k > 0$
	or $e^{0.25T} = k$, $k > 0$. Condone $t \equiv T$
dM1:	Correct method of using logarithms to find a value for T. Condone $t = T$
A1:	see scheme
Note:	$\frac{\mathrm{d}^2 N}{\mathrm{d}t^2} = \frac{\mathrm{d}N}{\mathrm{d}t} \left(\frac{300}{1200} - \frac{2N}{1200} \right) = 0 \Longrightarrow N = 150 \text{ is acceptable for B1}$
Note:	Ignore units for T
Note:	Applying $300 = \frac{900}{3 + 7e^{-0.25t}} \Rightarrow t = \text{ or } 0 = \frac{900}{3 + 7e^{-0.25t}} \Rightarrow t = \text{ is M0 dM0 A0}$
Note:	M1 dM1 can only be gained in (c) by using an N value in the range $90 < N < 300$
(d)	
B1:	300 (or accept 299)

www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
14	$N = \frac{900}{3 + 7e^{-0.25t}} = 900(3 + 7e^{-0.25t})^{-1}, t \in \mathbb{R}, t \ge 0; \frac{dN}{dt} = \frac{N(300 - N)}{1200}$		
(b) Way 3	$\int \frac{1}{N(300 - N)} dN = \int \frac{1}{1200} dt$	M1	2.1
	$\int \frac{1}{300} \left(\frac{1}{N} + \frac{1}{300 - N} \right) dN = \int \frac{1}{1200} dt$ $\frac{1}{300} \ln N - \frac{1}{300} \ln(300 - N) = \frac{1}{1200} t \{+c\}$	A1	1.1b
	$\{t = 0, N = 90 \Rightarrow\} c = \frac{1}{300} \ln(90) - \frac{1}{300} \ln(210) \Rightarrow c = \frac{1}{300} \ln\left(\frac{3}{7}\right)$ $\frac{1}{300} \ln N - \frac{1}{300} \ln(300 - N) = \frac{1}{1200} t + \frac{1}{300} \ln\left(\frac{3}{7}\right)$ $\ln N - \ln(300 - N) = \frac{1}{4} t + \ln\left(\frac{3}{7}\right)$	dM1	2.1
	$\ln\left(\frac{N}{300-N}\right) = \frac{1}{4}t + \ln\left(\frac{3}{7}\right) \implies \frac{N}{300-N} = \frac{3}{7}e^{\frac{1}{4}t}$		
	$7N = 3e^{\frac{1}{4}t}(300 - N) \implies 7N + 3Ne^{\frac{1}{4}t} = 900e^{\frac{1}{4}t}$ $N(7 + 3e^{\frac{1}{4}t}) = 900e^{\frac{1}{4}t} \implies N = \frac{900e^{\frac{1}{4}t}}{7 + 3e^{\frac{1}{4}t}} \implies N = \frac{900}{3 + 7e^{-0.25t}} *$	A1*	1.1b
		(4)	
(b) Way 4	$N(3+7e^{-0.25t}) = 900 \implies e^{-0.25t} = \frac{1}{7} \left(\frac{900}{N} - 3\right) \implies e^{-0.25t} = \frac{900 - 3N}{7N}$	M1	2.1
	$\Rightarrow t = -4\left(\ln(900 - 3N) - \ln(7N)\right)$ $\Rightarrow \frac{dt}{dN} = -4\left(\frac{-3}{900 - 3N} - \frac{7}{7N}\right)$	A1	1.1b
	$\frac{\mathrm{d}t}{\mathrm{d}N} = 4\left(\frac{1}{300-N} + \frac{1}{N}\right) \Longrightarrow \frac{\mathrm{d}t}{\mathrm{d}N} = 4\left(\frac{N+300-N}{N(300-N)}\right)$	dM1	2.1
	$\frac{\mathrm{d}t}{\mathrm{d}N} = \left(\frac{1200}{N(300-N)}\right) \Longrightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{N(300-N)}{1200} *$	A1*	1.1b
		(4)	

Notes for Question 14 Continued

Γ

(b) Way 3				
M1:	Separates the variables, an attempt to form and apply partial fractions and integrates to give ln terms = $kt \{+c\}, k \neq 0$, with or without a constant of integration c			
A1:	$\frac{1}{300} \ln N - \frac{1}{300} \ln(300 - N) = \frac{1}{1200}t \ \{+c\} \text{ or equivalent with or without a constant of integration } c$			
dM1:	Uses $t = 0$, $N = 90$ to find their constant of integration and obtains an expression of the form			
	$\lambda e^{\frac{1}{4}t} = f(N); \lambda \neq 0 \text{ or } \lambda e^{-\frac{1}{4}t} = f(N); \lambda \neq 0$			
A1*:	Correct manipulation leading to $N = \frac{900}{3 + 7e^{-0.25t}} *$			
(b) Way 4				
M1:	Valid attempt to make <i>t</i> the subject, followed by an attempt to find two ln derivatives, condoning sign errors and constant errors.			
A1:	$\frac{\mathrm{d}t}{\mathrm{d}N} = -4\left(\frac{-3}{900-3N} - \frac{7}{7N}\right) \text{ or equivalent}$			
dM1:	Forms a common denominator to combine their fractions			
A1*:	Correct algebra leading to $\frac{dN}{dt} = \frac{N(300 - N)}{1200} *$			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom