edexcel 쁯

Mark Scheme (Results) J anuary 2015

Pearson Edexcel International A Level in Statistics 2
(WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015
Publications Code IA040682
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL I AL MATHEMATICS

General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. Ignore wrong working or incorrect statements following a correct answer.

J anuary 2015
WST02 Statistics S2
Mark Scheme

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 1(a) \& \[
\begin{align*}
\& X \sim \operatorname{Po}(3.2) \\
\& \begin{aligned}
\mathrm{P}(X=3) \& =\frac{\mathrm{e}^{-3.2} 3.2^{3}}{3!} \\
\& =0.2226
\end{aligned}
\end{align*}
\] \& B1
M1
A1 \\
\hline (b) \& \[
\left.\begin{array}{l}
Y \sim \operatorname{Po}(1.6) \\
\mathrm{P}(Y \geq 1)
\end{array}=1-\mathrm{P}(Y=0), ~=1-\mathrm{e}^{-1.6}\right)
\] \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \\
\hline (c) \& \[
\begin{aligned}
\& X \sim \operatorname{Po}(0.8) \\
\& \begin{aligned}
\frac{\mathrm{P}(X=1) \times \mathrm{P}(X=3)}{\mathrm{P}(Y=4)} \& =\frac{\left(\mathrm{e}^{-0.8} \times 0.8\right) \times\left(\frac{\mathrm{e}^{-0.8} 0.8^{3}}{3!}\right)}{\frac{\mathrm{e}^{-1.6} 1.6^{4}}{4!}} \\
\& =\frac{0.3594 \times 0.0383}{0.05513} \\
\& =0.25
\end{aligned}
\end{aligned}
\] \& \begin{tabular}{l}
M1 M1 \\
M1 A1 \\
A1 \\
(5)
\end{tabular} \\
\hline (d) \& \begin{tabular}{l}
A~Po(72) approximated by N(72,72)
\[
\begin{align*}
\& \frac{5000}{60}=83.33 \\
\& \begin{aligned}
\mathrm{P}(A \geq 84) \& =\mathrm{P}\left(Z \geq \frac{83.5-72}{\sqrt{72}}\right) \\
\& =\mathrm{P}(Z \geq 1.355 \ldots) \\
\& =0.0869 \quad \text { awrt } 0.087 / 0.088
\end{aligned}
\end{align*}
\] \\
Notes
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
M1 M1 \\
A1
\end{tabular} \\
\hline (a)
(b)
(c)

(d) \& | B1 for writing or using $\operatorname{Po}(3.2)$ $\text { M1 } \frac{\mathrm{e}^{-\lambda} \lambda^{3}}{3!}$ |
| :--- |
| B1 for writing or using $\mathrm{Po}(1.6)$ |
| M1 $1-\mathrm{P}(Y=0)$ or $1-\mathrm{e}^{-\lambda}$ |
| $1^{\text {st }} \mathrm{M} 1$ using $\operatorname{Po}(0.8)$ with $X=1$ or $X=3$ (may be implied by $0.359 \ldots$ or $0.0383 \ldots$...) $2^{\text {nd }}$ M1 $\left(\mathrm{e}^{-\lambda} \times \lambda\right) \times\left(\frac{\mathrm{e}^{-\lambda} \lambda^{3}}{3!}\right)$ (consistent lambda) awrt 0.0138 implies $1^{\text {st }} 2 \mathrm{M}$ |
| marks |
| $3^{\text {rd }}$ M1 correct use of conditional probability with denominator $=\frac{\mathrm{e}^{-1.6} 1.6^{4}}{4!}$ |
| $1^{\text {st }}$ A1 fully correct expression |
| $2^{\text {nd }}$ A1 0.25 (allow awrt 0.250) |
| B1 Writing or using $\mathrm{N}(72,72)$ |
| $1^{\text {st }} \mathrm{M} 1$ for exact fraction or awrt 83.3 (may be implied by 84) |
| (Note: Use of $\mathrm{N}(4320,4320)$ can score B1 and $1^{\text {st }} \mathrm{M} 1$) |
| $2^{\text {nd }}$ M1 Using $84+/-0.5$ |
| $3^{\text {rd }}$ M1 standardising using $82.5,83,83 . \dot{3}$ (awrt 83.3), 83.5, 83.8, 84 or 84.5 , |
| 'their mean' and 'their sd' | \&

\hline
\end{tabular}

Question Number	Scheme	Marks
4(a)	$\begin{aligned} & X \sim \operatorname{Po}(6) \\ & \begin{aligned} \mathrm{P}(5 \leq X<7) & =\mathrm{P}(X \leq 6)-\mathrm{P}(X \leq 4) \quad \text { or } \frac{\mathrm{e}^{-6} 6^{5}}{5!}+\frac{\mathrm{e}^{-6} 6^{6}}{6!} \\ & =0.6063-0.2851 \\ & =0.3212 \end{aligned} \end{aligned}$	M1 M1 A1 (3)
(b)	$\mathrm{H}_{0}: \lambda=9 \quad \mathrm{H}_{1}: \lambda<9$ $X \sim \operatorname{Po}(9)$ therefore $\mathrm{P}(X \leq 4)=0.05496 \ldots \text { or CR } X \leq 3$ Insufficient evidence to reject H_{0} or Not Significant or 4 does not lie in the critical region. There is no evidence that the mean number of accidents at the crossroads has reduced/decreased.	B1 B1 dM1 A1cso (4)
(a) (b)	Notes M1 writing or using $\operatorname{Po}(6)$ M1 either $\mathrm{P}(X \leq 6)-\mathrm{P}(X \leq 4)$ or $\frac{\mathrm{e}^{-\lambda} \lambda^{5}}{5!}+\frac{\mathrm{e}^{-\lambda} \lambda^{6}}{6!}$ $1^{\text {st }} \mathrm{B} 1$ both hypotheses correct (λ or μ) allow 0.5 instead of 9 $2^{\text {nd }}$ B1 either awrt 0.055 or critical region $X \leq 3$ dM1 for a correct comment (dependent on previous B1) Contradictory non-contextual statements such as "not significant" so "reject H_{0} " score M0 (May be implied by a correct contextual statement) A1 cso requires correct contextual conclusion with underlined words and all previous marks in (b) to be scored.	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline 6. (a) \& \[
\begin{aligned}
\mathrm{P}(X=5) \& ={ }^{20} C_{5}(0.3)^{5}(0.7)^{15} \text { or } 0.4164-0.2375 \\
\& =0.17886 \ldots
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
(2)
\end{tabular} \\
\hline (b) \& \[
\begin{align*}
\& \text { Mean }=6 \\
\& \text { sd }=\sqrt{20 \times 0.7 \times 0.3} \\
\& \quad=2.049 \ldots \tag{3}
\end{align*}
\] \& \[
\begin{aligned}
\& \mathrm{B} 1 \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \\
\hline (c)

(d) \& \begin{tabular}{l}
$$
\begin{aligned}
& \mathrm{H}_{0}: p=0.3 \quad \mathrm{H}_{1}: p>0.3 \\
& X \sim \mathrm{~B}(20,0.3) \\
& \mathrm{P}(X \geq 8)=0.2277 \quad \text { or } \mathrm{P}(X \geq 10)=0.0480, \text { so } \mathrm{CR} X \geq 10
\end{aligned}
$$

Insufficient evidence to reject H_{0} or Not Significant or 8 does not lie in the critical region.

There is no evidence to support the Director (of Studies') belief/There is no evidence that the proportion of parents that do not support the new curriculum is greater than 30%
$$
\begin{aligned}
& X \sim \mathrm{~B}(2 n, 0.25) \\
& X \sim \mathrm{~B}(8,0.25) \mathrm{P}(X \geq 4)=0.1138 \\
& X \sim \mathrm{~B}(10,0.25) \mathrm{P}(X \geq 5)=0.0781
\end{aligned}
$$
$$
\begin{aligned}
& 2 n=10 \\
& n=5
\end{aligned}
$$

 \&

B1

M1

A1

dM1

A1cso

(5)

M1

A1

A1
\end{tabular}

\hline | (a) |
| :--- |
| (b) |
| (c) |
| (d) | \& | Notes |
| :--- |
| M1 ${ }^{20} C_{5}(p)^{5}(1-p)^{15}$ or using $\mathrm{P}(X \leq 5)-\mathrm{P}(X \leq 4)$ |
| M1 use of $20 \times 0.7 \times 0.3$ (with or without the square root) |
| B1 both hypotheses correct (p or π) |
| M1 using $X \sim B(20,0.3) \quad$ (may be implied by $0.7723,0.2277,0.8867$ or 0.1133) |
| A1 awrt 0.228 or CR $X \geq 10$ |
| dM1 a correct comment (dependent on previous M1) |
| A1 cso requires correct contextual conclusion with underlined words and all previous marks in (c) to be scored. |
| M1 for 0.1138 or 0.0781 or 0.8862 or 0.9219 seen |
| $1^{\text {st }} \mathrm{A} 1 \mathrm{~B}(10,0.25)$ selected (may be implied by $n=10$ or $2 n=10$ or $n=5$) |
| An answer of 5 with no incorrect working seen scores 3 out of 3 |
| Special Case: Use of a normal approximation, |
| M1 for $\frac{(n-0.5)-\frac{n}{2}}{\sqrt{\frac{3}{8} n}}=z$ with $1.28 \leq \mathrm{z} \leq 1.29,1^{\text {st }}$ A1 for $n=4.2 / 4.3,2^{\text {nd }}$ A1 for $n=5$ | \&

\hline
\end{tabular}

